Acessibilidade / Reportar erro

Bryophytes in Amazon savannas: richness and composition in disjunct areas in the Eastern Amazon

Abstract

The Brazilian Amazon forests are interspersed by savanna ecosystems distributed in the states of Amapá, Amazonas, Pará, Rondônia and Roraima, presenting different distribution patterns. The objective of this work was to evaluate the richness, composition and floristic similarity of the bryophyte flora from five disjunct savanna areas in the eastern Amazon and compare the richness with those of other savannas in Brazil. The collections were carried out from 2017 to 2018 in five localities of the eastern Amazon. Twenty-two species of mosses and 22 species of liverworts were registered. The composition was expected for savanna ecosystems with 27 species of generalists and 16 sun specialists. There was a striking floristic difference between the areas, and the clusters showed that the eastern Amazon savannas are formed by different compositions related to their area. This study made it possible to discover one new record for the state of Pará, five new records for the state of Amapá and one new record for the North region.

Key words
Amazonia; Liverworts; Mosses; savannas

INTRODUCTION

The Brazilian Amazon covers approximately 4,196,943 km² (60% of the Amazon region) and is generally known for its extensive forests, high biodiversity and large biomass (Pires & Prance 1985PIRES JM & PRANCE GT. 1985. The vegetation types of the Brazilian Amazon. In: PRANCE GT & LOVEJOY TE (Eds), Key Environments of Amazonia. Oxford: Pergamon, p. 109-145., IBGE 2004IBGE. 2004. Mapa de Biomas do Brasil, primeira aproximação. Rio de Janeiro: IBGE. Accessible in www.ibge.gov.br.
www.ibge.gov.br...
, Tejada et al. 2019TEJADA G, GÖRGENS EB, ESPIRITOSANTO FDB, CANTINHO RZ & OMETTO JP. 2019. Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Carbon Balance Manag 14(11): 1-18.). Interspersed in these forest areas are open ecosystems, ranking as the second largest vegetation physiognomy (Sanaiotti et al. 2002SANAIOTTI TM, MARTINELLI LA, VICTORIA RL, TRUMBORE SE & CAMARGO PB. 2002. Past vegetation, in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34(1): 2-16., Adeney et al. 2016ADENEY JM, CHRISTENSEN N, VINCENTI A & COHN-HAFT M. 2016. White-sand ecosystems in Amazonia. Biotropica 48: 7-23.) and occurring as patches that together correspond to approximately 200,000 km² and about 5% of the coverage in the region (Barbosa & Campos 2011BARBOSA RI & CAMPOS C. 2011. Detection and geographical distribuition of clearing areas in the savannas (Lavrado) of Roraima using Google Earth web tool. J Geog Reg Plan 4: 122-136., Cavalcante et al. 2014CAVALCANTE CO, FLORES AS & BARBOSA RI. 2014. Fatores edáficos determinando a ocorrência de leguminosas herbáceas em savanas amazônicas. Acta Amaz 44: 379-386.).

Savanna is a type of xeromorphic fire-tolerant open vegetation with predominance of an herbaceous layer, trees and shrubs with different densities, rainy and dry seasons, poor and acidic soils, and areas subject to periodic waterlogging (Eiten 1972EITEN G. 1972. The cerrado vegetation of Brazil. Bot Rev 38: 201-341., Ribeiro & Walter 1998RIBEIRO JF & WALTER BMT. 1998. Fitofisionomia do bioma Cerrado. In: SANO SM & ALMEIDA SP (Coords), Cerrado: ambiente e flora. Planaltina, DF: EMBRAPA, p. 47-86., IBGE 2012IBGE. 2012. Manual Técnico da Vegetação Brasileira: Sistema fitogeográfico; Inventário das formações florestais e campestres; Técnicas e manejo de coleções botânicas; Procedimentos para mapeamentos. Rio de Janeiro: IBGE, 275 p.). This open vegetation was also called as Guianan savanna and Southern Amazonian campo/cerrado by Adeney et al. (2016)ADENEY JM, CHRISTENSEN N, VINCENTI A & COHN-HAFT M. 2016. White-sand ecosystems in Amazonia. Biotropica 48: 7-23. while defining the Brazilian regional terms campina and campinarana as white-sand ecosystem in the Amazon. The term savanna is broad and related to distribution, types of physiognomies, climate, geography, seasonality, and presence or absence of grassy field and forest formations (Sarmiento 1983SARMIENTO G. 1983. The savannas in tropical America. In: BOURLIERE F (Ed). Tropical Savannas. Elsevier, p. 245-288., Goedert et al. 2008GOEDERT WJ, WAGNER E & BARCELLOS AO. 2008. Savanas tropicais: dimensão, histórico e perspectivas. In: FALEIRO FG & FARIAS NETO AL (Eds), Savanas: desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. Planaltina, DF: EMBRAPA Cerrados, p. 49-77., Ribeiro & Walter 2008RIBEIRO JF & WALTER BMT. 2008. As principais fitofisionomias do Bioma Cerrado. In: SANO SM et al. (Eds), Cerrado: ecologia e flora Embrapa Cerrados, Planaltina, p. 151-212., Borghetti et al. 2020BORGHETTI F, BARBOSA E, RIBEIRO L, RIBEIRO JF & WALTER BMT. 2020. South American Savannas. In: SCOGINGS PF & SANKARAN M (Eds), Savanna Woody Plants and Large Herbivores, p. 77-122.).

In the Amazon, these ecosystems have physiognomies similar to those of neotropical savannas and are distributed in a matrix of tropical rainforest that covers the states of Amapá, Amazonas, Pará, Rondônia and Roraima (Gottsberger & Morawetz 1986GOTTSBERGER G & MORAWETZ W. 1986. Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora 178: 41-71., Prance 1996PRANCE GT. 1996. Islands in Amazonia. Philos Trans Royal Soc/London 351: 823-833., Miranda & Absy 2000MIRANDA IS & ABSY ML. 2000. Fisionomias das savanas de Roraima, Brasil. Acta Amaz 30(3): 423-440., Barbosa et al. 2005BARBOSA RI, NASCIMENTO SP, AMORIM PAF & SILVA RF. 2005. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Bot Bras 19(2): 323-329., Miranda et al. 2006MIRANDA IS, ALMEIDA SS & DANTAS PJ. 2006. Florística e estrutura de comunidades arbóreas em cerrados de Rondônia, Brasil. Acta Amaz 36(4): 419-430., Vasconcelos et al. 2011VASCONCELOS MF, DANTAS SM & SILVA JMC. 2011. Avifaunal inventory of the Amazonian savannas and adjacent habitats of the Monte Alegre region (Pará, Brazil), with comments on biogeography and conservation. Bol Mus Para Emílio Goeldi. Ciências Naturais 6(2): 119-145.). These savannas present different distribution patterns, occurring as small or large patches and physiognomies that vary according to the region in which they are inserted (Sarmiento 1983SARMIENTO G. 1983. The savannas in tropical America. In: BOURLIERE F (Ed). Tropical Savannas. Elsevier, p. 245-288., Ribeiro & Walter 1998RIBEIRO JF & WALTER BMT. 1998. Fitofisionomia do bioma Cerrado. In: SANO SM & ALMEIDA SP (Coords), Cerrado: ambiente e flora. Planaltina, DF: EMBRAPA, p. 47-86., Barbosa et al. 2007BARBOSA RI, CAMPOS C, PINTO F & FEARNSIDE PM. 2007. The “Lavrados” of Roraima. Biodiversity and Conservation of Brazil’s Amazonian Savannas. Funct Ecos Com 1(1): 30-42.).

Floristic studies in Amazonian savannas have mainly evaluated the composition and structure of tree communities (Miranda 1993MIRANDA IS. 1993. Estrutura do estrato arbóreo do cerrado amazônico em Alter-do-Chão, Pará, Brasil. Rev Bras Bot 16: 143-150., Miranda et al. 2002MIRANDA IS, ABSY ML & REBELO GH. 2002. Community Structure of Woody Plants of Roraima Savannahs, Brazil. Plant Ecol 164: 109-123., 2006, Magnusson et al. 2008MAGNUSSON WE, LIMA AP, ALBERNAZ ALM, SANAIOTTI TM & GUILLAUMET JL. 2008. Composição florística e cobertura vegetal das savanas na região de Alter do Chão, Santarém - PA. Rev Bras Bot 31(1): 165-177.), the richness, composition and diversity of the tree-shrub layer (Barbosa et al. 2005BARBOSA RI, NASCIMENTO SP, AMORIM PAF & SILVA RF. 2005. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Bot Bras 19(2): 323-329.), the floristic composition of the herbaceous and tree-shrub layer and phytosociology of the herbaceous-shrub layer (Costa-Neto et al. 2017COSTA-NETO SV, MIRANDA IS & ROCHA AES. 2017. Flora das savanas do estado do Amapá. In: BASTOS AM et al. (Eds), Conhecimento e manejo sustentável da biodiversidade amapaense, p. 65-94., Rocha & Costa-Neto 2019ROCHA AES & COSTA-NETO SV. 2019. Florística e fitossociologia do estrato herbáceo/arbustivo em 19 áreas de savanas amazônicas, Brasil. Bol Mus Para Emílio Goeldi. Ciências Naturais 14(2): 159-181.), specific floristic aspects of certain taxa (Flores & Rodrigues 2010FLORES AS & RODRIGUES RS. 2010. Diversidade de Leguminosae em uma área de savana do estado de Roraima, Brasil. Acta Bot Bras 24: 175-183., Costa et al. 2012COSTA CS, FLORES AS & RODRIGUES RS. 2012. A família Polygalaceae em uma área de savana em Roraima, Brasil. Rev Bras Bioc 10: 468-480., Menezes & Flores 2013MENEZES J & FLORES AS. 2013. A família Malpighiaceae em uma área de savana em Roraima, Brasil. Bol Mus Int Ror 7: 55-63., Rocha & Miranda 2014ROCHA AES & MIRANDA IS. 2014. Poaceae communities in the savannas of the Amazon Estuary in Brazil. Acta Bot Bras 28(4): 559-568., Rocha et al. 2014ROCHA AES, MIRANDA IDS & COSTA-NETO SV. 2014. Composição florística e chave de identificação das Poaceae ocorrentes nas savanas costeiras amazônicas, Brasil. Acta Amaz 44(3): 301-314., Silva et al. 2015SILVA WLS, COSTA-NETO SV & SOARES MVB. 2015. Diversidade de Leguminosae em Savanas do Amapá. Biota Amaz 5(1): 83-89.), and wood biomass and density (Barbosa & Fearnside 2004BARBOSA RA & FEARNSIDE P. 2004. Wood density of trees in open savannas of the Brazilian Amazon. For Ecol Manage 199: 115-123., 2005BARBOSA RA & FEARNSIDE P. 2005. Above-ground biomass and the fate of carbon after burning in the savannas of Roraima, Brazilian Amazonia. For Ecol Manage 216: 295-316., Barbosa et al. 2012BARBOSA RI, SANTOS JRS, CUNHA MS, PIMENTEL TP & FEARNSIDE PM. 2012. Root biomass, root: shoot ratio and belowground carbon stocks in the open savannahs of Roraima, Brazilian Amazonia. Aust J Bot 60: 405-416., Jati et al. 2014JATI SR, FEARNSIDE PM & BARBOSA RI. 2014. Densidade da madeira de árvores em savanas do norte da Amazônia brasileira. Acta Amaz 44(1): 79-86., Jati & Maulaz 2019JATI SR & MAULAZ CF. 2019. Densidade da madeira de Curatella americana e Byrsonima crassifolia no ecótono e região central na savana aberta de Roraima, Brasil. Rev Geogr Acad 13(1): 62-73.). These studies made it possible to assess and understand how plant communities are formed and structured in savanna enclaves in the Amazon.

