Acessibilidade / Reportar erro

Proposta de um método alternativo para a estimativa da condutividade hidráulica em solos não saturados

A proposal of an alternative method for estimating the hydraulic conductivity of unsaturated soils

RESUMO

A determinação da condutividade hidráulica em solos não saturados é essencial ao realizar análises de fluxo transiente nesses meios porosos. No entanto, a execução de ensaios de laboratório e de campo para a determinação dessa propriedade hidráulica não é prática corrente no âmbito da geotecnia, por se tratar de procedimentos demorados e dispendiosos. As redes neurais artificiais (RNA) têm sido bastante empregadas em Mecânica dos Solos, permitindo a estimativa de uma forma fácil e simples de fenômenos complexos e multivariados. Desse modo, este artigo tem como objetivo apresentar um modelo de estimativa da condutividade hidráulica em solos não saturados desenvolvido a partir de um tipo de RNA conhecido como perceptron multicamadas (MLP). As variáveis de entrada do modelo são: índice de vazios inicial, teor de umidade gravimétrico inicial, percentuais de areia, silte e argila, índice de plasticidade, coeficiente de permeabilidade saturado e sucção matricial. Durante a modelagem, um total de 275 exemplos foram utilizados, dos quais 85% foram empregados na fase de treinamento, e 15% na fase de teste. O modelo proposto possui uma arquitetura A: 8-4-2-1 e apresentou coeficiente de correlação de 0,97 após 500 mil iterações em ambas as fases de treinamento e de teste. Os resultados do modelo se ajustaram satisfatoriamente aos dados experimentais utilizados nas fases de treinamento e de teste, e a rede neural proposta foi capaz de representar a influência das variáveis de entrada no comportamento hidráulico de diferentes tipos de solo.

Palavras-chave
Solos não saturados; condutividade hidráulica; redes neurais artificiais; perceptron multicamadas

ABSTRACT

The determination of hydraulic conductivity in unsaturated soils is essential when performing transient flow analysis in these porous media. However, the execution of laboratory and field tests to determine this hydraulic property is not a current practice in the scope of geotechnics, as these are time-consuming and expensive procedures. Artificial neural networks (ANN) have been widely used in Soil Mechanics, allowing the estimation of complex and multivariate phenomena in an easy and simple way. Thus, this article aims to present a model for estimating hydraulic conductivity in unsaturated soils developed from a type of ANN known as multilayer perceptron (MLP). The model’s input variables are the initial void ratio, initial gravimetric water content, sand content, silt content, clay content, plasticity index, saturated permeability coefficient and matric suction. During modeling, a total of 275 examples were used, of which 85% were used in the training phase, and 15% in the testing phase. The proposed model has an A: 8-4-2-1 architecture and presented a correlation coefficient of 0.97 after 500 thousand iterations in both training and testing phases. The results of the model adjusted satisfactorily to the experimental data used in the training and test phases, and the proposed neural network was able to represent the influence of the input variables on the hydraulic behavior of different types of soil.

Keywords
Unsaturated soils; hydraulic conductivity; artificial neural networks; multilayer perceptron

1.

INTRODUÇÃO

Inúmeras situações em engenharia geotécnica envolvem a análise de fluxo transiente em meios não saturados. De uma forma geral, as análises de fluxo transiente em solos não saturados exigem o conhecimento de suas propriedades hidráulicas, especialmente no que se refere ao conhecimento das funções que representam a variação do teor de umidade (curva de retenção ou curva característica solo-água) e da condutividade hidráulica dos solos com a sucção mátrica atuante [1[1] COSTA, M.B.A.,Modelagem numérica do fluxo transiente em meio poroso não saturado sob a ação de centrifugação. Dissertação (Mestrado em Geotecnia), Universidade de Brasília, Brasília, 2017.]. No entanto, não é prática corriqueira, no âmbito da engenharia geotécnica, a determinação de tais funções por meio de ensaios laboratoriais, devido à alta complexidade, à longa duração e ao elevado custo envolvido na realização desses procedimentos [2[2] GERSCOVICH, D.M.S, “Equações para modelagem da curva característica aplicadas a solos brasileiros”, In:IV Simpósio Brasileiro de Solos Não Saturados,pp. 76-92, Porto Alegre, 2001.].

