Acessibilidade / Reportar erro

In situ measurements of benthic primary production, respiration and nutrient fluxes in a hypersaline coastal lagoon of SE Brazil

Abstracts

Bentbic oxygen and nutrient ftuxes were measured in a section of the hypersaline carbonate-rich coastal lagoon of Araruama, SE-Brazil. In situ incubations of the sediment surface (Zm - 1.5) were performed at one station with light/dark chambers during september 1993 (early spring period) and april 1995 (earlyautumn period). The carbonate..rich aediments were covered by 1-3 mm thick microalgal mats, dominated by the cyanobaeteria Phormidium sp, Oscillatoria sp, and Lyngbya sp. Benthic net primary production rates were 15.4 ± 0.7 mmolC/m²/d in early spring and 33.8 ± 8.8 mmolC/m²/d in early autumn, total community respiration rates attained 35.3 ± 7.2 and 65.7 ± 16.9 mmolC/m²/d, and pelagic primary production rates 1.7 ± 0.7 and 4.0 ± 1.4 mmolC/m²/d, respectively. Total community metabolism was thus heterauophic and mainly driven by benthic metabolism. The benthic release rates af ammonia were 0.65 ± 0.32 mmolC/m²/day in early spring and 0.58± 0.42mmoVm ldaym early autumn, butwere near to negligible for orthophosphate. Pelagic primaryproduction was limited byphosphorous, in part, by the preferential release of étmmonia over orthophosphate from the sediment-water interface. The benthic primary production and nutrient release rates were within the range of other eury-to hypersaline carbonate-rich environments characterized by non- consolidated algat rats.

Primary production; Respiration; Nutrients; Benthic Interface; Hypersaline lagoon; Brazil


Fluxos bênticos de oxigênio e nutrientes foram medidos numa seção da lagoa hipersalina e carbonática de Araruama, SE-Brasil Incubações in situ da superfície do sedimento (Zm = 1,5) foram realizadas em uma estação com câmaras claras/escuras nos meses de setembro de 1993 (início da primavera) e abril de 1995 (início do outono). Os sedimentos ricos em carbonatos eram recobertos por um tapete microalgal de 1-3 mm, dominados pelas cianobactérias Phormidium sp,Oscillatoria spLyngbya sp. As taxas de produção primária yquida foram 15,4 ± 0,7 mmolC/m²/d Id no iníCIO da primavera e 33,8 ± 8,8 mmolC/m Id no início do outono, as taxas de respiração total da comunidade alcançaram 35,3 ± 7,2 e 65,7 ± 16,9 mmolC/m²/d Id, e as taxas de produção primária pelágica 1,7 ± 0,7 e 4,0 ± 1,4 mmolC/m²/d, respectivamente. Desta forma, o metabolismo total da comunidade mostrou-se heterotrófico e guiado principalmente pela contornação bêntica. As taxas de liberação bêntica de amônia foram 0,65 ± 0,32 mmoVm ldia no início da primavera e 0,58 ± 0,42 mmolC/m²/dia no início do outono e insignificantes para fósforo. O fósforo representou o elemento limitante da produçao primária pelágica, em parte, pela liberação preferencial de amônia sobre ortofOsfato a partir da interface água-sedimento. A produção primária bêntica e as taxas de liberação de nutrientes se enquadraram dentro da faixa estabelecida para outros sistemas eurye hipersalinos carbonáticos, caracterizados por tapetes algais não-consolidados.

Produção primária; Respiração; Nutrientes; Interface bêntica; Laguna hipersalina; Brasil


RESEARCH ARTICLES

In situ measurements of benthic primary production, respiration and nutrient fluxes in a hypersaline coastal lagoon of SE Brazil

Bastiaan KnoppersI; Weber Friederichs Landim de SouzaI; Marcelo Friederichs Landim de souzaI; Eliane Gonzalez RodriguezII; Elisa de Fátima da Cunha Vianna LandimI; Antonio Romanazzi VieiraI

IUniversidade Federal Fluminense, Departamento de Geoquímica (Morro do Valonguinho, s/n, 24020-007, Niterói, RJ, Brasil)