Research including bryophytes (Bryophyta, Marchatiophyta and Antocerotophyta) in Amazonian savannas has been carried out mainly in the eastern Amazon. In the state of Amapá, two taxonomic studies with collections in these environments reported eight species of mosses (Yano & Lisboa 1988YANO O & LISBOA RCL. 1988. Briófitas do Território Federal do Amapá, Brasil. Bol Mus Para Emílio Goeldi 4: 243-270., Churchill 1998CHURCHILL SP. 1998. Catalog of Amazonian Mosses. J Hattori Bot Lab 85: 191-238.). In the Marajó archipelago, a study about Lejeuneaceae included surveys in savanna areas in the Caxiuanã National Forest and 10 species were recorded, of which three occurred exclusively in this type of vegetation (Ilkiu-Borges & Lisboa 2002ILKIU-BORGES AL & LISBOA RCL. 2002. Lejeuneaceae (Hepaticae). In: LISBOA PLB (Org), Caxiuanã: populações, meio físico e diversidade biológica. Belém, Museu Paraense Emílio Goeldi, p. 399-419.).

In the survey of the bryophyte flora of different ecosystems in Marajó Island, 12 species distributed among seven mosses and five liverworts belonging to nine genera and five families occurred in savanna areas. Differences in richness and predominance of mosses and liverworts between the studied areas were linked to microclimatic and abiotic variations of the various ecosystems studied (Brito & Ilkiu-Borges 2013BRITO ES & ILKIU-BORGES AL. 2013. Bryoflora of the municipalities of Soure and Cachoeira do Arari, on Marajó Island, in the state of Pará, Brazil. Acta Bot Bras 27(1): 124-141.).

Another study on bryophytes from savannas in Marajó Island registered 41 species, among 15 mosses and 26 liverworts distributed in 21 genera and in eight families (Gomes et al. 2021GOMES PWP, MEDEIROS-SARMENTO PS, DOS SANTOS RCP & TAVARES-MARTINS ACC. 2021. Composition and structure of the bryophyte community of Park Savanna in Marajó Island, Pará, Brazil. An Acad Bras Cienc 93: e20190830. DOI 10.1590/0001-3765202120190830.). According to the authors, the evaluated communities are formed by typical species of this type of ecosystem, tolerant to environmental stress, which are not influenced by seasonality and remain in the environment.

In the western Amazon, Gottsberger & Morawetz (1993)GOTTSBERGER G & MORAWETZ W. 1993. Development and distribution of the epiphytic flora in an Amazonian savanna in Brazil. Flora 188: 145-151. compared the abundance and distribution of epiphytes, including non-vascular species, on phorophytes in savannas located in Humaitá, Amazonas. They observed that bryophytes tended to dominate older trees in relation to lichens as an apparent succession in the trunks and branches of the analyzed phorophytes. In this study, bryophytes were pooled and registered as the avascular plant group.

Studies on bryophytes from savannas in other regions of Brazil were carried out mainly in the Northeast, Southeast and Midwest of the country, presenting the richness, composition and floristic similarity in different phytophysiognomies that cover transition areas between the Atlantic Forest and savannas of the Central Brazilian (Cerrado) and the Chapada Diamantina ecoregion with elevations above 900 m (Yano 1994YANO O. 1994. Briófitas da Serra Itabaiana, Sergipe, Brasil. Acta Bot Bras 8: 45-57., Bastos et al. 1998BASTOS CJP, STRADMANN MT & VILAS BÔAS-BASTOS SB. 1998. Additional contribution to the bryophyte flora from Chapada Diamantina National Park, State of Bahia, Brazil. Trop Bryol 15: 15-20., Bôas-Bastos & Bastos 1998BÔAS-BASTOS SBV & BASTOS CJP. 1998. Briófitas de uma área de Cerrado no município de Alagoinhas, Bahia, Brasil. Trop Bryol 15: 101-110., Visnadi & Vital 2001VISNADI SR & VITAL DM. 2001. Lista das briófitas de uma área de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Vegetalia 35: 1-15., Visnadi 2004VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973., Câmara et al. 2005CÂMARA PEAS, OLIVEIRA JRPM & SANTIAGO MMM. 2005. A Checklist of the bryophytes of Distrito Federal (Brasília, Brazil). Trop Bryol 26: 133-140., Oliveira et al. 2006OLIVEIRA JRPM, ALVARENGA LDP & PÔRTO KC. 2006. Briófitas da Estação Ecológica de Águas Emendadas, Distrito Federal, material coletado por Daniel Moreira Vital. Bol Inst Bot 18: 181-196., Yano & Peralta 2009YANO O & PERALTA DF. 2009. Flora de Grão-Mogol, Minas Gerais: Briófitas (Bryophyta e Marchantiophyta). Bol Bot Univ São Paulo 27(1): 1-26., 2011, Santos & Conceição 2010SANTOS FJL & CONCEIÇÃO GM. 2010. Espécies da brioflora do Parque Estadual do Mirador, Maranhão, Brasil. Cad Geoc 7: 136-139., Valente et al. 2013VALENTE EB, PÔRTO KC & BASTOS CJP. 2013. Species richness and distribution of bryophytes within different phytophysiognomies in the Chapada Diamantina region of Brazil. Acta Bot Bras 27: 294-310., Carmo & Peralta 2016CARMO DM & PERALTA DF. 2016. Survey of bryophytes in Serra da Canastra National Park, Minas Gerais, Brazil. Acta Bot Bras 30: 254-265., Rios et al. 2016RIOS ABM, OLIVEIRA JPS, SILVA RP, NETO JFO, OLIVEIRA LS, PERALTA DF & MACCAGNAN DHB. 2016. Briófitas de área de Cerrado da região Centro-Oeste do Brasil. Neotrop Biol Conserv 11(3): 132-140., Carmo et al. 2018CARMO DM, LIMA JS, SILVA MI, AMÉLIO LA & PERALTA DF. 2018. Briófitas da Reserva Particular do Patrimônio Natural da Serra do Caraça, Estado de Minas Gerais, Brasil. Hoehnea 45(3): 484-508.). This compilation of data produced knowledge about the species that grow in this type of environment and allowed the assessment and inference of factors that influence the richness and composition of bryophytes in neotropical savannas.

Despite the records of bryophytes in Brazilian savannas, little is known about variations in the richness and composition of the bryophyte flora of different savanna patches in the Amazon, likewise the structure and composition of vascular plants in different savanna physiognomies in the neotropical region. Furthermore, due to deforestation resulting from anthropic activities and human occupation associated with natural fires (Medina & Silva 1990MEDINA E & SILVA J. 1990. Savannas of northern South America: a steady regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17: 403-413., Barbosa & Campos 2011BARBOSA RI & CAMPOS C. 2011. Detection and geographical distribuition of clearing areas in the savannas (Lavrado) of Roraima using Google Earth web tool. J Geog Reg Plan 4: 122-136.), Amazonian savannas comprise highly threatened and under-protected areas (Carvalho & Mustin 2017CARVALHO WD & MUSTIN K. 2017. The highly threatened and little known Amazonian savannahs. Nat Ecol Evol 1: 1-3.), with landscapes which have been changed over time (Silva & Oliveira 2018SILVA GFN & OLIVEIRA IJ. 2018. Reconfiguration of the landscape in the Amazonian savanas. Mercator, Fortaleza 17: 1-20.).

Although few studies explored the bryophytes of Amazonian savannas, they provided information about the richness and ecological aspects of these plants, pointing out species that are indicators of these ecosystems such as Acrolejeunea emergens (Mitt.) Steph., Acrolejeunea torulosa (Lehm. & Lindenb.) Schiffn., Calymperes palisotii Schwägr., Cheilolejeunea lobulata (Lindenb.) C.J.Bastos & Gradst. (previously known as Cheilolejeunea oncophylla (Ångstr.) Grolle & M.E. Reiner), C. rigidula (Mont.) R.M. Schust., Lejeunea laetevirens Nees & Mont. and Pycnolejeunea contigua (Nees) Grolle (Ilkiu-Borges & Lisboa 2002ILKIU-BORGES AL & LISBOA RCL. 2002. Lejeuneaceae (Hepaticae). In: LISBOA PLB (Org), Caxiuanã: populações, meio físico e diversidade biológica. Belém, Museu Paraense Emílio Goeldi, p. 399-419., Brito & Ilkiu-Borges 2013BRITO ES & ILKIU-BORGES AL. 2013. Bryoflora of the municipalities of Soure and Cachoeira do Arari, on Marajó Island, in the state of Pará, Brazil. Acta Bot Bras 27(1): 124-141., Gomes et al. 2021GOMES PWP, MEDEIROS-SARMENTO PS, DOS SANTOS RCP & TAVARES-MARTINS ACC. 2021. Composition and structure of the bryophyte community of Park Savanna in Marajó Island, Pará, Brazil. An Acad Bras Cienc 93: e20190830. DOI 10.1590/0001-3765202120190830.).

The objective of this study was to evaluate the richness, composition and floristic similarity of the bryophyte flora from five disjunct savanna areas in the eastern Amazon and to compare the richness with those of other savannas in Brazil.

MATERIALS AND METHODS

Study area and data collection

The study areas were distributed in five disjunct savanna areas in the eastern Amazon, close to the mouth of the Amazon River (Figure 1). Information on geographic location, collection periods, types of savanna and dominant plant species in each area are shown in Table I. Savanna formations were characterized as savanna sensu stricto and classified as physiognomies of the typical and sparse savanna subtype (Ribeiro & Walter 1998RIBEIRO JF & WALTER BMT. 1998. Fitofisionomia do bioma Cerrado. In: SANO SM & ALMEIDA SP (Coords), Cerrado: ambiente e flora. Planaltina, DF: EMBRAPA, p. 47-86., Costa-Coutinho 2020COSTA-COUTINHO JM. 2020. Padrões Ecológicos e Fitogeográficos de Comunidades Vegetais Lenhosas em Gradiente Fisionômico Mésico-Xérico do Cerrado Setentrional Brasileiro. Tese de Doutorado. Museu Paraense Emílio Goeldi. Belém, 206 p.). Adeney et al. (2016)ADENEY JM, CHRISTENSEN N, VINCENTI A & COHN-HAFT M. 2016. White-sand ecosystems in Amazonia. Biotropica 48: 7-23. reclassified this open vegetation as Guianan savannas and Southern Amazonian campo/cerrado, which were not included in his discussion of white-sand ecosystem.

Figure 1
Map indicating the five studied savanna areas in eastern Amazon.
Table I
Local, geographic coordinates, data colection, physiognomic classification and dominant plant species.

Five sub-areas were established in each savanna for sampling, with 25 collection points in each area, totaling 125 plots. Plot size was 10 m x 10 m, and plots had a minimum distance of 200 m between each other (Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165.). The collection was carried out in the whole extension of the plots and in all available substrates including soil, bushes, treelets, trees, decaying wood and termite mounds.

The collection methodology was according to Yano (1989)YANO O. 1989. Briófitas. In: FIDALGO O & BONONI VLR (Eds), Técnicas de coleta, preservação e herborização de material botânico. Inst Bot, São Paulo, p. 27-30., with a record of the substrate which the specimens were found. The collected material was sun dried or dried in an air-conditioned room. All samples were registered under the collection number of the first author. After identification, the samples were deposited at the João Murça Pires Herbarium (MG) of the Museu Paraense Emílio Goeldi.