O coeficiente de permeabilidade é uma medida da facilidade com que a água pode escoar nos espaços vazios do solo disponíveis para vazão e depende tanto das propriedades do fluido como das propriedades do meio poroso [3[3] GERSCOVICH, D.M.S,Fluxo em solos saturados. 1 ed. Rio de Janeiro: Universidade Estadual do Rio de Janeiro, 2011.,4[4] MACHADO Jr., J.C., NOGUEIRA, C.L., “Análise bidimensional de problemas de fluxo em meios porosos não saturados pelo método dos elementos finitos”, In: 30ª CILAMCE - Iberian Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, 2000.]. Em solos não saturados, a água apenas flui através da parcela dos vazios por ela preenchida [3[3] GERSCOVICH, D.M.S,Fluxo em solos saturados. 1 ed. Rio de Janeiro: Universidade Estadual do Rio de Janeiro, 2011.,5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. À proporção que o grau de saturação diminui, há uma diminuição no coeficiente de permeabilidade, uma vez que a área da seção transversal ocupada pela água é reduzida. Adicionalmente, existe um aumento da tortuosidade do caminho percorrido pela água, fazendo com que a taxa de redução do coeficiente de permeabilidade seja maior que a taxa de redução do grau de saturação [3[3] GERSCOVICH, D.M.S,Fluxo em solos saturados. 1 ed. Rio de Janeiro: Universidade Estadual do Rio de Janeiro, 2011.,5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. Além disso, constata-se que o coeficiente de permeabilidade é função de duas quaisquer das três propriedades volume-massa, sendo afetado de forma significativa por alterações combinadas entre o índice de vazios, o grau de saturação e o teor de água gravimétrico [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.,6[6] BICALHO, K.V., MACHADO, S.L., GERSCOVICH, D.M.S., “Condutividade hidráulica e fluxo em solos não saturados”, In: Carvalho, J.C., Gitirana Junior, G.F.N., Machado, S.L.,et al.(orgs),Solos não saturados no contexto geotécnico.São Paulo: Associação Brasileira de Mecânica dos Solos, 2015. pp. 297-326.].

Diversos modelos matemáticos envolvendo relações diretas ou indiretas com a curva de retenção do solo foram desenvolvidos como uma alternativa para a determinação da condutividade hidráulica em solos não saturados, podendo-se citar os tradicionais trabalhos de [7[7] GARDNER, W.R., “Mathematics of isothermal water conduction in unsaturated soils”,Highway Research Board Special Report n. 40. Washington: National Research Council, 1958.,8[8] BROOKS, R.H., COREY, A.T., “Hydraulics properties of porous media”,Hydrology Papers 3. Fort Collins: Colorado State University, 1964.,9[9] VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.,10[10] FREDLUND, D.G., XING, A., “Equations for the soil-water characteristic curve”,Canadian Geotechnical Journal, v. 31, n. 4, pp. 521-532, 1994.,11[11] FREDLUND, D.G., HUANG, S., “Predicting the permeability function for unsaturated soils using the soil water characteristic curve”,Canadian Geotechnical Journal, v. 31, n. 4, pp. 533-546, 1994.]. Apesar de largamente empregados, tais modelos apresentam como principais limitações o fato de necessitarem de parâmetros de difícil obtenção, além do questionamento sobre a acurácia da curva de condutividade hidráulica obtida, uma vez que a sua validação depende das medições diretas do padrão de fluxo e da obtenção dos valores da condutividade hidráulica para diferentes níveis de sucção mátrica atuantes nos solos [12[12] STERCK, W.N.,Estudo da função de condutividade hidráulica de solos não saturados através de amostras centrifugadas. Dissertação (Mestrado em Engenharia Civil), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 2011.].

Diante do contexto abordado, as redes neurais artificiais (RNA) apresentam-se como uma ferramenta computacional importante para a modelagem das propriedades hidráulicas dos solos não saturados, pois, devido ao seu modo de funcionamento, não necessitam de um modelo matemático que relacione os dados de entrada com os dados de saída, tornando-as, assim, bastante úteis para criar modelos não-lineares complexos e capazes de verificar e avaliar o nível de incertezas associadas a cada um dos parâmetros considerados.

O modo como uma RNA é estruturada e as capacidades de aprender, generalizar e se adaptar conferem a essa ferramenta um enorme poder computacional que oferece as seguintes propriedades [13[13] HAYKIN, S.,Neural networks and learning machines. 3 ed. Upper Saddle River: Prentice Hall, 2009.]: não-linearidade, mapeamento de entrada-saída, adaptabilidade, resposta a evidências, informação contextual, uniformidade de análise e projeto, tolerância a falhas e analogia neurobiológica.

Dessa forma, o objetivo deste artigo é apresentar um modelo para previsão da condutividade hidráulica em solos não saturados utilizando um tipo de rede neural artificial (RNA) conhecido como perceptron multicamadas (MLP). Esse modelo neuronal é considerado uma alternativa aos modelos matemáticos constitutivos tradicionais, pois leva em conta variáveis de entrada de simples obtenção e é capaz de descrever como essas variáveis influenciam o comportamento hidráulico dos solos não saturados. Neste trabalho, são apresentadas todas as informações que permitiram a definição das variáveis de entrada necessárias para a previsão da condutividade hidráulica em função das características dos grãos de solo, da sua estrutura e da sucção mátrica; bem como são mostradas as etapas de desenvolvimento do modelo e a sua análise de desempenho.