IIInstituto de Estudos do Mar Almirante Paulo Moreira (Caixa Postal 28390, Arraial do Cabo, RJ, Brasil)

ABSTRACT

Bentbic oxygen and nutrient ftuxes were measured in a section of the hypersaline carbonate-rich coastal lagoon of Araruama, SE-Brazil. In situ incubations of the sediment surface (Zm - 1.5) were performed at one station with light/dark chambers during september 1993 (early spring period) and april 1995 (earlyautumn period). The carbonate..rich aediments were covered by 1-3 mm thick microalgal mats, dominated by the cyanobaeteria Phormidium sp, Oscillatoria sp, and Lyngbya sp. Benthic net primary production rates were 15.4 ± 0.7 mmolC/m2/d in early spring and 33.8 ± 8.8 mmolC/m2/d in early autumn, total community respiration rates attained 35.3 ± 7.2 and 65.7 ± 16.9 mmolC/m2/d, and pelagic primary production rates 1.7 ± 0.7 and 4.0 ± 1.4 mmolC/m2/d, respectively. Total community metabolism was thus heterauophic and mainly driven by benthic metabolism. The benthic release rates af ammonia were 0.65 ± 0.32 mmolC/m2/day in early spring and 0.58± 0.42mmoVm ldaym early autumn, butwere near to negligible for orthophosphate. Pelagic primaryproduction was limited byphosphorous, in part, by the preferential release of étmmonia over orthophosphate from the sediment-water interface. The benthic primary production and nutrient release rates were within the range of other eury-to hypersaline carbonate-rich environments characterized by non- consolidated algat rats.

Descriptors: Primary production, Respiration, Nutrients, Benthic Interface, Hypersaline lagoon, Brazil.

RESUMO

Fluxos bênticos de oxigênio e nutrientes foram medidos numa seção da lagoa hipersalina e carbonática de Araruama, SE-Brasil Incubações in situ da superfície do sedimento (Zm = 1,5) foram realizadas em uma estação com câmaras claras/escuras nos meses de setembro de 1993 (início da primavera) e abril de 1995 (início do outono). Os sedimentos ricos em carbonatos eram recobertos por um tapete microalgal de 1-3 mm, dominados pelas cianobactérias Phormidium sp,Oscillatoria spLyngbya sp. As taxas de produção primária yquida foram 15,4 ± 0,7 mmolC/m2/d Id no iníCIO da primavera e 33,8 ± 8,8 mmolC/m Id no início do outono, as taxas de respiração total da comunidade alcançaram 35,3 ± 7,2 e 65,7 ± 16,9 mmolC/m2/d Id, e as taxas de produção primária pelágica 1,7 ± 0,7 e 4,0 ± 1,4 mmolC/m2/d, respectivamente. Desta forma, o metabolismo total da comunidade mostrou-se heterotrófico e guiado principalmente pela contornação bêntica. As taxas de liberação bêntica de amônia foram 0,65 ± 0,32 mmoVm ldia no início da primavera e 0,58 ± 0,42 mmolC/m2/dia no início do outono e insignificantes para fósforo. O fósforo representou o elemento limitante da produçao primária pelágica, em parte, pela liberação preferencial de amônia sobre ortofOsfato a partir da interface água-sedimento. A produção primária bêntica e as taxas de liberação de nutrientes se enquadraram dentro da faixa estabelecida para outros sistemas eury­e hipersalinos carbonáticos, caracterizados por tapetes algais não-consolidados.

Descritores: Produção primária, Respiração, Nutrientes, Interface bêntica, Laguna hipersalina, Brasil.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Acknowledgements

We are indebted to Dr. Ricardo Coutinho for his management efforts of the PROLAGOS project and for assistance in the field. This work was financed by Instituto Acqua, Petrobrás, and CNPq (Brazilian Council for the Development of Science and Tecnology). Marcelo, Weber and Elisa were supported with student scholarships from CNPq.

References

André, D. L.; Oliveira, M. c.; Okuda, T.; Horta, A. M. T. c.; Soldan, A. L.; Moreira,J. M. N. S.; Rollemberg, M. C. E. & Heinzen, V. E. F. 1981. Estudo preliminar sobre as condições hidroquímicas da lagoa de Araruama - Rio de Janeiro. Inst. Pesq. Mar., 139:1-35.