Identification, classification and data analysis

Botanical identification was carried out in the Bryophytes laboratory of the Botanical Coordination of the Museu Paraense Emílio Goeldi, based on the following specialized literature: Frahm (1991)FRAHM JP. 1991. Dicranaceae: Campylopodioideae, Paraleucobryoideae. Flora Neotrop 54: 1-238., Sharp et al. (1994)SHARP AJ, CRUM H & ECKEL PM. 1994. The moss flora of Mexico. Memoirs of The New York Botanical Garden 69: 1113 p., Florschütz-De Waard (1986FLORSCHÜTZ-DE WAARD J. 1986. Hookeriaceae. Musci. II. In: STOFFERS AL & LINDEMAN JC (Eds), Flora of Suriname. Leiden, p. 289-350., 1996FLORSCHÜTZ-DE WAARD J. 1996. Sematophyllaceae. Musci III. In: GOERTS-VAN RIJN ARA (Ed), Flora of the Guianas. Royal Botanical Gardens, p. 384-438.), Reese (1993)REESE WD. 1993. Calymperaceae. Flora Neotrop 58: 1-102., Gradstein (1994)GRADSTEIN SR. 1994. Lejeuneaceae: Ptychantheae, Brachiolejeuneae. Flora Neotrop 62: 1-225., Buck (2003)BUCK WR. 2003. Guide to the Plants of Central French Guiana. Part 3. Mosses. Memoirs of The New York Botanical Garden 76, 167 p., Gradstein et al. (2001)GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p., Gradstein & Costa (2003)GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673., Pursell (2007)PURSELL RA. 2007. Fissidentaceae. Flora Neotrop 101: 1-278., Gradstein & Ilkiu-Borges (2009)GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140.. Was performed the taxonomic actualizations followed by Bastos & Gradstein (2020)BASTOS CJP & GRADSTEIN SR. 2020. The genus Cheilolejeunea (Marchantiophyta: Lejeuneaceae) in tropical America. Nova Hedwigia 111: 287-335. https://doi.org/10.1127/nova_hedwigia/2020/0596.
https://doi.org/10.1127/nova_hedwigia/20...
and Gradstein (2021)GRADSTEIN SR. 2021. The liverworts and hornworts of Colombia and Ecuador. Memoirs of The New York Botanical Garden 121: 1-723.. The classification adopted for Bryophyta and Marchantiophyta is in agreement with Goffinet et al. (2009)GOFFINET B, BUCK WR & SHAW JA. 2009. Morphology, anatomy, and classification of the Bryophyta. In: GOFFINET B & SHAW JA. Bryophyte Biology. Cambridge University Press, Cambridge, p. 55-138. and Crandall-Stotler et al. (2008)CRANDALL-STOTLER B, STOTLER R & LONG D. 2008. Morphology and classification of the Marchantiophyta. In: GOFFINET B & SHAW AJ. Bryophyte Biology. Cambridge University Press, Cambridge, p. 1-54., respectively.

The classification of the absolute frequency of each species was based on Silva & Pôrto (2007)SILVA MPP & PÔRTO KC. 2007. Composição e riqueza de briófitas epíxilas em fragmentos florestais da Estação Ecológica de Murici, Alagoas. Rev Bras Bioc 5(2): 243-245.. It was determined by the number of occurrences in the study areas (comprising our complete dataset), defined in five classes: 1 to 5 = rare; 6 to 10 = infrequent; 11 to 20 = assiduous; 21 to 30 = frequent; and > 30 = very frequent. Species were classified according to tolerance guilds into sun specialists, shade specialists and generalists, based on the work of Richards (1984)RICHARDS PW. 1984. The ecology of the tropical Forest bryophytes. In: SCHUSTER RM (Ed), New Manual of Bryology, vol. 2. J Hattori Bot Lab, Nichinan, p. 1233-1270., Gradstein et al. (2001)GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p., Gradstein & Costa (2003)GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673., Gradstein & Ilkiu-Borges (2009)GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140., Tavares-Martins (2009)TAVARES-MARTINS ACC. 2009. Florística e ecologia das comunidades de briófitas em florestas de terra firme no estado do Pará, Amazônia. Tese de Doutorado. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Escola Nacional de Botânica Tropical, Rio de Janeiro, 148 p., Visnadi (2013)VISNADI SR. 2013. Briófitas de áreas antrópicas do Parque Estadual da Serra do Mar, Núcleo Picinguaba, Ubatuba, estado de São Paulo, Brasil. Bol Mus Para Emílio Goeldi. Ciências Naturais 8: 49-62. and Fagundes et al. (2016)FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84., and also based on the experience of the authors and discussions about this group of plants, and observations made by Oliveira-da-Silva & Ilkiu-Borges (2018)OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416. about unexpected species for dry environments, such as members of Fissidentaceae.

The Brazilian and world geographic distribution of the species was based on the work of Pursell (2007)PURSELL RA. 2007. Fissidentaceae. Flora Neotrop 101: 1-278., Costa et al. (2011)COSTA DP ET AL. 2011. Synopsis of the Brazilian moss flora: checklist, distribution and conservation. Nova Hedwigia 93(3-4): 277-334., Flora do Brasil (2020)FLORA DO BRASIL. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 08 nov. 2021.
http://floradobrasil.jbrj.gov.br/ ...
, Gradstein & Costa (2003)GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673., Yano (2011)YANO O. 2011. Catálogo de musgos brasileiros: literatura original, basiônimo, localidade-tipo e distribuição geográfica. Inst Bot, São Paulo, 180 p. and Oliveira-da-Silva & Ilkiu-Borges (2020)OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2020. Bryophyte flora of two Natural Parks in Amapá: richness, composition and new records. An Acad Bras Cienc 92: e20181355..

One-way Analysis of Variance (ANOVA) was performed to compare the richness of bryophytes and a quantidade de mosses and liverworts between the areas (Armstrong & Hilton 2010ARMSTRONG RA & HILTON AC. 2010. One-Way Analysis of Variance (ANOVA). In: ARMSTRONG RA & HILTON AC (Eds), Statistical analysis in Microbiology. Statnotes 6. New York, p. 33-37.). A presence–absence matrix was created for the species recorded in the 25 sub-areas and similarity was calculated to evaluate floristic differences using the Jaccard coefficient, followed by a cluster analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). The ANOVA analysis was performed using the car package (Fox & Weisberg 2019FOX J & WEISBERG S. 2019. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
https://socialsciences.mcmaster.ca/jfox/...
) and the ordination analysis was performed using the vegan package (Oksanen et al. 2019OKSANEN JFG ET AL. 2019. Vegan: community ecology package. R package version 2.5-6. Available in <https://cran.r-project.org/web/packages/vegan/index.html>.
https://cran.r-project.org/web/packages/...
). All statistical analyses were performed in the R Software (R Development Core Team 2019).

For comparisons with other savannas in Brazil in terms of species richness, a bibliographic survey of research studies that included mosses and liverworts in these ecosystems was carried out (Table II).

Table II
Comparison of the richness of savannas in the eastern Amazon with savannas in Brazil.

RESULTS AND DISCUSSION

The sampling generated 613 records in this study, in which 44 species were identified being 22 mosses (12 genera, 7 families) and 22 liverworts (14 genera, 3 families) (Table III). Lejeuneaceae (18 spp./511 specimens), Calymperaceae (7 spp./383 specimens), Sematophyllaceae (5 spp./30 specimens) and Fissidentaceae (5 spp./16 specimens) represented 79.54% of the richness. These families are on the list of the 15 that hold 90% of the richness generally found in tropical regions (Gradstein & Pócs 1989GRADSTEIN SR & PÓCS T. 1989. Bryophytes. In: LIETH H & WERGER MJA (Eds), Tropical Rain Forest Ecosystems. Amsterdam, Elsevier Science Publischers, p. 311-325., Gradstein et al. 2001GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p.). Lejeuneaceae and Fissidentaceae are among the most diverse families and are responsible for 15% of the number of species reported in Brazil and 54% in savannas of the Central Brazilian (Costa & Luizi-Ponzo 2010COSTA DP & LUIZI-PONZO AP. 2010. As briófitas do Brasil. In: FORZZA et al. (Orgs), Catálogo de Plantas e Fungos do Brasil. vol.1. Rio de Janeiro, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, p. 61-68.).

Table III
Richness and composition of bryophytes from savannas in the eastern Amazon.

Lejeuneaceae presented 12 genera, with Cheilolejeunea being the most represented. This family had the greater number of species, confirming its importance and abundance in the neotropical region (Gradstein et al. 2001GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p.). Lejeuneaceae is the most important family in terms of diversity and endemism among liverworts and plays a relevant taxonomic and ecological role in the areas where it occurs (Gradstein 1994GRADSTEIN SR. 1994. Lejeuneaceae: Ptychantheae, Brachiolejeuneae. Flora Neotrop 62: 1-225., Gradstein et al. 2001GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p., Zartman & Ilkiu-Borges 2007ZARTMAN C & ILKIU-BORGES AL. 2007. Guia para as Briófitas Epífilas da Amazônia Central. Manaus Brasil, Editora INPA.), standing out as a major determinant of richness and composition, and as predominant among liverworts in inventories in the tropics, both in forest and open vegetation (Mota de Oliveira & ter Steege 2013MOTA DE OLIVEIRA S & TER STEEGE H. 2013. Floristic overview of the epiphytic bryophytes of terra firme forests across the Amazon basin. Acta Bot Bras 27(2): 347-363., Silva & Pôrto 2013SILVA MPP & PÔRTO KC. 2013. Bryophyte communities along horizontal and vertical gradients in a human-modified Atlantic Forest remnant. Botany 91: 155-166., Pantoja et al. 2015PANTOJA ACC, ILKIU-BORGES AL, TAVARES-MARTINS ACC & GARCIA ET. 2015. Bryophytes in fragments of Terra Firme forest on the great curve of the Xingu River, Pará state, Brazil. Braz J Biol 75: 238-249., Cerqueira et al. 2017CERQUEIRA GR, ILKIU-BORGES AL & FERREIRA LV. 2017. Species richness and composition of epiphytic bryophytes in flooded forests of Caxiuanã National Forest, Eastern Amazon, Brazil. An Acad Bras Cienc 89: 2371-2382., Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416., Sierra et al. 2018SIERRA AM, VANDERPOORTEN A, GRADSTEIN SR, PEREIRA MR, BASTOS CJP & ZARTMAN CE. 2018. Bryophytes of Jaú National Park (Amazonas, Brazil): Estimating species detectability and richness in a lowland Amazonian megareserve. The Bryologist 121: 571-588.).

Twenty-six species were considered locally rare, three infrequent, four assiduous, three frequent, and eight very frequent (Table III). Rare species totaled 48 specimens, while frequent and very frequent species totaled 960 occurrences. Despite the fact that diverse phytophysiognomies are present within the limits of tropical forests, the bryophytes occurring in them were observed with similar frequency patterns, where many species (26 in this study) are represented by few individuals and few species (11 in this study) by many individuals. Similar proportions were observed in research with bryophytes from flooded (Várzea) and non-flooded (Terra Firme) forests (Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165., Macedo & Ilkiu-Borges 2014MACEDO LPC & ILKIU-BORGES AL. 2014. Richness of Marchantiophyta and Bryophyta in a protected area of the Brazilian Amazon. Acta Bot Bras 28: 527-538., Fagundes et al. 2016FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84.) or with tree communities, as shown by Carim et al. (2007)CARIM S, SCHWARTZ G & SILVA MFF. 2007. Riqueza de espécies, estructura e composição florística de uma floresta secundária de 40 años no leste da Amazônia. Acta Bot Bras 21(2): 293-308. who reported that 10 of the 154 species accounted for 44% of the individuals, and Silva et al. (2011)SILVA KES, MARTINS SV, RIBEIRO CAAS, SANTOS NT, AZEVEDO CP, MATOS FDA & AMARAL IL. 2011. Floristic composition and similarity of 15 hectares in Central Amazon, Brazil. Rev Biol Trop 59(4): 1927-1938. who reported that 10 of 264 species corresponded to 36.5% of the total of individuals.

The most colonized substrates were living tree trunks (87.18%), followed by soil (5.50%), termite mounds (4.22%), decomposing trunks (2.65%), and rocks (0.45%). Due to greater availability and capacity of retaining moisture, living tree trunks are the substrates most used by bryophytes (Pócs 1982PÓCS T. 1982. Tropical forest bryophytes. In: SMITH AJE (Ed), Bryophyte Ecology. London, Chapman and Hall, p. 59-104., Richards 1984RICHARDS PW. 1984. The ecology of the tropical Forest bryophytes. In: SCHUSTER RM (Ed), New Manual of Bryology, vol. 2. J Hattori Bot Lab, Nichinan, p. 1233-1270.). Byrsonima crassifolia, Curatella americana, Himatanthus articulatus, Byrsonima coccolobifolia and Hancornia speciosa held 49.54% of the collected specimens (Figure 2), indicating the importance of these plant species for the bryophyte flora of Amazonian savannas.