2.

MATERIAIS E MÉTODOS

2.1.

Definição do tipo de RNA e das variáveis de entrada

O neurônio artificial, unidade básica de processamento de dados de uma RNA, baseia-se no modelo do diagrama de blocos apresentado na Figura 1, a partir do qual podem ser identificados os seguintes elementos: (i) conjunto de sinapses ou elos de conexão: representados pelos pesos sinápticos (wkj); (ii) combinador linear ou somador; (iii) função de ativação (φ(∙)): aplicada à saída do combinador linear para restringir a amplitude do sinal de saída do neurônio a um valor finito; (iv) bias ou limiar (bk): parâmetro externo que pode ser comparado ao limiar do neurônio biológico e possui o efeito de aumentar ou diminuir a entrada da função de ativação.

Figura 1.
Neurônio artificial [13[13] HAYKIN, S.,Neural networks and learning machines. 3 ed. Upper Saddle River: Prentice Hall, 2009.].

Um neurônio k pode ser representado matematicamente por meio do seguinte par de equações:

(1)uk=j=1mwkjxj
(2)yk=φuk+bk
onde xj é o sinal de entrada correspondente à sinapse j, wkj denota o peso sináptico do neurônio k, na sinapse j, uk representa a saída do combinador linear do neurônio k, bk é o bias do neurônio k, φ (∙) corresponde à função de ativação e yk representa o sinal de saída do neurônio k.

A soma do bias (bk) com a saída do combinador linear (uk) é conhecida como potencial de ativação ou campo local induzido (vk), segundo Equação 3.

(3)vk=uk+bk

O perceptron multicamadas, tipo de RNA desenvolvida neste trabalho, é composto por, no mínimo, três camadas alimentadas adiante (acíclicas), isto é, a propagação dos sinais de entrada ocorre unicamente para frente, em direção aos neurônios de saída [13[13] HAYKIN, S.,Neural networks and learning machines. 3 ed. Upper Saddle River: Prentice Hall, 2009.].

A primeira constitui a camada de entrada, formada pelas unidades sensoriais, as quais fornecem os sinais de entrada. Em seguida, pode haver uma ou mais camadas intermediárias (ocultas), cuja função é intervir entre a entrada e a saída da rede, de maneira útil, tornando-a capaz de aprender tarefas complexas, ao extrair estatísticas de elevada ordem e informações mais significantes dos vetores de entrada. Por último, está a camada de saída, responsável por fornecer respostas para os estímulos impostos pelo ambiente externo [13[13] HAYKIN, S.,Neural networks and learning machines. 3 ed. Upper Saddle River: Prentice Hall, 2009.].

As variáveis de entrada do modelo neuronal proposto foram definidas com base em estudos anteriores, os quais forneceram subsídios para a identificação dos parâmetros que governam a variação da condutividade hidráulica em função da sucção matricial em solos não saturados. Tais variáveis são: (i) Índice de vazios inicial (eo), adimensional; (ii) Teor de umidade gravimétrico inicial (wo), em %; (iii) Percentual de argila (C), em %; (iv) Percentual de silte (M), em %; (v) Percentual de areia (S), em %; (vi) Índice de plasticidade (IP), em %; (vii) Coeficiente de permeabilidade saturado (ksat), em cm/s; (viii) Sucção matricial (ua-uw), em kPa.

O teor de umidade gravimétrico e o índice de vazios foram escolhidos como variáveis de entrada, pois mudanças combinadas nesses dois parâmetros resultam em alterações no coeficiente de permeabilidade não saturado, visto que quanto menor a quantidade de água presente no solo, menor a área de seção transversal disponível para vazão e mais tortuoso o caminho percorrido pelo líquido [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. Essa escolha pode também ser respaldada nos trabalhos de [14[14] AKBULUT, S., “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils”,Eurasian Soil Science, v. 38, n. 4, pp. 392-398, 2005.] e de [15[15] AL-SULAIMAN, M.A., ABOUKARIMA, A.M., “Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#”,Journal of Agriculture and Ecology Research International, v. 5, n. 4, 21622, 2016.]. Os primeiros autores realizaram uma modelagem com o auxílio de RNA para determinação do coeficiente de condutividade hidráulica, por meio da qual um percentual de contribuição de 20,63% para o teor de umidade inicial foi alcançado. [14[14] AKBULUT, S., “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils”,Eurasian Soil Science, v. 38, n. 4, pp. 392-398, 2005.], por sua vez, obteve resultados satisfatórios ao utilizar o índice de vazios como variável de entrada na previsão desse coeficiente.