Atkinson, M. & Smith, S. V. 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr., 28(3):568-574.

Atkinson, M. J. 1987. Low phosphorus sediments in a hypersaline marine bay. Estuar. coast. Shelf Sci., 24:335-347.

Baeta Neves, M. H. C. 1983. Flora ficológica da lagoa hipersalina da Araruama (Estado do Rio de Janeiro­Brasil) 2. Cyanophyceae. Inst. Pesq. Mar., 149:1-18.

Balzer, W.; Bodungen, B. von & Pollehne, F. 1985. Benthic degradation of organic matter and regeneration of nutrients in shallow watcr sediments off Mactan, Philippines. Philipp. Scient., 22:30-41.

Barbiéri, E. B. 1975. Ritmo climático e extração do sal em Cabo Frio. R. bras. Geogr., 37(4):23-109.

Bauld, J. 1981. Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter. J. Aus1. Geol. Geophy., 6:307-317.

Bauld, J. 1984. Microbial mats in marginal environments: Shark bay, western Australia and Spcncer gulf, south Australia. In: Cohen, Y.; Castenholz, R. W. and Halvorson, H. O., eds Microbial Mats: Stromatolites. MBL Lectures in Biology, 3:39-58.

FEEMA Fundação Estadual de Engenharia do Meio Ambiente. 1987. Qualidade das águas do estado do Rio de Janeiro, FEEMA. V. 2. 86p. + anexos.

Florek, R. O. & Rowe, G. T. 1983. Oxygen comsumption and dissolved inorganic nutrient production in marine coastal and shelf sediments of the middle Atlantic Bigh1. I n1. Rcvue ges. Hydrobiol., 68:73-112.

Bodungen, B. von; Jickells, T. D.; Smith, S. R.; Ward, J. D. & Hillier, G. B. 1982. The Bermuda marine environment m. Bermuda Biological Station Special Publication, 18: 1-123.

Campos, R. C.; Queiroz, M. 1.; Lacerda, R. E. D. & Okuda, T. 1979. Conteúdo de fósforo total, carbono e nitrogênio na forma orgânica, nos sedimentos da lagoa de Araruama. Inst. Pesq. Mar., 142:1-7.

Carmouze,J. P.; Knoppers, B. & Vasconcellos, P.1991. The eutrophication of the lagoon of Saquarema. Biogeochem., 14: 129-148.

Carneiro, M. E. R.; Azevedo, A.; Ramalho, N. M. & Knoppers, B. 1994. A biomassa de Chara Homemannii em relação ao comportamento físico-químico da lagoa de Piratininga (RJ). An. Acad. bras. Ci., 66:213-222.

Charpy-Rouband, C.; Charpy, L. & Sarazin, G. 1996. Diffusional nutrient fluxes at the sediment-water interface and organic matter remineralization in an atolllagoon (Tikehan, Tnamotu Archipelago, French Polynesia). Mar. Ecol.-Prog. Ser., 132:181- 190.

Cohen, Y.; Castenholz, R. W. & Halvorson, H. O. 1984. eds Microbial Mats: Stromatolites. MBL Lectures in Biology, vol. 3. New York, Alan R. Liss 489p.

Dye, A. H. 1983. Oxygen comsumption by sediments in a southern African mangrove swamp. Estuar. coast. Shelf Sei., 17(4):473-478.

Epping, E. H. G. & Jorgensen, B. B. In Press. Light enhaced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser.

Erftemeijer, P. L. A. & Middclburg, J. J. 1993. Sediments nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Mar. Ecol. Prog. Ser., 102:187-198.

Grassboff, K; Ebrardt, M. & Kremling, K 1983. Methods of seawater analysis. Weibein, Verlag Chemie. 419p.

Hargrave, B. T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr., 14(5):801-805.

Hargrave, B. T. 1978. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J. Fish. Res. Bd Can., 35(12):1621-1628.

Hines, M. E. 1985. Microbial biogeochemistry in shallow water sediments of Bermuda. In: Proc. 5 th. Int. Coral Reef Congr. 3: 427- 432.