Figure 2
Graphic illustrating the number of specimens on main phorophytes in the studied savannas in eastern Amazon.

Richness and composition of bryophytes in disjunct savannas in the eastern Amazon

Higher richness (24 spp.) was registered in the savanna of Marajó, followed by Macapá (19 spp.), Cametá (18 spp.), Maracanã (16 spp.) and Mazagão (14 spp.). As expected, the richness and composition of bryophytes in these enclaves were lower than those of forest areas in the Amazon (Gradstein 2006GRADSTEIN SR. 2006. The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie, Bryologie 27(1): 141-152., Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165., Macedo & Ilkiu-Borges 2014MACEDO LPC & ILKIU-BORGES AL. 2014. Richness of Marchantiophyta and Bryophyta in a protected area of the Brazilian Amazon. Acta Bot Bras 28: 527-538., Tavares-Martins et al. 2014TAVARES-MARTINS ACC, LISBOA RCL & COSTA DP. 2014. Bryophyte flora in upland forests at different successional stages and in the varius strata of host trees in northeastern Pará, Brazil. Acta Bot Bras 28(1): 46-58., Mota de Oliveira & ter Steege 2015MOTA DE OLIVEIRA S & TER STEEGE H. 2015. Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. J Ecol 103: 441-450., Fagundes et al. 2016FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84., Campos et al. 2019CAMPOS LV, MOTA DE OLIVEIRA S, BENAVIDES JC, URIBE-M J & TER STEEGE H. 2019. Vertical distribution and diversity of epiphytic bryophytes in the Colombian Amazon. J Bryol 41(4): 328-340. DOI: 10.1080/03736687.2019.1641898.). Due to their biology, bryophytes are finely tuned with environmental conditions, mainly due to their need for water supply (Bates 1998BATES JW. 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82: 223-237., Proctor & Tuba 2002PROCTOR MCF & TUBA Z. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327-349., Glime 2017aGLIME JM. 2017a. Meet the Bryophytes. Chapt. 2-1. In: GLIME JM. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-1-1 sponsored by Michigan Technological University and the International Association of Bryologists., bGLIME JM. 2017b. Adaptive Strategies: Growth and Life Forms. Chapt. 4-5. In: GLIME JM. Bryophyte Ecology. Volume 1. 4-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.). Regarding this relationship with the environment, tropical forests exhibit a greater variety of microhabitats favorable to the establishment of a rich bryophyte flora (Pócs 1982PÓCS T. 1982. Tropical forest bryophytes. In: SMITH AJE (Ed), Bryophyte Ecology. London, Chapman and Hall, p. 59-104.). In turn, savannas have physiognomies of open vegetation, more exposed to radiation and with little availability of microhabitats, which contribute to lower richness of species.

As expected, there were no significant differences in the richness between the studied areas (p-value = 0.519, F-value = 0.834) but it is striking the lack of significant differences between the number of mosses (p-value = 0.449, F-value = 0.964) and liverworts (p-value = 0.358, F-value = 1.16) as well. At local and regional scales, species richness and diversity are determined by dispersion associated with biotic factors, such as species attributes, and abiotic factors, such as climate and environmental conditions (Hillebrand & Blenckner 2002HILLEBRAND H & BLENCKNER T. 2002. Regional and local impact on species diversity – from pattern to processes. Oecologia 132: 479-491., Ricklefs & Fangliang 2016RICKLEFS RE & FANGLIANG H. 2016. Region effects influence local tree species diversity. Proc Natl Acad Sci 113: 674-679.). Therefore, the high dispersion capacity (Heinrichs et al. 2009HEINRICHS J, HENTSCHEL J, FELDBERG K, BOMBOSCH A & SCHNEIDER H. 2009. Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47: 497-508.) coupled with environmental conditions and characteristics of the species (Pócs 1982PÓCS T. 1982. Tropical forest bryophytes. In: SMITH AJE (Ed), Bryophyte Ecology. London, Chapman and Hall, p. 59-104., Bates 1998BATES JW. 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82: 223-237., Glime 2017aGLIME JM. 2017a. Meet the Bryophytes. Chapt. 2-1. In: GLIME JM. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-1-1 sponsored by Michigan Technological University and the International Association of Bryologists.) may be the regulating factors of bryophyte richness in Amazonian savannas. Also, areas that exhibit more similar environmental parameters may have similar proportions of richness.

Although there were no differences in the richness and in the number of mosses and liverworts among the areas (confirmed by the ANOVA), differences in the composition were noticed (Tables III and IV). Macapá presented the largest number of families (nine) and Mazagão the smallest (six), while Marajó had the largest number of genera (Table IV). The savannas of Cametá and Marajó presented a greater number of mosses, but regarding the proportion between mosses and liverworts in the areas, mosses prevailed only in Cametá and Mazagão (Table IV). On the other hand, liverworts occurred in greater numbers in the savannas of Marajó, Macapá and Maracanã, where they also predominated over mosses considering each area separately.

Table IV
Richness and differences in floristic composition between areas.

As mentioned, bryophytes are strongly responsive to environmental conditions, especially due to water requirements (Bates 1998BATES JW. 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82: 223-237., Proctor & Tuba 2002PROCTOR MCF & TUBA Z. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327-349., Glime 2017aGLIME JM. 2017a. Meet the Bryophytes. Chapt. 2-1. In: GLIME JM. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-1-1 sponsored by Michigan Technological University and the International Association of Bryologists., bGLIME JM. 2017b. Adaptive Strategies: Growth and Life Forms. Chapt. 4-5. In: GLIME JM. Bryophyte Ecology. Volume 1. 4-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.). Although mosses are generally better represented in xeromorphic ecosystems (Bastos et al. 2000BASTOS CJP, YANO O & VILAS BÔAS-BASTOS SB. 2000. Briófitas de campos rupestres da Chapada Diamantina, Estado da Bahia, Brasil. Rev Bras Bot 23(4): 359-370., Visnadi 2004VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973., Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416.), in the present study, savannas with areas hosting slightly denser vegetation such as Marajó, Macapá and Maracanã provided microclimatic conditions (higher humidity and lower light incidence) that favored the predominance of liverworts.

In areas where liverworts occur in greater number, the influence of the surrounding forest matrix, where they are predominant, should also be taken into account (Gradstein et al. 2001GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p.). This was confirmed by the fact that liverworts that occurred exclusively in savannas in Marajó and Macapá were seen to occur in forest areas in the Amazon (Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165., Tavares-Martins et al. 2014TAVARES-MARTINS ACC, LISBOA RCL & COSTA DP. 2014. Bryophyte flora in upland forests at different successional stages and in the varius strata of host trees in northeastern Pará, Brazil. Acta Bot Bras 28(1): 46-58., Flora do Brasil 2020FLORA DO BRASIL. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 08 nov. 2021.
http://floradobrasil.jbrj.gov.br/ ...
), and in ecosystems adjacent to or close to these areas (Ilkiu-Borges & Lisboa 2002ILKIU-BORGES AL & LISBOA RCL. 2002. Lejeuneaceae (Hepaticae). In: LISBOA PLB (Org), Caxiuanã: populações, meio físico e diversidade biológica. Belém, Museu Paraense Emílio Goeldi, p. 399-419., Oliveira-da-Silva & Ilkiu-Borges 2020OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2020. Bryophyte flora of two Natural Parks in Amapá: richness, composition and new records. An Acad Bras Cienc 92: e20181355.). Thus, in addition to environmental factors and characteristics of the bryophyte species, the forest matrix can be identified as an important agent influencing the richness and composition of the bryophyte flora of Amazonian savannas.

Vascular plants reported in savannas in Brazil have also been found in forests adjacent to these ecosystems (Gottsberger & Morawetz 1986GOTTSBERGER G & MORAWETZ W. 1986. Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora 178: 41-71., Balduino et al. 2005BALDUINO APC, DE SOUZA AL, MEIRA NETO JAA, DA SILVA AF & DA SILVA JÚNIOR MC. 2005. Fitossociologia e análise comparativa da composição florística do cerrado da flora de Paraopeba-MG. Rev Árvore 29(1): 25-34., Pinheiro & Monteiro 2006PINHEIRO MHO & MONTEIRO R. 2006. Contribution of forest species to the floristic composition of a forested savanna in southeastern Brazil. Braz Arch Biol Technol 49(5): 763-774., Pinheiro & Durigan 2012PINHEIRO ES & DURIGAN S. 2012. Diferenças florísticas e estruturais entre fitofisionomias do cerrado em Assis, SP, Brasil. Rev Árv 36(1): 181-193.). Méio et al. (2003)MÉIO BB, FREITAS CV, JATOBÁ L, SILVA MEF, RIBEIRO JF & HENRIQUES RPB. 2003. Influência da flora das florestas Amazônica e Atlântica na vegetação do cerrado sensu stricto. Rev Bras Bot 26: 437-444. corroborated the contribution of the Atlantic and Amazonian floras to the vegetation of the Cerrado biome, and Pinheiro & Monteiro (2006)PINHEIRO MHO & MONTEIRO R. 2006. Contribution of forest species to the floristic composition of a forested savanna in southeastern Brazil. Braz Arch Biol Technol 49(5): 763-774. observed that gallery forests could act as access paths for generalist species of forest origin registered in a small area composed of savannas and other types of forests.

Although Cametá had fewer species in relation to Macapá, Maracanã and Marajó, it shared an approximate number of exclusive species with Marajó, and presented a greater number of exclusive species in relation to Macapá and Maracanã (Tables III and IV). However, the species reported as exclusive to savannas of the eastern Amazon can be found in ecosystems such as Caatinga, Canga, coastal areas, savannas and forests in Brazil (Sharp et al. 1994SHARP AJ, CRUM H & ECKEL PM. 1994. The moss flora of Mexico. Memoirs of The New York Botanical Garden 69: 1113 p., Bastos et al. 1998BASTOS CJP, STRADMANN MT & VILAS BÔAS-BASTOS SB. 1998. Additional contribution to the bryophyte flora from Chapada Diamantina National Park, State of Bahia, Brazil. Trop Bryol 15: 15-20., Gradstein & Costa 2003GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673., Visnadi 2004VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973., Costa et al. 2006, Lisboa et al. 2006LISBOA RCL, TAVARES ACC & COSTA NETO SV. 2006. Musgos (Bryophyta) e hepáticas (Marchantiophyta) da zona costeira do Estado de Amapá, Brasil. Bol Inst Bot: homenagem ao briólogo D. M. Vital 18: 163-171., Yano & Peralta 2006, 2009, Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416., 2020, Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165., Macedo & Ilkiu-Borges 2014MACEDO LPC & ILKIU-BORGES AL. 2014. Richness of Marchantiophyta and Bryophyta in a protected area of the Brazilian Amazon. Acta Bot Bras 28: 527-538., Tavares-Martins et al. 2014TAVARES-MARTINS ACC, LISBOA RCL & COSTA DP. 2014. Bryophyte flora in upland forests at different successional stages and in the varius strata of host trees in northeastern Pará, Brazil. Acta Bot Bras 28(1): 46-58., Fagundes et al. 2016FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84.).