Os percentuais de areia, silte e argila foram considerados por representarem a granulometria do material [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. Solos mais bem graduados possuem uma menor permeabilidade, pois as partículas de pequenos diâmetros preenchem os espaços vazios. Em contrapartida, solos mais uniformes possuem poros maiores, disponíveis para serem ocupados por água. Quando há uma parcela grande de partículas finas com plasticidade elevada, contudo, ocorre uma maior retenção da água, tornando mais difícil o seu escoamento [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. As pesquisas de [14[14] AKBULUT, S., “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils”,Eurasian Soil Science, v. 38, n. 4, pp. 392-398, 2005.,15[15] AL-SULAIMAN, M.A., ABOUKARIMA, A.M., “Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#”,Journal of Agriculture and Ecology Research International, v. 5, n. 4, 21622, 2016.] e [16[16] KRUK, E., MALEC, M., KLATKA, S.,et al., “Pedotransfer function for determining saturated hydraulic conductivity using artificial neural network (ANN)”, Acta Scientiarum Polonorum. Formatio Circumiectus, v. 16, n. 4, pp. 115-126, 2017.] validam o uso das frações de areia, silte e argila na estimativa do coeficiente de condutividade hidráulica, mediante RNA. [15[15] AL-SULAIMAN, M.A., ABOUKARIMA, A.M., “Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#”,Journal of Agriculture and Ecology Research International, v. 5, n. 4, 21622, 2016.] e [16[16] KRUK, E., MALEC, M., KLATKA, S.,et al., “Pedotransfer function for determining saturated hydraulic conductivity using artificial neural network (ANN)”, Acta Scientiarum Polonorum. Formatio Circumiectus, v. 16, n. 4, pp. 115-126, 2017.] obtiveram, respectivamente, contribuições de 37,76% e 56%, relativos à soma dos percentuais das três frações de solo.

No que se refere às sucções matriciais, valores crescentes de sucção aplicados a solos saturados causam uma diminuição da condutividade hidráulica [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.]. O coeficiente de permeabilidade saturado, por sua vez, representa o maior valor para a condutividade hidráulica e corresponde à condição saturada do solo [5[5] FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice. 1 ed. New Jersey: John Wiley & Sons, 2012.].

2.2.

Coleta de dados

Para a elaboração dos modelos de previsão procedeu-se, posteriormente, ao levantamento dos dados, a fim de compor o conjunto de aprendizagem. Essa busca ocorreu por meio de pesquisa na literatura científica, da qual foram obtidos 275 exemplos, resultantes de 14 ensaios em diferentes tipos de solos e sob condições de contorno diversas, apresentados nos trabalhos de [17[17] SÃO MATEUS, M.S.C., VILAR, O.M., “Determinação experimental da condutividade hidráulica de solos não saturados”, In:2º Simpósio Sobre Solos Não Saturados,pp. 53-59, Recife, 1994.,18[18] CONCIANI, W., CARNEIRO, B.J.I., MACHADO, S.L., “Estimativa da condutividade hidráulica de solos não saturados através do TDR”, In:3º Simpósio Brasileiro de Solos Não Saturados,pp. 221-229, Rio de Janeiro, 1997.,19[19] GERSCOVICH, D.M.S., VARGAS Jr., E.A., CAMPOS, T.M.P., “Modelagem tridimensional do regime de fluxo de um talude na cidade do Rio de Janeiro, Brasil”, In:3º Simpósio Sobre Solos Não Saturados,pp. 281-294, Rio de Janeiro, 1997.,20[20] GERSCOVICH, D.M.S., GUEDES, M.N., “Avaliação das relações de condutividade hidráulica em solos brasileiros não saturados”, In:5º Simpósio Brasileiro de Solos Não Saturados,pp. 249-254, São Carlos, 2004.,21[21] MACHADO, S.L., CARVALHO M.F., MATTA, B.M., “Utilização do permeâmetro Guelph para estudo da condutividade hidráulica de solos residuais de granulito da cidade de Salvador – BA”, In:5º Simpósio Brasileiro de Solos Não Saturados,pp. 255-261, São Carlos, 2004.,22[22] LISBOA, R.L.L., Determinação da condutividade hidráulica não saturada de solos residuais com o permeâmetro Guelph e ensaios de laboratório. Dissertação (Mestrado em Engenharia Civil), Universidade Federal de Viçosa, Viçosa, 2006.,23[23] SILVA, M.M., COUTINHO, R.Q., “Caracterização geotécnica de um solo não saturado da Formação Barreiras envolvido num movimento de massa em Camaragibe – PE”, In:6º Simpósio Brasileiro de Solos Não Saturados,pp. 391-398, Salvador, 2007.,24[24] MENDES, R.M.,Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP). Tese (Doutorado em Engenharia Geotécnica), Universidade de São Paulo, São Paulo, 2008.,25[25] FERNANDES, M.A., VILAR, O.M., “Medida da condutividade hidráulica em solo não saturado por meio de infiltrômetro de disco”, In:7º Simpósio Brasileiro de Solos Não Saturados,pp. 47-55, Pirenópolis, 2011.]. A Tabela 1 apresenta uma análise estatística das informações coletadas, a partir da qual se verifica que a maior variabilidade dos dados em relação à média da população é atribuída à sucção, que possui o mais alto coeficiente de variação de 173%. Por outro lado, o índice de vazios apresentou um coeficiente de variação de 17%, configurando a menor dispersão em relação aos outros parâmetros e possuindo, assim, uma maior homogeneidade em termos de valores.