Javor, B. J. & Castenholz R. W.1984. Productivity studies of microbial mats. Laguna Guerrero Negro, Mexico. In: Cohen, Y.; Castenholz R. W. & Halvorson, H. O., eds. Microbial Mats: Stromatolites. MBL Lectures in I Biology, 3:149-170.

Javor, B. J. 1989. Hypersaline environments ­microbiology and biogeochemistry. Berlin, Springer Verlag. 328p.

Jörgensen, B. B.; Revsbech, N. P. & Coben, Y. 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr., 28(6):1075-1093.

Joye, S. B.; Mazzotta, M. L. & Hollibaugh, J. J. 1996. Community metabolism of microbial mats: the occurrence of biologically- mediated iron and manganese reduction. Estuar. coast. Shelf Sci. 43(6):747-766.

Kjerfve, B.; Scbettini, C. A. F.; Knoppers, B.; Lessa, G. & Ferreira, H. O. 1996. Hydology and salt balance in the world's largest bypersaline coastal lagoon: lagoa de Araruama, Brazil. Estuar. coast. Shelf Sci. 42(6):701-727.

Klump, J. V. & Martens, C. S. 1981. Biogeochemical cycling in an organic rich coastal marine basin. II. Nutrient sediment-water exchange process. Geochim. cosmochim. Acta., 45:101-121.

Klump, J. V. & Martens, C. S. 1987. Biogeocbemical cycling in an organic ricb coastal marine basin: V. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances, and the stoicbiometry of nutrient regeneration. Geochim. cosmochim. Acta., 51:1161-1173.

Knoppers, B. 1994. Aquatic primary production in coastal lagoons. In: Kjerfve, B., ed.. Coastal lagoon process. Amsterdam, Elsevier. p. 243-286.

Krumbein, W. E. 1983. Microbial geochemistry. Oxford, Blackwell Scientific Publication. 33Op.

Landim de Souza, M. F. 1993. Distribuição espacial, sazonal e fontes fluviais de nutrientes na lagoa de Araruama - RJ. Dissertação de mestrado. Universidade Federal Fluminense, Departamento de Geoquímica. 167p.

Lenz, J. 1971. Zur methode der Sestonbestimmungs. Kieler Meeresforcb., 27:180-193.

López, P. & Morguí, JA.1992. Phosphate and calcium carbonate saturation in a stratified coastal lagoon. Hydrobiol., 228:55-63.

Lyons, W. B.; Hines, M. E. & Gaudette, H. E. 1984. In: Coben, Y.; Castenbolz R. W. and Halvorson, H. O., eds. Microbial Mats: Stromatolites. MBL Lectures in Biology, 3:411-423.

Machado, E. C. & Knoppers, B. 1988. Sediment consumption in an organic rich sub-tropical lagoon, Brazil. Sei. Tot. Environ., 75:341-349.

Moreira, P. F. & Knoppers, B. A. 1990. Ciclo anual de produção primária e nutrientes na lagoa de Guarapina, RJ. Acta Limnol. Bras., 3:275-290.

Muebe, D. 1994. Lagoa de Araruama: geomorfologia e sedimentação. Cad. Geoc., 10:53-62.

Nixon, S. W.; Oviatt, C. A. & Hale, S. S. 1976. Nitrogen regeneration and tbe metabolism of coastal marine bottom communities. In: Anderson, J. M. & Macfaydan, A. eds . The role of terrestrial and aquatic organisms in decomposition processes. Oxford, Blackwell Scientific Publications. p.269-283.

Nixon, S. W.; KeUy, J. R.; Furnas, B. N.; Oviatt, C. A. & Hale, S. S. 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In: Tenore, K R. & Coull, B. C. , eds. Marine benthic dynamics. Columbia, Univ. of South Carolina Press. p.219-241.

Nixon, S. W. 1982. Nutrients, primary production and fisheries yields in coastal lagoons. Oceanol Acta, 5:357-371.

Nixon, S. W. & Pilson, M.1983. Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter, E. J. & Capone, D. G., eds. Nitrogen in the marine environment. New York, Academic Press. p.565-648.