Acrolejeunea torulosa, Cheilolejeunea lobulata, Calymperes palisotii and Octoblepharum albidum occurred in all areas. These species are commonly found in xeromorphic vegetation (Castro et al. 2002CASTRO NMCF, PÔRTO KC, YANO O & CASTRO AJF. 2002. Levantamento florístico de Bryopsida de cerrado e mata ripícola do Parque Nacional de Sete Cidades, Piauí, Brasil. Acta Bot Bras 16(1): 61-76., Visnadi 2004VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973., Lisboa et al. 2006LISBOA RCL, TAVARES ACC & COSTA NETO SV. 2006. Musgos (Bryophyta) e hepáticas (Marchantiophyta) da zona costeira do Estado de Amapá, Brasil. Bol Inst Bot: homenagem ao briólogo D. M. Vital 18: 163-171., Ilkiu-Borges et al. 2009ILKIU-BORGES AL, SANTOS RCP, MACEDO LPC & PEREIRA MAV. 2009. As briófitas da ilha do Algodoal-Maiandeua, Pará. In: JARDIM MAG (Org), Diversidade Biológica das Áreas de Proteção Ambiental: Ilhas do Combu e Algodoal-Maiandeua - Pará, Brasil. Museu Paraense Emílio Goeldi, p. 227-244., Valente et al. 2013VALENTE EB, PÔRTO KC & BASTOS CJP. 2013. Species richness and distribution of bryophytes within different phytophysiognomies in the Chapada Diamantina region of Brazil. Acta Bot Bras 27: 294-310., Carmo et al. 2018CARMO DM, LIMA JS, SILVA MI, AMÉLIO LA & PERALTA DF. 2018. Briófitas da Reserva Particular do Patrimônio Natural da Serra do Caraça, Estado de Minas Gerais, Brasil. Hoehnea 45(3): 484-508., Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416.). As these species are generalists, they are therefore often found in forests and wetlands in the Amazonian region (Santos & Lisboa 2003SANTOS RCP & LISBOA RCL. 2003. Musgos (Bryophyta) do Nordeste Paraense, Brasil - 1. Zona Bragantina, microrregião do Salgado e município de Viseu. Acta Amaz 33(3): 415-422., Brito & Ilkiu-Borges 2013BRITO ES & ILKIU-BORGES AL. 2013. Bryoflora of the municipalities of Soure and Cachoeira do Arari, on Marajó Island, in the state of Pará, Brazil. Acta Bot Bras 27(1): 124-141., Mota de Oliveita & ter Steege 2013, Moura et al. 2013MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165., Macedo & Ilkiu-Borges 2014MACEDO LPC & ILKIU-BORGES AL. 2014. Richness of Marchantiophyta and Bryophyta in a protected area of the Brazilian Amazon. Acta Bot Bras 28: 527-538., Tavares-Martins et al. 2014TAVARES-MARTINS ACC, LISBOA RCL & COSTA DP. 2014. Bryophyte flora in upland forests at different successional stages and in the varius strata of host trees in northeastern Pará, Brazil. Acta Bot Bras 28(1): 46-58., Fagundes et al. 2016FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84., Sierra et al. 2018SIERRA AM, VANDERPOORTEN A, GRADSTEIN SR, PEREIRA MR, BASTOS CJP & ZARTMAN CE. 2018. Bryophytes of Jaú National Park (Amazonas, Brazil): Estimating species detectability and richness in a lowland Amazonian megareserve. The Bryologist 121: 571-588.).

Despite the lack of significant differences in richness and in the number of mosses and liverworts between areas (Tables III and IV), the composition and the number of exclusive species distributed between areas (23 spp., 52.27% of the richness, Tables III and IV) indicated that the savannas of the eastern Amazon are home to different bryophyte communities, formed by taxa that present a wide distribution and can be found either in forests or in savanna environments in Brazil.

Similarity between disjunct savannas of the eastern Amazon

There were clear floristic differences, with formation of clusters for each area, although two clusters included different areas (Figure 3). The similarity of the sub-area MRJ_3 (Marajó) with Maracanã areas may be due to the sharing of five species between MRJ_3 and MRCN_3. In turn, the Marajó cluster may have been explained by the large number of locally rare species among the sub-areas and few species shared with the other savannas. Moreover, savannas which were closer to each other in terms of geographical location and had more similar environmental conditions, which was the case of Marajó and Macapá, were related in the cluster (Figure 3).

Figure 3
Floristic similarity between the collection points in the studied savanna areas in eastern Amazon. Co-phenetic correlation coefficient: 0.78.

Varied clustering patterns have been observed in different savanna physiognomies in Brazil, influenced by the presence or absence of mosses and liverworts in the studied areas (Visnadi 2004VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973., Rios et al. 2016RIOS ABM, OLIVEIRA JPS, SILVA RP, NETO JFO, OLIVEIRA LS, PERALTA DF & MACCAGNAN DHB. 2016. Briófitas de área de Cerrado da região Centro-Oeste do Brasil. Neotrop Biol Conserv 11(3): 132-140.). However, Valente et al. (2013)VALENTE EB, PÔRTO KC & BASTOS CJP. 2013. Species richness and distribution of bryophytes within different phytophysiognomies in the Chapada Diamantina region of Brazil. Acta Bot Bras 27: 294-310. found that the groups formed in different physiognomies reflected the environmental conditions of each area. As for the savannas of the eastern Amazon with similar physiognomies, probably the different communities formed are the result of environmental characteristics and colonizing species, as well as of the influence of forests close to each area.

While assessing the floristic similarity of vascular plants in Brazilian savannas, Ratter et al. (2003)RATTER JA, BRIDGEWATER S & RIBEIRO JF. 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. J Bot 60(1): 57-109. observed eight phytogeographic patterns in the distribution of these ecosystems, including the disjunct areas of the Amazon, which formed a very distinct and separate group from the other formed in the country. Considering the mosaic of Amazonian phytophysiognomies, it can be inferred that the savannas of the Amazon exhibit different communities of bryophytes related to their area of distribution.

Although Amazonian savannas had different bryophyte floras, the similarities between areas were low, even between geographically closer plots, except for MZG_4 and MZG_5, and MRCN_1 and MRCN_2. Valente et al. (2017)VALENTE EB, PÔRTO KC & BASTOS CJP. 2017. Habitat heterogeneity and diversity of bryophytes in campos rupestres. Acta Bot Bras 31: 241-249. also reported low similarity between clusters formed by exposed areas in rupestrian fields, even between those that included geographically close areas. According to the latter authors, the low degree of similarity observed probably reflected differences in habitat, relief, quantity and size of rock blocks, presence and size of cracks, proportion of exposed rock, and exposure to wind. In the case of the savannas in this study, the low similarity was the result of the different composition of the areas and local influences, and also of matrices of adjacent forests or other types of vegetation.

Difference in richness between savannas of Brazil

The savannas of the eastern Amazon showed low to high richness when compared to those in other studies on mosses and liverworts from savanna ecosystems in Brazil (Table II). This difference may be due to the coverage of different types of physiognomies and savanna formations, the heterogeneity of environments, and the phytogeographic distribution of taxa and it is extremely sensitive to sampling effort, meaning that in some cases the apparent difference in richness is not real, but the consequence of collection methodology or lack of collection. Only Cololejeunea surinamensis Tixier and Myriocoleopsis minutissima R.L.Zhu, Y.Yu & Pócs subsp. minutissima were not common to other areas, but have already been collected in these ecosystems (Flora do Brasil 2020FLORA DO BRASIL. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 08 nov. 2021.
http://floradobrasil.jbrj.gov.br/ ...
).

The richness and composition of vascular plants in disjunct savannas in the Amazon region are also low in contrast to other savannas in Brazil (Ratter et al. 2003RATTER JA, BRIDGEWATER S & RIBEIRO JF. 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. J Bot 60(1): 57-109., Barbosa et al. 2005BARBOSA RI, NASCIMENTO SP, AMORIM PAF & SILVA RF. 2005. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Bot Bras 19(2): 323-329., 2007). However, in addition to adapting to fire, other factors, such as edaphic conditions, altitude, climate, and seasonality contribute to the formation and structuring of these plants in these types of environments (Eiten 1972EITEN G. 1972. The cerrado vegetation of Brazil. Bot Rev 38: 201-341., Ratter et al. 2003RATTER JA, BRIDGEWATER S & RIBEIRO JF. 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. J Bot 60(1): 57-109., Oliveira et al. 2005OLIVEIRA RS, BEZERRA L, DAVIDSON EA, PINTO F, KLINK CA, NEPSTAD DC & MOREIRA A. 2005. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19: 574-581., Silva & Batalha 2010SILVA IA & BATALHA MA. 2010. Woody plant species cooccurrence in Brazilian savannas under different fire frequencies. Acta Oecol 36: 85-91., Melo Júnior et al. 2012MELO JÚNIOR JCS, BONA C & CECCANTINI G. 2012. Anatomia foliar de Copaifera langsdorffii Desf. (Leguminosae): interpretações ecológicas em diferentes condições edáficas de Cerrado. Biotemas 25(4): 29-36., Pausas 2015PAUSAS JG. 2015. Bark thickness and fire regime. Funct Ecol 29: 315-327., Massi & Franco 2016MASSI KG & FRANCO AC. 2016. How does resprouting response differ among three species of savanna trees and in relation to plant size? Acta Bot Bras 30(4): 693-699., Souchie et al. 2017SOUCHIE FF, PINTO JRR, LENZA E, GOMES L, MARACAHIPES-SANTOS L & SILVÉRIO DV. 2017. Post-fire resprouting strategies of woody vegetation in the Brazilian savanna. Acta Bot Bras 31(2): 260-266.).

The richness and composition of bryophyte communities in Amazonian savannas are possibly the result of geographical location, micro-environmental conditions and local and regional influences such as the bordering position in relation to other types of vegetation, which are abiotic and biotic factors that may be tested in the future. Additionally, fire-related events reduce and modify the landscape of this vegetation (Frost et al. 1986FROST PGH, MEDINA E, MENAUT JC, SOLBRIG OT, SWIFT M & WALKER BH. 1986. Responses of Savannas to Stress and Disturbance. Biology International, Special Issue 10. 1-82., Medina & Silva 1990MEDINA E & SILVA J. 1990. Savannas of northern South America: a steady regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17: 403-413., Barbosa & Campos 2011BARBOSA RI & CAMPOS C. 2011. Detection and geographical distribuition of clearing areas in the savannas (Lavrado) of Roraima using Google Earth web tool. J Geog Reg Plan 4: 122-136., Silva & Oliveira 2018SILVA GFN & OLIVEIRA IJ. 2018. Reconfiguration of the landscape in the Amazonian savanas. Mercator, Fortaleza 17: 1-20.), and may consequently decrease the richness and composition of bryophytes in these enclaves of savannas in the Amazon.

Environmental conditions related to fires, functional groups and new records

During field work, traces of fires, a common characteristic of this ecosystem, were observed in the studied areas. This was done because (natural or anthropogenic) fire is an important determining agent in savanna formations (Medina & Silva 1990MEDINA E & SILVA J. 1990. Savannas of northern South America: a steady regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17: 403-413., Lehmann et al. 2014LEHMANN CER ET AL. 2014. Savanna Vegetation Fire-Climate Relationships Differ Among Continents. Science 343: 548-553.). There is no information about the periods in which fires occur in the studied areas, but Octoblepharum albidum was collected on carbonized bark in Maracanã and Cametá. Bryophytes produce resilient, long-lived spores, highly resistant to intense light incidence, which can germinate after long dormant periods (Glime 2017cGLIME JM. 2017c. Ecophysiology of Development: Spore Germination. Chapt. 5-2. In: GLIME JM. Bryophyte Ecology. Volume 1. 5-2-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.). These characteristics may justify the development of Octoblepharum albidum after a period of fire. Furthermore, the development of sporophytes of Octoblepharum albidum occurs both during the rainy and the dry season, when the spores were dispersed (Pôrto & Oliveira 2002PÔRTO KC & OLIVEIRA SM. 2002. Reproductive phenology of octoblepharum albidum (Bryopsida, Leucobryaceae) in a tropical lowland forest of north-eastern Brazil. J Bryol 24: 291-294.), indicating that it is not affected by the intensity of rainfall.