Tabela 1.
Estatística dos dados do conjunto experimental utilizado no desenvolvimento do modelo.

Embora algumas variáveis tenham apresentado uma concentração mais elevada próximo às suas médias, significando uma tendência natural dos solos ou uma amostragem defeituosa, estabeleceu-se a premissa de que o banco de dados era representativo da população, sendo capaz de generalizar situações reais semelhantes.

As limitações relativas à construção do banco de dados, bem como à aplicação do modelo, são: (i) a base de dados limitou-se às informações encontradas na literatura, conforme já descrito anteriormente; (ii) como os solos considerados são brasileiros, os dados coletados podem não representar claramente solos de outros países; (iii) não foi possível verificar a veracidade das informações levantadas; (iv) o modelo desenvolvido pode não prever de forma precisa valores fora do intervalo referente aos dados utilizados para compor o conjunto de exemplos do fenômeno em estudo.

2.3.

Treinamentos, testes e validações

O desenvolvimento propriamente dito do modelo de RNA ocorreu por meio da análise de uma série de arquiteturas, a fim de identificar aquela capaz de representar o comportamento do solo no que diz respeito à condutividade hidráulica após as etapas de treinamento, teste e validação.

O software utilizado para a realização da modelagem foi o QNET 2000, pacote comercial que faz uso de redes neuronais de várias camadas alimentadas adiante (perceptrons multicamadas), submetidas ao treinamento supervisionado baseado na aprendizagem por correção de erro [26[26] HANANDEH, S., ARDAH, A., ABU-FARSAKH, M., “Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula”,Transportation Geotechnics, v. 24, n. 198, 100358, 2020.]. Esse programa foi escolhido por ter sido utilizado com êxito por autores como [27[27] DANTAS NETO, S.A., INDRARATNA, B., OLIVEIRA, D.A.F.,et al., “Modelling the shear behaviour of clean rock discontinuities using artificial neural networks”,Rock Mechanics and Rock Engineering, v. 50, n. 2017, pp. 1817-1831, 2017.] e [28[28] LEITE, A.R.S., DANTAS NETO, S.A., POLEMIS Jr., K.,et al., “Study on the shear behaviour of rock joints using different models of artificial neural networks”, In:14th International Congress on Rock Mechanics and Rock Engineering,Foz do Iguaçu, 2019.].

Para a construção do modelo, com o auxílio do QNET 2000, houve a divisão aleatória dos padrões de entrada da seguinte maneira: 85% dos exemplos foram destinados à etapa de treinamento e 15% designados para a etapa de teste. A separação dos dados nessa proporção foi fundamentada em trabalhos com frações aproximadas, como os de [14[14] AKBULUT, S., “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils”,Eurasian Soil Science, v. 38, n. 4, pp. 392-398, 2005.,29[29] SAMUI, P., “Three-dimensional site characterization model of bangalore using support vector machine”,ISRN Soil Science, v. 2012, 346439, 2012.,30[30] TIZPA, P., CHENARI, R.J., FARD, M.K.,et al., “ANN prediction of some geotechnical properties of soil from their index parameters”,Arabian Journal of Geosciences, v. 8, n. 5, pp. 2911-2920, 2014.,31[31] MOTA, D.G.A.,Prediction of soil shear strength parameters using atrtificial neural networks. Dissertação (Mestrado em Engenharia Civil), Universidade Federal do Ceará, Fortaleza, 2019.].

No decorrer da fase de treinamento, os pesos sinápticos e bias foram alterados utilizando o algoritmo de retropropagação do erro, com o propósito de minimizar a função de custo, a partir das informações existentes no conjunto de treinamento. Para isso, com o objetivo de possibilitar uma convergência adequada do algoritmo de treinamento, foram utilizadas as configurações padrões do software representadas por uma constante de momento (a) de 0,8 e uma taxa de aprendizagem (η) variando entre os valores 0,001 e 0,3.

A função de ativação selecionada para todos os neurônios das redes analisadas foi a sigmoide (Eq.4).

(4)fvk=11+evk

Como a função sigmoide é descrita dentro de um intervalo entre 0 e 1, é essencial a execução da normalização dos dados utilizados, que consiste em modificar todas a variáveis de entrada e de saída do conjunto de treinamento e de teste, conforme a Equação 5, de modo a transformá-las em valores pertencentes ao intervalo fechado compreendido entre 0,15 e 0,85. Tal procedimento foi realizado automaticamente pelo próprio software, permitindo, portanto, a compatibilidade entre o valor calculado pela rede e valor de referência imposto. Além disso, a normalização possibilitou também o cálculo do sinal de erro e dos gradientes locais necessários para otimizar os pesos sinápticos e bias, segundo o algoritmo de retropropagação padrão. A Tabela 1 mostra os valores máximos e mínimos, disponíveis no banco de dados, usados para normalizar todas as variáveis de entrada e de saída nas fases de treinamento e de teste.