Pamatmat, M. M. 1971. Oxygen consumption by the sea bed. IV. Shipboard and laboratory experiments. Limnol. Oceanogr., 16(3):536-549.

Smith, S. V.; Kimmerer, W. J.; Laws, E. A.; Brock, R. E. & Walsh, T. W. 1981 Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pacif. Sci., 35(4):279-402.

Smith, S. V. 1988. Mass balance in coral reef-dominated areas. In: Jansson, B. O., ed. Coastal-offshore ecosystem interactions. Lecture Notes on Coastal and Estuarine Studies, 22:09-226.

Smith, S. V. & Atkinson, M. J.1994. Mass balance analysis of carbon, nitrogen, and phosphorus fluxes in coastal water bodies, including lagoons. In: Kjerfve, B., ed. Coastal lagoon process. Amsterdam, Elsevier. p. 133-155.

Steemann-Nielsen, F. 1954. On organic production in the Ocean. J. Cons. int. Explor. Mer., 19(3):309:328.

Strickland, J. D. H. & Parsons, T. R. 1972. 2nd ed A pratical handbook of seawater analysis. Bull Fish.. Res. Bd Can., 167:311p.

Ullman, W. J. & Sandstroem, M. W. 1987. Dissolved nutrient fluxes from nearshore sediments of Bowling Green bay, central Great Barrier Reef lagoon (Australia). Estuar. coast. Shelf Sci., 24:289-303.

Williams, P. J. LeB. & Robertson, J. E. 1991. Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankt. Res., 13:153-169.

Zeitzschel, B. & Davies, J. M. 1978. Benthic growth chambers. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer., 173:31-42.

Zeitzschel, B. 1980. Sediment-water interactions in nutrient dynamics. In: Tenore, K. R. and Coull, B. C., eds. Marine benthic dynamics. Columbia, Univ. of South Carolina Press. p.195-218.

(Manuscript received 06 October 1996; revised 21 February 1997; accepted 28 April 1997)