Bryophytes can survive after low-intensity fires (Johnson 2007JOHNSON S. 2007. The response of bryophytes to wildfire – to what extent do they survive in-situ? Plant Ecology 2007/10. Department of Botany Stockholm University, p. 1-43.) and species may have different dynamics of colonization of forests affected by fires (De Las Heras et al. 1994DE LAS HERAS J, GUERRA J & HERRANZ JM. 1994. Stages of the bryophyte succession after fire in Mediterranean Forest (SE Spain). Int J Wildland Fire 41: 33-44.). Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416.) recorded Campylopus savannarum sprouting from the remains of carbonized tufts on iron rock exposed in a Canga area that suffered a fire in Serra do Carajás.

Twenty-seven species registered in this study were generalists and 16 were sun specialists (Table III). Based on the literature used on geographic distribution, and because they were recorded in savannas, seven taxa previously classified as shade specialists were determined as generalists in this study: Calymperes rubiginosum, Fissidens bryoides, Fissidens guianensis, Syrrhopodon ligulatus, Trichosteleum subdemissum, Cololejeunea surinamensis and Lejeunea controversa (Gradstein & Ilkiu-Borges 2009GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140., Tavares-Martins 2009TAVARES-MARTINS ACC. 2009. Florística e ecologia das comunidades de briófitas em florestas de terra firme no estado do Pará, Amazônia. Tese de Doutorado. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Escola Nacional de Botânica Tropical, Rio de Janeiro, 148 p., Alvarenga et al. 2010ALVARENGA LDP, PÔRTO KC & OLIVEIRA JRPM. 2010. Habitat loss effects on spatial distribution of epiphytic bryophytes in a Brazilian Atlantic forest. Biodivers Conserv 19: 619-635., Fagundes et al. 2016FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84.).

Bryophytes are generally related to the phytophysiognomy and the region in which they are occurring, but some species may show preferences for a given habitat or environmental gradient (Cornelissen & ter Steege 1989CORNELISSEN JHC & TER STEEGE H. 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen Forest of Guyana. Trop Ecol 5: 131-150., Gradstein & Costa 2003GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673., Gradstein 2006GRADSTEIN SR. 2006. The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie, Bryologie 27(1): 141-152., Gradstein & Ilkiu-Borges 2009GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140., Mota de Oliveira & ter Steege 2015MOTA DE OLIVEIRA S & TER STEEGE H. 2015. Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. J Ecol 103: 441-450., Glime 2019GLIME JM. 2019. Tropics: Wet and Dry Habitats. Chapt. 8-11. In: GLIME JM. Bryophyte Ecology. Volume 4. Habitat and Role. 8-11-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists.). However, species such as Fissidens guianensis and Lejeunea controversa were observed growing in broader conditions, varying from humid tropical forest (Buck 2003BUCK WR. 2003. Guide to the Plants of Central French Guiana. Part 3. Mosses. Memoirs of The New York Botanical Garden 76, 167 p., Gradstein & Ilkiu-Borges 2009GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140.) to an open and dry Canga vegetation (Oliveira-da-Silva & Ilkiu-Borges 2018OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416.). The latter vegetation type shares similar xeric condition with Amazonian savanna.

Bryophytes present adaptive structures related to the acquisition and retention of water, tolerance to light and resistance against desiccation (Bates 1998BATES JW. 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82: 223-237., Glime 2017dGLIME JM. 2017d. Water Relations: Leaf Strategies – Structural. Chapt. 7-4a. In: GLIME JM (Org), Bryophyte Ecology. Volume 1. 7-4a-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.), which allow them to colonize different environmental conditions and support wide ranges of microclimate variations, showing their evolutionary success. Additionally, generalist species can be found in a wide variety of environments, while sun specialists form an ecological group generally restricted to tree canopies or occurring in open forests (Cornelissen & ter Steege 1989CORNELISSEN JHC & TER STEEGE H. 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen Forest of Guyana. Trop Ecol 5: 131-150., Gradstein & Costa 2003GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673.). In the studied areas, the guild of sun specialists results from the type of ecosystem or from the dispersion from the forest matrix canopy to the understory of the savanna areas. The presence of Frullania subtilissima, reported in forest canopies (Cornelissen & Steege 1989, Silva & Pôrto 2013SILVA MPP & PÔRTO KC. 2013. Bryophyte communities along horizontal and vertical gradients in a human-modified Atlantic Forest remnant. Botany 91: 155-166.), is an example of this process of dispersion and colonization.

The species Fissidens bryoides is a new record for the state of Pará, Bryum coronatum, and Campylopus surinamensis, Acrolejeunea emergens, A. torulosa and Myriocoleopsis minutissima ssp. minutissima are new records for the state of Amapá. Frullania vitalii is reported for the first time for the North region and Cheilolejeunea savannae collected in the Mazagão and Maracanã savannas was recently described (Macedo et al. 2020MACEDO LPC, BASTOS CJP & ILKIU-BORGES AL. 2020. On a new species of Cheilolejeunea (Spruce) Steph. (Lejeuneaceae, Marchatiophyta) from Amazonian savannas. Nova Hedwigia 111: 77-85.).

The registered bryophyte flora is composed of widely distributed and typical species of xeric ecosystems, such as the studied savannas. Both the composition and the richness found in the study were expected considering that open vegetation areas present a small variety of microhabitats, which contribute to greater richness and diversity of these plants (Gradstein & Pócs 1989GRADSTEIN SR & PÓCS T. 1989. Bryophytes. In: LIETH H & WERGER MJA (Eds), Tropical Rain Forest Ecosystems. Amsterdam, Elsevier Science Publischers, p. 311-325., Gradstein 1995GRADSTEIN SR. 1995. Bryophyte Diversity of the Tropical Rainforest. Arch Sci Gen 48(1): 91-96.). The formed communities present a floristic composition possibly related to local factors and influences of the phytophysiognomic sets present in the Amazonian environment in which each savanna is inserted.

ACKNOWLEDGMENTS

The authors are grateful to Luiz Carlos Batista Lobato (MPEG), Carlos Alberto Santos da Silva (MPEG), Stélio Gomes Chaves (MPEG), Salustiano Vilar da Costa Neto (IEPA), Paulo Weslem Portal Gomes, Paulo Neto for the assistance during the collection of the botanical material, and the reviewers for critically revising the manuscript. We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Productivity Fellowship grant of the third author (process n° 302374/2016) which financed the expedition to Cametá, and the Project “Caracterização dos Fatores Ambientais que interferem na Conservação das Comunidades Vegetais dos Cerrados do Norte e Nordeste do Brasil” (process n° 429317/2016-6, Coordinator Dr. Mário Jardim) for logistical support during the collections to Marajó and Maracanã.