(5)xnor0,150,850,15=xxmínxmáxxmín
onde xnor, x, xmín, xmáx denotam, respectivamente, a variável resultante da normalização, a variável a ser normalizada e os valores mínimo e máximo da variável a ser normalizada.

A etapa de teste avalia a capacidade da RNA generalizar o conhecimento adquirido, por meio da comparação entre a saída da rede e a saída alvo, a partir de dados que não foram utilizados para alterar os fatores de ponderação sináptica. Dessa forma, oferece respostas satisfatórias a estímulos não submetidos previamente ao perceptron.

Ambas as fases de treinamento e de teste necessitam de monitoramento para identificar a ocorrência de overtraining. Esse treinamento excessivo ocasiona uma falta de aptidão para generalizar o conhecimento, fazendo com que a RNA apenas memorize os exemplos existentes, em vez de executar corretamente o mapeamento entrada-saída. A identificação do overtraining pode ocorrer ao analisar, por exemplo, as variações nas funções da raiz do erro quadrático médio (RMS), tanto no treinamento como no teste [27[27] DANTAS NETO, S.A., INDRARATNA, B., OLIVEIRA, D.A.F.,et al., “Modelling the shear behaviour of clean rock discontinuities using artificial neural networks”,Rock Mechanics and Rock Engineering, v. 50, n. 2017, pp. 1817-1831, 2017.].

Desse modo, durante a modelagem, o RMS juntamente com o coeficiente de correlação (R) foram utilizados para monitorar o desempenho dos modelos analisados nas fases de treinamento e de teste [16[16] KRUK, E., MALEC, M., KLATKA, S.,et al., “Pedotransfer function for determining saturated hydraulic conductivity using artificial neural network (ANN)”, Acta Scientiarum Polonorum. Formatio Circumiectus, v. 16, n. 4, pp. 115-126, 2017.]. Logo, a melhor arquitetura foi estipulada como sendo aquela com maior R, no teste, sem a verificação de treinamento excessivo.

Em todas as arquiteturas avaliadas, após um número de 500 mil iterações, os processos de treinamento e de teste foram interrompidos. A otimização dos pesos sinápticos ocorreu até essa quantidade iterações, pois, segundo [27[27] DANTAS NETO, S.A., INDRARATNA, B., OLIVEIRA, D.A.F.,et al., “Modelling the shear behaviour of clean rock discontinuities using artificial neural networks”,Rock Mechanics and Rock Engineering, v. 50, n. 2017, pp. 1817-1831, 2017.], esse número é considerado suficiente para definir a convergência do algoritmo de treinamento ou o início do overtraining.

Na fase de validação, as duas arquiteturas com maior coeficiente de correlação na fase de teste foram comparadas com os resultados do método de previsão da condutividade hidráulica de Van Genuchten [9[9] VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.] e com os resultados experimentais de dois solos do conjunto de treinamento e de teste obtidos nos trabalhos de [19[19] GERSCOVICH, D.M.S., VARGAS Jr., E.A., CAMPOS, T.M.P., “Modelagem tridimensional do regime de fluxo de um talude na cidade do Rio de Janeiro, Brasil”, In:3º Simpósio Sobre Solos Não Saturados,pp. 281-294, Rio de Janeiro, 1997.] e [24[24] MENDES, R.M.,Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP). Tese (Doutorado em Engenharia Geotécnica), Universidade de São Paulo, São Paulo, 2008.]. A partir dos resultados dessas comparações, a arquitetura com melhor desempenho foi, então, selecionada. É importante salientar que os parâmetros de Van Genuchten [9[9] VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.] para os dois solos foram previstos com o auxílio do programa RETC [32[32] VAN GENUCHEN, M.T., LEIJ, F.J., YATES, S.R.,The RETC code for quantifying the hydraulic functions of unsaturated soils.Washington: U.S. Environmental Protection Agency, 1991.].

3.

RESULTADOS E DISCUSSÕES

A procura pela arquitetura ideal para a previsão da condutividade hidráulica em solos não saturados foi feita alterando-se somente a quantidade de camadas intermediárias e o número de neurônios constituintes dessas camadas. Assim sendo, tal modelo pode ser genericamente representado pela Equação 6, que ilustra a dependência entre as variáveis de entrada e a resposta do modelo neuronal.