  • André, D. L.; Oliveira, M. c.; Okuda, T.; Horta, A. M. T. c.; Soldan, A. L.; Moreira,J. M. N. S.; Rollemberg, M. C. E. & Heinzen, V. E. F. 1981. Estudo preliminar sobre as condições hidroquímicas da lagoa de Araruama - Rio de Janeiro. Inst. Pesq. Mar., 139:1-35.
  • Atkinson, M. & Smith, S. V. 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr., 28(3):568-574.
  • Atkinson, M. J. 1987. Low phosphorus sediments in a hypersaline marine bay. Estuar. coast. Shelf Sci., 24:335-347.
  • Baeta Neves, M. H. C. 1983. Flora ficológica da lagoa hipersalina da Araruama (Estado do Rio de JaneiroBrasil) 2. Cyanophyceae. Inst. Pesq. Mar., 149:1-18.
  • Balzer, W.; Bodungen, B. von & Pollehne, F. 1985. Benthic degradation of organic matter and regeneration of nutrients in shallow watcr sediments off Mactan, Philippines. Philipp. Scient., 22:30-41.
  • Barbiéri, E. B. 1975. Ritmo climático e extração do sal em Cabo Frio. R. bras. Geogr., 37(4):23-109.
  • Bauld, J. 1984. Microbial mats in marginal environments: Shark bay, western Australia and Spcncer gulf, south Australia. In: Cohen, Y.; Castenholz, R. W. and Halvorson, H. O., eds Microbial Mats: Stromatolites. MBL Lectures in Biology, 3:39-58.
  • FEEMA Fundação Estadual de Engenharia do Meio Ambiente. 1987. Qualidade das águas do estado do Rio de Janeiro, FEEMA. V. 2. 86p. + anexos.
  • Florek, R. O. & Rowe, G. T. 1983. Oxygen comsumption and dissolved inorganic nutrient production in marine coastal and shelf sediments of the middle Atlantic Bigh1. I n1. Rcvue ges. Hydrobiol., 68:73-112.
  • Bodungen, B. von; Jickells, T. D.; Smith, S. R.; Ward, J. D. & Hillier, G. B. 1982. The Bermuda marine environment m. Bermuda Biological Station Special Publication, 18: 1-123.
  • Carmouze,J. P.; Knoppers, B. & Vasconcellos, P.1991. The eutrophication of the lagoon of Saquarema. Biogeochem., 14: 129-148.
  • Carneiro, M. E. R.; Azevedo, A.; Ramalho, N. M. & Knoppers, B. 1994. A biomassa de Chara Homemannii em relação ao comportamento físico-químico da lagoa de Piratininga (RJ). An. Acad. bras. Ci., 66:213-222.
  • Charpy-Rouband, C.; Charpy, L. & Sarazin, G. 1996. Diffusional nutrient fluxes at the sediment-water interface and organic matter remineralization in an atolllagoon (Tikehan, Tnamotu Archipelago, French Polynesia). Mar. Ecol.-Prog. Ser., 132:181- 190.
  • Cohen, Y.; Castenholz, R. W. & Halvorson, H. O. 1984. eds Microbial Mats: Stromatolites. MBL Lectures in Biology, vol. 3. New York, Alan R. Liss 489p.
  • Dye, A. H. 1983. Oxygen comsumption by sediments in a southern African mangrove swamp. Estuar. coast. Shelf Sei., 17(4):473-478.
  • Epping, E. H. G. & Jorgensen, B. B. In Press. Light enhaced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser.
  • Erftemeijer, P. L. A. & Middclburg, J. J. 1993. Sediments nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Mar. Ecol. Prog. Ser., 102:187-198.
  • Grassboff, K; Ebrardt, M. & Kremling, K 1983. Methods of seawater analysis. Weibein, Verlag Chemie. 419p.
  • Hargrave, B. T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr., 14(5):801-805.
  • Hargrave, B. T. 1978. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J. Fish. Res. Bd Can., 35(12):1621-1628.
  • Hines, M. E. 1985. Microbial biogeochemistry in shallow water sediments of Bermuda. In: Proc. 5 th. Int. Coral Reef Congr. 3: 427- 432.
  • Javor, B. J. & Castenholz R. W.1984. Productivity studies of microbial mats. Laguna Guerrero Negro, Mexico. In: Cohen, Y.; Castenholz R. W. & Halvorson, H. O., eds. Microbial Mats: Stromatolites. MBL Lectures in I Biology, 3:149-170.
  • Javor, B. J. 1989. Hypersaline environments microbiology and biogeochemistry. Berlin, Springer Verlag. 328p.
  • Jörgensen, B. B.; Revsbech, N. P. & Coben, Y. 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr., 28(6):1075-1093.
  • Joye, S. B.; Mazzotta, M. L. & Hollibaugh, J. J. 1996. Community metabolism of microbial mats: the occurrence of biologically- mediated iron and manganese reduction. Estuar. coast. Shelf Sci. 43(6):747-766.
  • Kjerfve, B.; Scbettini, C. A. F.; Knoppers, B.; Lessa, G. & Ferreira, H. O. 1996. Hydology and salt balance in the world's largest bypersaline coastal lagoon: lagoa de Araruama, Brazil. Estuar. coast. Shelf Sci. 42(6):701-727.