REFERENCES

  • ADENEY JM, CHRISTENSEN N, VINCENTI A & COHN-HAFT M. 2016. White-sand ecosystems in Amazonia. Biotropica 48: 7-23.
  • ALVARENGA LDP, PÔRTO KC & OLIVEIRA JRPM. 2010. Habitat loss effects on spatial distribution of epiphytic bryophytes in a Brazilian Atlantic forest. Biodivers Conserv 19: 619-635.
  • ARMSTRONG RA & HILTON AC. 2010. One-Way Analysis of Variance (ANOVA). In: ARMSTRONG RA & HILTON AC (Eds), Statistical analysis in Microbiology. Statnotes 6. New York, p. 33-37.
  • BALDUINO APC, DE SOUZA AL, MEIRA NETO JAA, DA SILVA AF & DA SILVA JÚNIOR MC. 2005. Fitossociologia e análise comparativa da composição florística do cerrado da flora de Paraopeba-MG. Rev Árvore 29(1): 25-34.
  • BARBOSA RA & FEARNSIDE P. 2004. Wood density of trees in open savannas of the Brazilian Amazon. For Ecol Manage 199: 115-123.
  • BARBOSA RA & FEARNSIDE P. 2005. Above-ground biomass and the fate of carbon after burning in the savannas of Roraima, Brazilian Amazonia. For Ecol Manage 216: 295-316.
  • BARBOSA RI & CAMPOS C. 2011. Detection and geographical distribuition of clearing areas in the savannas (Lavrado) of Roraima using Google Earth web tool. J Geog Reg Plan 4: 122-136.
  • BARBOSA RI, CAMPOS C, PINTO F & FEARNSIDE PM. 2007. The “Lavrados” of Roraima. Biodiversity and Conservation of Brazil’s Amazonian Savannas. Funct Ecos Com 1(1): 30-42.
  • BARBOSA RI, NASCIMENTO SP, AMORIM PAF & SILVA RF. 2005. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Bot Bras 19(2): 323-329.
  • BARBOSA RI, SANTOS JRS, CUNHA MS, PIMENTEL TP & FEARNSIDE PM. 2012. Root biomass, root: shoot ratio and belowground carbon stocks in the open savannahs of Roraima, Brazilian Amazonia. Aust J Bot 60: 405-416.
  • BASTOS CJP & GRADSTEIN SR. 2020. The genus Cheilolejeunea (Marchantiophyta: Lejeuneaceae) in tropical America. Nova Hedwigia 111: 287-335. https://doi.org/10.1127/nova_hedwigia/2020/0596.
    » https://doi.org/10.1127/nova_hedwigia/2020/0596
  • BASTOS CJP, STRADMANN MT & VILAS BÔAS-BASTOS SB. 1998. Additional contribution to the bryophyte flora from Chapada Diamantina National Park, State of Bahia, Brazil. Trop Bryol 15: 15-20.
  • BASTOS CJP, YANO O & VILAS BÔAS-BASTOS SB. 2000. Briófitas de campos rupestres da Chapada Diamantina, Estado da Bahia, Brasil. Rev Bras Bot 23(4): 359-370.
  • BATES JW. 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82: 223-237.
  • BÔAS-BASTOS SBV & BASTOS CJP. 1998. Briófitas de uma área de Cerrado no município de Alagoinhas, Bahia, Brasil. Trop Bryol 15: 101-110.
  • BORGHETTI F, BARBOSA E, RIBEIRO L, RIBEIRO JF & WALTER BMT. 2020. South American Savannas. In: SCOGINGS PF & SANKARAN M (Eds), Savanna Woody Plants and Large Herbivores, p. 77-122.
  • BRITO ES & ILKIU-BORGES AL. 2013. Bryoflora of the municipalities of Soure and Cachoeira do Arari, on Marajó Island, in the state of Pará, Brazil. Acta Bot Bras 27(1): 124-141.
  • BUCK WR. 2003. Guide to the Plants of Central French Guiana. Part 3. Mosses. Memoirs of The New York Botanical Garden 76, 167 p.
  • CÂMARA PEAS, OLIVEIRA JRPM & SANTIAGO MMM. 2005. A Checklist of the bryophytes of Distrito Federal (Brasília, Brazil). Trop Bryol 26: 133-140.
  • CAMPOS LV, MOTA DE OLIVEIRA S, BENAVIDES JC, URIBE-M J & TER STEEGE H. 2019. Vertical distribution and diversity of epiphytic bryophytes in the Colombian Amazon. J Bryol 41(4): 328-340. DOI: 10.1080/03736687.2019.1641898.
  • CARIM S, SCHWARTZ G & SILVA MFF. 2007. Riqueza de espécies, estructura e composição florística de uma floresta secundária de 40 años no leste da Amazônia. Acta Bot Bras 21(2): 293-308.
  • CARMO DM, LIMA JS, SILVA MI, AMÉLIO LA & PERALTA DF. 2018. Briófitas da Reserva Particular do Patrimônio Natural da Serra do Caraça, Estado de Minas Gerais, Brasil. Hoehnea 45(3): 484-508.
  • CARMO DM & PERALTA DF. 2016. Survey of bryophytes in Serra da Canastra National Park, Minas Gerais, Brazil. Acta Bot Bras 30: 254-265.
  • CARVALHO WD & MUSTIN K. 2017. The highly threatened and little known Amazonian savannahs. Nat Ecol Evol 1: 1-3.
  • CASTRO NMCF, PÔRTO KC, YANO O & CASTRO AJF. 2002. Levantamento florístico de Bryopsida de cerrado e mata ripícola do Parque Nacional de Sete Cidades, Piauí, Brasil. Acta Bot Bras 16(1): 61-76.
  • CAVALCANTE CO, FLORES AS & BARBOSA RI. 2014. Fatores edáficos determinando a ocorrência de leguminosas herbáceas em savanas amazônicas. Acta Amaz 44: 379-386.
  • CERQUEIRA GR, ILKIU-BORGES AL & FERREIRA LV. 2017. Species richness and composition of epiphytic bryophytes in flooded forests of Caxiuanã National Forest, Eastern Amazon, Brazil. An Acad Bras Cienc 89: 2371-2382.
  • CHURCHILL SP. 1998. Catalog of Amazonian Mosses. J Hattori Bot Lab 85: 191-238.
  • CORNELISSEN JHC & TER STEEGE H. 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen Forest of Guyana. Trop Ecol 5: 131-150.
  • COSTA CS, FLORES AS & RODRIGUES RS. 2012. A família Polygalaceae em uma área de savana em Roraima, Brasil. Rev Bras Bioc 10: 468-480.
  • COSTA DP & LUIZI-PONZO AP. 2010. As briófitas do Brasil. In: FORZZA et al. (Orgs), Catálogo de Plantas e Fungos do Brasil. vol.1. Rio de Janeiro, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, p. 61-68.
  • COSTA DP ET AL. 2011. Synopsis of the Brazilian moss flora: checklist, distribution and conservation. Nova Hedwigia 93(3-4): 277-334.
  • COSTA-COUTINHO JM. 2020. Padrões Ecológicos e Fitogeográficos de Comunidades Vegetais Lenhosas em Gradiente Fisionômico Mésico-Xérico do Cerrado Setentrional Brasileiro. Tese de Doutorado. Museu Paraense Emílio Goeldi. Belém, 206 p.
  • COSTA-NETO SV, MIRANDA IS & ROCHA AES. 2017. Flora das savanas do estado do Amapá. In: BASTOS AM et al. (Eds), Conhecimento e manejo sustentável da biodiversidade amapaense, p. 65-94.
  • CRANDALL-STOTLER B, STOTLER R & LONG D. 2008. Morphology and classification of the Marchantiophyta. In: GOFFINET B & SHAW AJ. Bryophyte Biology. Cambridge University Press, Cambridge, p. 1-54.
  • DE LAS HERAS J, GUERRA J & HERRANZ JM. 1994. Stages of the bryophyte succession after fire in Mediterranean Forest (SE Spain). Int J Wildland Fire 41: 33-44.
  • EITEN G. 1972. The cerrado vegetation of Brazil. Bot Rev 38: 201-341.
  • FAGUNDES DN, TAVARES-MARTINS ACC, ILKIU-BORGES AL, MORAES ENR & SANTOS RCP. 2016. Riqueza e aspectos ecológicos das comunidades de briófitas (Bryophyta e Marchantiophyta) de um fragmento de Floresta de Terra Firme no Parque Ecológico de Gunma, Pará, Brasil. Iheringia 71: 72-84.
  • FLORA DO BRASIL. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 08 nov. 2021.
    » http://floradobrasil.jbrj.gov.br/
  • FLORES AS & RODRIGUES RS. 2010. Diversidade de Leguminosae em uma área de savana do estado de Roraima, Brasil. Acta Bot Bras 24: 175-183.
  • FLORSCHÜTZ-DE WAARD J. 1986. Hookeriaceae. Musci. II. In: STOFFERS AL & LINDEMAN JC (Eds), Flora of Suriname. Leiden, p. 289-350.
  • FLORSCHÜTZ-DE WAARD J. 1996. Sematophyllaceae. Musci III. In: GOERTS-VAN RIJN ARA (Ed), Flora of the Guianas. Royal Botanical Gardens, p. 384-438.
  • FOX J & WEISBERG S. 2019. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    » https://socialsciences.mcmaster.ca/jfox/Books/Companion/
  • FRAHM JP. 1991. Dicranaceae: Campylopodioideae, Paraleucobryoideae. Flora Neotrop 54: 1-238.
  • FROST PGH, MEDINA E, MENAUT JC, SOLBRIG OT, SWIFT M & WALKER BH. 1986. Responses of Savannas to Stress and Disturbance. Biology International, Special Issue 10. 1-82.
  • GLIME JM. 2017a. Meet the Bryophytes. Chapt. 2-1. In: GLIME JM. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-1-1 sponsored by Michigan Technological University and the International Association of Bryologists.
  • GLIME JM. 2017b. Adaptive Strategies: Growth and Life Forms. Chapt. 4-5. In: GLIME JM. Bryophyte Ecology. Volume 1. 4-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  • GLIME JM. 2017c. Ecophysiology of Development: Spore Germination. Chapt. 5-2. In: GLIME JM. Bryophyte Ecology. Volume 1. 5-2-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  • GLIME JM. 2017d. Water Relations: Leaf Strategies – Structural. Chapt. 7-4a. In: GLIME JM (Org), Bryophyte Ecology. Volume 1. 7-4a-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  • GLIME JM. 2019. Tropics: Wet and Dry Habitats. Chapt. 8-11. In: GLIME JM. Bryophyte Ecology. Volume 4. Habitat and Role. 8-11-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  • GOEDERT WJ, WAGNER E & BARCELLOS AO. 2008. Savanas tropicais: dimensão, histórico e perspectivas. In: FALEIRO FG & FARIAS NETO AL (Eds), Savanas: desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. Planaltina, DF: EMBRAPA Cerrados, p. 49-77.
  • GOFFINET B, BUCK WR & SHAW JA. 2009. Morphology, anatomy, and classification of the Bryophyta. In: GOFFINET B & SHAW JA. Bryophyte Biology. Cambridge University Press, Cambridge, p. 55-138.
  • GOMES PWP, MEDEIROS-SARMENTO PS, DOS SANTOS RCP & TAVARES-MARTINS ACC. 2021. Composition and structure of the bryophyte community of Park Savanna in Marajó Island, Pará, Brazil. An Acad Bras Cienc 93: e20190830. DOI 10.1590/0001-3765202120190830.
  • GOTTSBERGER G & MORAWETZ W. 1986. Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora 178: 41-71.
  • GOTTSBERGER G & MORAWETZ W. 1993. Development and distribution of the epiphytic flora in an Amazonian savanna in Brazil. Flora 188: 145-151.
  • GRADSTEIN SR. 1994. Lejeuneaceae: Ptychantheae, Brachiolejeuneae. Flora Neotrop 62: 1-225.
  • GRADSTEIN SR. 1995. Bryophyte Diversity of the Tropical Rainforest. Arch Sci Gen 48(1): 91-96.
  • GRADSTEIN SR. 2006. The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie, Bryologie 27(1): 141-152.
  • GRADSTEIN SR. 2021. The liverworts and hornworts of Colombia and Ecuador. Memoirs of The New York Botanical Garden 121: 1-723.
  • GRADSTEIN SR, CHURCHILL SP & SALAZAR AN. 2001. Guide to the Bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86, 577 p.
  • GRADSTEIN SR & COSTA DP. 2003. The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 88: 1-673.
  • GRADSTEIN SR & ILKIU-BORGES AL. 2009. Guide to the Plants of Central French Guiana. Part 4. Liverworts and Hornworts. Memoirs of the New York Botanical Garden 76(4): 1-140.
  • GRADSTEIN SR & PÓCS T. 1989. Bryophytes. In: LIETH H & WERGER MJA (Eds), Tropical Rain Forest Ecosystems. Amsterdam, Elsevier Science Publischers, p. 311-325.
  • HEINRICHS J, HENTSCHEL J, FELDBERG K, BOMBOSCH A & SCHNEIDER H. 2009. Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47: 497-508.
  • HILLEBRAND H & BLENCKNER T. 2002. Regional and local impact on species diversity – from pattern to processes. Oecologia 132: 479-491.
  • IBGE. 2004. Mapa de Biomas do Brasil, primeira aproximação. Rio de Janeiro: IBGE. Accessible in www.ibge.gov.br
    » www.ibge.gov.br
  • IBGE. 2012. Manual Técnico da Vegetação Brasileira: Sistema fitogeográfico; Inventário das formações florestais e campestres; Técnicas e manejo de coleções botânicas; Procedimentos para mapeamentos. Rio de Janeiro: IBGE, 275 p.
  • ILKIU-BORGES AL & LISBOA RCL. 2002. Lejeuneaceae (Hepaticae). In: LISBOA PLB (Org), Caxiuanã: populações, meio físico e diversidade biológica. Belém, Museu Paraense Emílio Goeldi, p. 399-419.
  • ILKIU-BORGES AL, SANTOS RCP, MACEDO LPC & PEREIRA MAV. 2009. As briófitas da ilha do Algodoal-Maiandeua, Pará. In: JARDIM MAG (Org), Diversidade Biológica das Áreas de Proteção Ambiental: Ilhas do Combu e Algodoal-Maiandeua - Pará, Brasil. Museu Paraense Emílio Goeldi, p. 227-244.
  • JATI SR, FEARNSIDE PM & BARBOSA RI. 2014. Densidade da madeira de árvores em savanas do norte da Amazônia brasileira. Acta Amaz 44(1): 79-86.
  • JATI SR & MAULAZ CF. 2019. Densidade da madeira de Curatella americana e Byrsonima crassifolia no ecótono e região central na savana aberta de Roraima, Brasil. Rev Geogr Acad 13(1): 62-73.