(6)kw=kweo,wo,C,M,S,IP,ksat,uauw

As Figuras 2 e 3 mostram a variação do coeficiente de correlação e do erro médio quadrático com o número de iterações, obtidos nas fases de treinamento e de teste, respectivamente, para as duas arquiteturas que apresentaram o melhor desempenho dentre as avaliadas. Os valores para o coeficiente de correlação e para o erro médio quadrático obtidos após 500 mil iterações são apresentados na Tabela 2. Analisando-se o processo de treinamento e de teste, observa-se que houve uma convergência satisfatória para o algoritmo de aprendizagem utilizado, sem que tenha sido observado qualquer indicativo da ocorrência de overtraining. Com isto, pode-se considerar que as variáveis de entrada adotadas conseguiram representar de forma satisfatória o fenômeno modelado e que os dados experimentais do conjunto utilizado na fase de teste apresentaram as mesmas características estatísticas dos dados experimentais utilizados na fase de treinamento.

Tabela 2.
Correlação e RMS para as arquiteturas A: 8-4-2-1 e A: 8-10-5-2-1.
Figura 2.
Correlação e RMS para as arquiteturas A: 8-4-2-1 e A: 8-10-5-2-1 – Treinamento.
Figura 3.
Correlação e RMS para as arquiteturas A: 8-4-2-1 e A: 8-10-5-2-1 – Teste.

Com base na análise comparativa realizada entre a função de condutividade hidráulica obtida com os dois modelos neuronais apresentados na Tabela 2, com o modelo de Van Genuchten [9[9] VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.] e com dois solos do conjunto de treinamento e de teste classificados como areia siltosa (ensaio 3) e silte de alta compressibilidade (ensaio 11), de acordo com o Sistema Unificado de Classificação dos Solos (SUCS), referentes aos trabalhos de [19[19] GERSCOVICH, D.M.S., VARGAS Jr., E.A., CAMPOS, T.M.P., “Modelagem tridimensional do regime de fluxo de um talude na cidade do Rio de Janeiro, Brasil”, In:3º Simpósio Sobre Solos Não Saturados,pp. 281-294, Rio de Janeiro, 1997.] e de [24[24] MENDES, R.M.,Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP). Tese (Doutorado em Engenharia Geotécnica), Universidade de São Paulo, São Paulo, 2008.], pode-se constatar que, de fato, ambas as estruturas com maior correlação (A: 8-4-2-1 e A: 8-10-5-2-1) obtiveram melhor desempenho, representando mais fielmente os dados experimentais, como ilustrado nas Figuras 4 e 5. As variáveis de entrada correspondentes aos solos dos ensaios 3 e 11 são apresentadas na Tabela 3.

Tabela 3.
Variáveis de entrada correspondentes aos solos dos ensaios 3 e 11.
Figura 4.
Comparação entre as funções de condutividade hidráulica para o solo arenoso – Teste.
Figura 5.
Comparação entre as funções de condutividade hidráulica para o solo siltoso – Teste.

Dentre essas duas arquiteturas, a escolhida como modelo proposto por este artigo foi a A: 8-4-2-1, em virtude de dispor da menor quantidade de parâmetros. Essa estrutura simplificada é também um indicador do aumento da capacidade de generalização da rede neural desenvolvida, que possui, assim, uma maior compreensão do fenômeno em estudo [13[13] HAYKIN, S.,Neural networks and learning machines. 3 ed. Upper Saddle River: Prentice Hall, 2009.,27[27] DANTAS NETO, S.A., INDRARATNA, B., OLIVEIRA, D.A.F.,et al., “Modelling the shear behaviour of clean rock discontinuities using artificial neural networks”,Rock Mechanics and Rock Engineering, v. 50, n. 2017, pp. 1817-1831, 2017.].

Durante a modelagem, observou-se que determinados exemplos impostos às RNA resultaram no cálculo de coeficientes de condutividade hidráulica negativos. Dessa forma, outro aspecto considerado na escolha da melhor arquitetura foi a quantidade de exemplos aplicados às RNA que acarretaram o cálculo de coeficientes de condutividade hidráulica negativos. Verifica-se que a arquitetura A: 8-4-2-1, selecionada como modelo definitivo desta pesquisa, apresenta o menor número de exemplos para os quais esses coeficientes negativos foram obtidos. É importante evidenciar que esses valores negativos estão relacionados ao processo de desnormalização das saídas e ocorrem principalmente para níveis de sucção nos quais os coeficientes de condutividade hidráulica são muito baixos (próximos a 0,15, considerando o processo de normalização).

O modelo selecionado (A: 8-4-2-1) foi, portanto, capaz de reproduzir o comportamento relativo à condutividade hidráulica dos solos avaliados de forma aproximada para o conjunto de dados utilizado na modelagem e para as variáveis de entrada consideradas, com uma correlação de 0,97 e um RMS de 0,016 cm/s, obtidos para 500 mil iterações no teste.