  • Klump, J. V. & Martens, C. S. 1981. Biogeochemical cycling in an organic rich coastal marine basin. II. Nutrient sediment-water exchange process. Geochim. cosmochim. Acta., 45:101-121.
  • Klump, J. V. & Martens, C. S. 1987. Biogeocbemical cycling in an organic ricb coastal marine basin: V. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances, and the stoicbiometry of nutrient regeneration. Geochim. cosmochim. Acta., 51:1161-1173.
  • Knoppers, B. 1994. Aquatic primary production in coastal lagoons. In: Kjerfve, B., ed.. Coastal lagoon process. Amsterdam, Elsevier. p. 243-286.
  • Landim de Souza, M. F. 1993. Distribuição espacial, sazonal e fontes fluviais de nutrientes na lagoa de Araruama - RJ. Dissertação de mestrado. Universidade Federal Fluminense, Departamento de Geoquímica. 167p.
  • Lenz, J. 1971. Zur methode der Sestonbestimmungs. Kieler Meeresforcb., 27:180-193.
  • López, P. & Morguí, JA.1992. Phosphate and calcium carbonate saturation in a stratified coastal lagoon. Hydrobiol., 228:55-63.
  • Lyons, W. B.; Hines, M. E. & Gaudette, H. E. 1984. In: Coben, Y.; Castenbolz R. W. and Halvorson, H. O., eds. Microbial Mats: Stromatolites. MBL Lectures in Biology, 3:411-423.
  • Machado, E. C. & Knoppers, B. 1988. Sediment consumption in an organic rich sub-tropical lagoon, Brazil. Sei. Tot. Environ., 75:341-349.
  • Moreira, P. F. & Knoppers, B. A. 1990. Ciclo anual de produção primária e nutrientes na lagoa de Guarapina, RJ. Acta Limnol. Bras., 3:275-290.
  • Muebe, D. 1994. Lagoa de Araruama: geomorfologia e sedimentação. Cad. Geoc., 10:53-62.
  • Nixon, S. W.; Oviatt, C. A. & Hale, S. S. 1976. Nitrogen regeneration and tbe metabolism of coastal marine bottom communities. In: Anderson, J. M. & Macfaydan, A. eds . The role of terrestrial and aquatic organisms in decomposition processes. Oxford, Blackwell Scientific Publications. p.269-283.
  • Nixon, S. W.; KeUy, J. R.; Furnas, B. N.; Oviatt, C. A. & Hale, S. S. 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In: Tenore, K R. & Coull, B. C. , eds. Marine benthic dynamics. Columbia, Univ. of South Carolina Press. p.219-241.
  • Nixon, S. W. 1982. Nutrients, primary production and fisheries yields in coastal lagoons. Oceanol Acta, 5:357-371.
  • Nixon, S. W. & Pilson, M.1983. Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter, E. J. & Capone, D. G., eds. Nitrogen in the marine environment. New York, Academic Press. p.565-648.
  • Pamatmat, M. M. 1971. Oxygen consumption by the sea bed. IV. Shipboard and laboratory experiments. Limnol. Oceanogr., 16(3):536-549.
  • Smith, S. V.; Kimmerer, W. J.; Laws, E. A.; Brock, R. E. & Walsh, T. W. 1981 Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pacif. Sci., 35(4):279-402.
  • Smith, S. V. 1988. Mass balance in coral reef-dominated areas. In: Jansson, B. O., ed. Coastal-offshore ecosystem interactions. Lecture Notes on Coastal and Estuarine Studies, 22:09-226.
  • Smith, S. V. & Atkinson, M. J.1994. Mass balance analysis of carbon, nitrogen, and phosphorus fluxes in coastal water bodies, including lagoons. In: Kjerfve, B., ed. Coastal lagoon process. Amsterdam, Elsevier. p. 133-155.
  • Steemann-Nielsen, F. 1954. On organic production in the Ocean. J. Cons. int. Explor. Mer., 19(3):309:328.
  • Strickland, J. D. H. & Parsons, T. R. 1972. 2nd ed A pratical handbook of seawater analysis. Bull Fish.. Res. Bd Can., 167:311p.
  • Ullman, W. J. & Sandstroem, M. W. 1987. Dissolved nutrient fluxes from nearshore sediments of Bowling Green bay, central Great Barrier Reef lagoon (Australia). Estuar. coast. Shelf Sci., 24:289-303.
  • Williams, P. J. LeB. & Robertson, J. E. 1991. Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankt. Res., 13:153-169.
  • Zeitzschel, B. & Davies, J. M. 1978. Benthic growth chambers. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer., 173:31-42.
  • Zeitzschel, B. 1980. Sediment-water interactions in nutrient dynamics. In: Tenore, K. R. and Coull, B. C., eds. Marine benthic dynamics. Columbia, Univ. of South Carolina Press. p.195-218.

Publication Dates

  • Publication in this collection
    22 Apr 2013
  • Date of issue
    1996

History

  • Accepted
    28 Apr 1997
  • Received
    06 Oct 1996
  • Reviewed
    21 Feb 1997
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel: (55 11) 3091-6513, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br