  • JOHNSON S. 2007. The response of bryophytes to wildfire – to what extent do they survive in-situ? Plant Ecology 2007/10. Department of Botany Stockholm University, p. 1-43.
  • LEHMANN CER ET AL. 2014. Savanna Vegetation Fire-Climate Relationships Differ Among Continents. Science 343: 548-553.
  • LISBOA RCL, TAVARES ACC & COSTA NETO SV. 2006. Musgos (Bryophyta) e hepáticas (Marchantiophyta) da zona costeira do Estado de Amapá, Brasil. Bol Inst Bot: homenagem ao briólogo D. M. Vital 18: 163-171.
  • MACEDO LPC, BASTOS CJP & ILKIU-BORGES AL. 2020. On a new species of Cheilolejeunea (Spruce) Steph. (Lejeuneaceae, Marchatiophyta) from Amazonian savannas. Nova Hedwigia 111: 77-85.
  • MACEDO LPC & ILKIU-BORGES AL. 2014. Richness of Marchantiophyta and Bryophyta in a protected area of the Brazilian Amazon. Acta Bot Bras 28: 527-538.
  • MAGNUSSON WE, LIMA AP, ALBERNAZ ALM, SANAIOTTI TM & GUILLAUMET JL. 2008. Composição florística e cobertura vegetal das savanas na região de Alter do Chão, Santarém - PA. Rev Bras Bot 31(1): 165-177.
  • MASSI KG & FRANCO AC. 2016. How does resprouting response differ among three species of savanna trees and in relation to plant size? Acta Bot Bras 30(4): 693-699.
  • MEDINA E & SILVA J. 1990. Savannas of northern South America: a steady regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17: 403-413.
  • MÉIO BB, FREITAS CV, JATOBÁ L, SILVA MEF, RIBEIRO JF & HENRIQUES RPB. 2003. Influência da flora das florestas Amazônica e Atlântica na vegetação do cerrado sensu stricto. Rev Bras Bot 26: 437-444.
  • MELO JÚNIOR JCS, BONA C & CECCANTINI G. 2012. Anatomia foliar de Copaifera langsdorffii Desf. (Leguminosae): interpretações ecológicas em diferentes condições edáficas de Cerrado. Biotemas 25(4): 29-36.
  • MENEZES J & FLORES AS. 2013. A família Malpighiaceae em uma área de savana em Roraima, Brasil. Bol Mus Int Ror 7: 55-63.
  • MIRANDA IS. 1993. Estrutura do estrato arbóreo do cerrado amazônico em Alter-do-Chão, Pará, Brasil. Rev Bras Bot 16: 143-150.
  • MIRANDA IS & ABSY ML. 2000. Fisionomias das savanas de Roraima, Brasil. Acta Amaz 30(3): 423-440.
  • MIRANDA IS, ABSY ML & REBELO GH. 2002. Community Structure of Woody Plants of Roraima Savannahs, Brazil. Plant Ecol 164: 109-123.
  • MIRANDA IS, ALMEIDA SS & DANTAS PJ. 2006. Florística e estrutura de comunidades arbóreas em cerrados de Rondônia, Brasil. Acta Amaz 36(4): 419-430.
  • MOTA DE OLIVEIRA S & TER STEEGE H. 2013. Floristic overview of the epiphytic bryophytes of terra firme forests across the Amazon basin. Acta Bot Bras 27(2): 347-363.
  • MOTA DE OLIVEIRA S & TER STEEGE H. 2015. Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. J Ecol 103: 441-450.
  • MOURA OS, ILKIU-BORGES AL & BRITO ES. 2013. Brioflora (Bryophyta e Marchantiophyta) da Ilha do Combu, Belém, PA, Brasil. Hoehnea 40(1): 143-165.
  • OKSANEN JFG ET AL. 2019. Vegan: community ecology package. R package version 2.5-6. Available in <https://cran.r-project.org/web/packages/vegan/index.html>.
    » https://cran.r-project.org/web/packages/vegan/index.html
  • OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2018. Briófitas (Bryophyta e Marchantiophyta) das Cangas da Serra dos Carajás, Pará, Brasil. Rodriguésia 69(3): 1405-1416.
  • OLIVEIRA-DA-SILVA FR & ILKIU-BORGES AL. 2020. Bryophyte flora of two Natural Parks in Amapá: richness, composition and new records. An Acad Bras Cienc 92: e20181355.
  • OLIVEIRA JRPM, ALVARENGA LDP & PÔRTO KC. 2006. Briófitas da Estação Ecológica de Águas Emendadas, Distrito Federal, material coletado por Daniel Moreira Vital. Bol Inst Bot 18: 181-196.
  • OLIVEIRA RS, BEZERRA L, DAVIDSON EA, PINTO F, KLINK CA, NEPSTAD DC & MOREIRA A. 2005. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19: 574-581.
  • PANTOJA ACC, ILKIU-BORGES AL, TAVARES-MARTINS ACC & GARCIA ET. 2015. Bryophytes in fragments of Terra Firme forest on the great curve of the Xingu River, Pará state, Brazil. Braz J Biol 75: 238-249.
  • PAUSAS JG. 2015. Bark thickness and fire regime. Funct Ecol 29: 315-327.
  • PINHEIRO ES & DURIGAN S. 2012. Diferenças florísticas e estruturais entre fitofisionomias do cerrado em Assis, SP, Brasil. Rev Árv 36(1): 181-193.
  • PINHEIRO MHO & MONTEIRO R. 2006. Contribution of forest species to the floristic composition of a forested savanna in southeastern Brazil. Braz Arch Biol Technol 49(5): 763-774.
  • PIRES JM & PRANCE GT. 1985. The vegetation types of the Brazilian Amazon. In: PRANCE GT & LOVEJOY TE (Eds), Key Environments of Amazonia. Oxford: Pergamon, p. 109-145.
  • PÓCS T. 1982. Tropical forest bryophytes. In: SMITH AJE (Ed), Bryophyte Ecology. London, Chapman and Hall, p. 59-104.
  • PÔRTO KC & OLIVEIRA SM. 2002. Reproductive phenology of octoblepharum albidum (Bryopsida, Leucobryaceae) in a tropical lowland forest of north-eastern Brazil. J Bryol 24: 291-294.
  • PRANCE GT. 1996. Islands in Amazonia. Philos Trans Royal Soc/London 351: 823-833.
  • PROCTOR MCF & TUBA Z. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327-349.
  • PURSELL RA. 2007. Fissidentaceae. Flora Neotrop 101: 1-278.
  • R CORE TEAM. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/./
  • RATTER JA, BRIDGEWATER S & RIBEIRO JF. 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. J Bot 60(1): 57-109.
  • REESE WD. 1993. Calymperaceae. Flora Neotrop 58: 1-102.
  • RIBEIRO JF & WALTER BMT. 1998. Fitofisionomia do bioma Cerrado. In: SANO SM & ALMEIDA SP (Coords), Cerrado: ambiente e flora. Planaltina, DF: EMBRAPA, p. 47-86.
  • RIBEIRO JF & WALTER BMT. 2008. As principais fitofisionomias do Bioma Cerrado. In: SANO SM et al. (Eds), Cerrado: ecologia e flora Embrapa Cerrados, Planaltina, p. 151-212.
  • RICHARDS PW. 1984. The ecology of the tropical Forest bryophytes. In: SCHUSTER RM (Ed), New Manual of Bryology, vol. 2. J Hattori Bot Lab, Nichinan, p. 1233-1270.
  • RICKLEFS RE & FANGLIANG H. 2016. Region effects influence local tree species diversity. Proc Natl Acad Sci 113: 674-679.
  • RIOS ABM, OLIVEIRA JPS, SILVA RP, NETO JFO, OLIVEIRA LS, PERALTA DF & MACCAGNAN DHB. 2016. Briófitas de área de Cerrado da região Centro-Oeste do Brasil. Neotrop Biol Conserv 11(3): 132-140.
  • ROCHA AES & COSTA-NETO SV. 2019. Florística e fitossociologia do estrato herbáceo/arbustivo em 19 áreas de savanas amazônicas, Brasil. Bol Mus Para Emílio Goeldi. Ciências Naturais 14(2): 159-181.
  • ROCHA AES, MIRANDA IDS & COSTA-NETO SV. 2014. Composição florística e chave de identificação das Poaceae ocorrentes nas savanas costeiras amazônicas, Brasil. Acta Amaz 44(3): 301-314.
  • ROCHA AES & MIRANDA IS. 2014. Poaceae communities in the savannas of the Amazon Estuary in Brazil. Acta Bot Bras 28(4): 559-568.
  • SANAIOTTI TM, MARTINELLI LA, VICTORIA RL, TRUMBORE SE & CAMARGO PB. 2002. Past vegetation, in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34(1): 2-16.
  • SANTOS FJL & CONCEIÇÃO GM. 2010. Espécies da brioflora do Parque Estadual do Mirador, Maranhão, Brasil. Cad Geoc 7: 136-139.
  • SANTOS RCP & LISBOA RCL. 2003. Musgos (Bryophyta) do Nordeste Paraense, Brasil - 1. Zona Bragantina, microrregião do Salgado e município de Viseu. Acta Amaz 33(3): 415-422.
  • SARMIENTO G. 1983. The savannas in tropical America. In: BOURLIERE F (Ed). Tropical Savannas. Elsevier, p. 245-288.
  • SHARP AJ, CRUM H & ECKEL PM. 1994. The moss flora of Mexico. Memoirs of The New York Botanical Garden 69: 1113 p.
  • SIERRA AM, VANDERPOORTEN A, GRADSTEIN SR, PEREIRA MR, BASTOS CJP & ZARTMAN CE. 2018. Bryophytes of Jaú National Park (Amazonas, Brazil): Estimating species detectability and richness in a lowland Amazonian megareserve. The Bryologist 121: 571-588.
  • SILVA GFN & OLIVEIRA IJ. 2018. Reconfiguration of the landscape in the Amazonian savanas. Mercator, Fortaleza 17: 1-20.
  • SILVA IA & BATALHA MA. 2010. Woody plant species cooccurrence in Brazilian savannas under different fire frequencies. Acta Oecol 36: 85-91.
  • SILVA KES, MARTINS SV, RIBEIRO CAAS, SANTOS NT, AZEVEDO CP, MATOS FDA & AMARAL IL. 2011. Floristic composition and similarity of 15 hectares in Central Amazon, Brazil. Rev Biol Trop 59(4): 1927-1938.
  • SILVA MPP & PÔRTO KC. 2007. Composição e riqueza de briófitas epíxilas em fragmentos florestais da Estação Ecológica de Murici, Alagoas. Rev Bras Bioc 5(2): 243-245.
  • SILVA MPP & PÔRTO KC. 2013. Bryophyte communities along horizontal and vertical gradients in a human-modified Atlantic Forest remnant. Botany 91: 155-166.
  • SILVA WLS, COSTA-NETO SV & SOARES MVB. 2015. Diversidade de Leguminosae em Savanas do Amapá. Biota Amaz 5(1): 83-89.
  • SOUCHIE FF, PINTO JRR, LENZA E, GOMES L, MARACAHIPES-SANTOS L & SILVÉRIO DV. 2017. Post-fire resprouting strategies of woody vegetation in the Brazilian savanna. Acta Bot Bras 31(2): 260-266.
  • TAVARES-MARTINS ACC. 2009. Florística e ecologia das comunidades de briófitas em florestas de terra firme no estado do Pará, Amazônia. Tese de Doutorado. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Escola Nacional de Botânica Tropical, Rio de Janeiro, 148 p.
  • TAVARES-MARTINS ACC, LISBOA RCL & COSTA DP. 2014. Bryophyte flora in upland forests at different successional stages and in the varius strata of host trees in northeastern Pará, Brazil. Acta Bot Bras 28(1): 46-58.
  • TEJADA G, GÖRGENS EB, ESPIRITOSANTO FDB, CANTINHO RZ & OMETTO JP. 2019. Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Carbon Balance Manag 14(11): 1-18.
  • VALENTE EB, PÔRTO KC & BASTOS CJP. 2013. Species richness and distribution of bryophytes within different phytophysiognomies in the Chapada Diamantina region of Brazil. Acta Bot Bras 27: 294-310.
  • VALENTE EB, PÔRTO KC & BASTOS CJP. 2017. Habitat heterogeneity and diversity of bryophytes in campos rupestres. Acta Bot Bras 31: 241-249.
  • VASCONCELOS MF, DANTAS SM & SILVA JMC. 2011. Avifaunal inventory of the Amazonian savannas and adjacent habitats of the Monte Alegre region (Pará, Brazil), with comments on biogeography and conservation. Bol Mus Para Emílio Goeldi. Ciências Naturais 6(2): 119-145.
  • VISNADI SR. 2004. Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Acta Bot Bras 18(4): 965-973.
  • VISNADI SR. 2013. Briófitas de áreas antrópicas do Parque Estadual da Serra do Mar, Núcleo Picinguaba, Ubatuba, estado de São Paulo, Brasil. Bol Mus Para Emílio Goeldi. Ciências Naturais 8: 49-62.
  • VISNADI SR & VITAL DM. 2001. Lista das briófitas de uma área de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. Vegetalia 35: 1-15.
  • YANO O. 1989. Briófitas. In: FIDALGO O & BONONI VLR (Eds), Técnicas de coleta, preservação e herborização de material botânico. Inst Bot, São Paulo, p. 27-30.
  • YANO O. 1994. Briófitas da Serra Itabaiana, Sergipe, Brasil. Acta Bot Bras 8: 45-57.
  • YANO O. 2011. Catálogo de musgos brasileiros: literatura original, basiônimo, localidade-tipo e distribuição geográfica. Inst Bot, São Paulo, 180 p.
  • YANO O & LISBOA RCL. 1988. Briófitas do Território Federal do Amapá, Brasil. Bol Mus Para Emílio Goeldi 4: 243-270.
  • YANO O & PERALTA DF. 2009. Flora de Grão-Mogol, Minas Gerais: Briófitas (Bryophyta e Marchantiophyta). Bol Bot Univ São Paulo 27(1): 1-26.
  • YANO O & PERALTA DF. 2011. Bryophytes from Serra de São José, Tiradentes, Minas Gerais, Brasil. Bol Bot Univ São Paulo 21: 141-172.
  • ZARTMAN C & ILKIU-BORGES AL. 2007. Guia para as Briófitas Epífilas da Amazônia Central. Manaus Brasil, Editora INPA.

Publication Dates

  • Publication in this collection
    21 Mar 2022
  • Date of issue
    2022

History

  • Received
    7 Apr 2020
  • Accepted
    26 Nov 2020
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br