A Figura 6 apresenta, para a variável de saída, a relação aproximada entre o grupo de padrões de treinamento e de teste e os valores calculados utilizando o modelo definitivo (A: 8-4-2-1), considerando o processo de normalização dos dados. A análise destes resultados mostra que o modelo neuronal proposto consegue prever mesmo os coeficientes de condutividade hidráulica mais altos, embora grande parte dos exemplos, cerca de 81%, encontrem-se concentrados na região que compreende o intervalo entre 0,15 (1,30 10-15 cm/s) e 0,20 (1,00 10-4 cm/s).

Figura 6.
Correlação entre as saídas calculadas pelo modelo proposto (A: 8-4-2-1) e os dados experimentais para o treinamento e para o teste após 500 mil iterações.

Em geral, as contribuições das variáveis de entrada mantiveram-se em torno de 13% para a arquitetura A: 8-4-2-1. Respaldando-se nas informações oferecidas pelo programa, pode-se, portanto, afirmar que houve um equilíbrio em relação ao nível de influência das oito variáveis no fenômeno examinado, cada uma atuando de forma relevante na descrição da condutividade hidráulica em solos não saturados.

A característica do solo que atingiu o maior percentual de contribuição foi a granulometria com 32,89%, representada pela ação conjunta das frações de areia, silte e argila, que foram, respectivamente, 11,64%, 13,10% e 8,15%. Em seguida, destacam-se o teor de umidade gravimétrico inicial com 16,65% e o índice de plasticidade com 16,50%, ambas as variáveis possuindo percentuais bem parecidos. O índice de vazios inicial contribuiu, por sua vez, com 14,62%, enquanto o coeficiente de permeabilidade saturado contribuiu com 12,29%, valores também significativos. Por fim, de maneira diversa ao que se acreditava no início desta pesquisa, o parâmetro que obteve menor influência sobre a variável de saída foi a sucção matricial, com um percentual de contribuição de 7,05%.

O modelo neuronal proposto por este artigo, para a previsão da condutividade hidráulica em solos não saturados, possui uma arquitetura formada por quatro camadas (A: 8-4-2-1). A primeira camada, denominada de camada de entrada, é constituída por oito sinais de entrada. Em seguida, a primeira e a segunda camadas ocultas ou intermediárias são compostas por quatro e dois neurônios, respectivamente. Por último, a camada de saída é formada por um único neurônio, conforme esquema ilustrado na Figura 7.

Figura 7.
Arquitetura do modelo de previsão da condutividade hidráulica em solos não saturados.

Os parâmetros da arquitetura definitiva, isto é, pesos sinápticos e bias, originados durante o processo de treinamento da modelagem com RNA do tipo MLP são apresentados nas Tabelas 4, 5 e 6. Tais informações possibilitam a implantação desse modelo em planilhas eletrônicas, a partir do seguinte roteiro de cálculo: (i) determinação dos valores das variáveis de entrada do modelo, ou seja, dos valores de eo, wo, C, M, S, IP, ksat e ua-uw; (ii) normalização das variáveis de entrada utilizando a expressão mostrada na Equação 5 e os valores máximos e mínimos apresentados na Tabela 1; (iii) aplicação das Equações 1 e 2, usando os pesos sinápticos e os bias das Tabelas 4, 5, e 6, para determinar a condutividade hidráulica do solo não saturado; (iv) transformação da variável de saída normalizada da rede neural em uma variável não normalizada, de acordo com a Equação 5 e os valores máximos e mínimos da Tabela 1.

Tabela 4.
Pesos sinápticos e bias dos neurônios da 1ª camada oculta do modelo de previsão proposto (A: 8-4-2-1).
Tabela 5.
Pesos sinápticos e bias dos neurônios da 2ª camada oculta do modelo de previsão proposto (A: 8-4-2-1).
Tabela 6.
Pesos sinápticos e bias dos neurônios da camada de saída do modelo de previsão proposto (A: 8-4-2-1).

Observa-se que o modelo proposto neste artigo se apresenta como uma eficiente alternativa para a determinação do coeficiente de condutividade hidráulica em solos não saturados, e sua aplicação se dá a partir do conhecimento de parâmetros físicos e hidráulicos de simples determinação experimental.

Os resultados obtidos pela aplicação do modelo proposto foram considerados satisfatórios, uma vez que se aproximaram dos valores experimentais utilizados no desenvolvimento do modelo, principalmente quando comparados aos valores obtidos em modelos analíticos [9[9] VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.].

É importante salientar, no entanto, que a aplicação prática do modelo ainda possui limitações, como se é esperado na proposição de qualquer tipo de modelo de previsão, seja analítico, numérico, ou pela aplicação de técnicas de inteligência artificial. Estas limitações são relacionadas principalmente à concentração em uma determinada faixa de valores dos coeficientes de condutividade hidráulica e suções mátricas existentes nos conjuntos de dados experimentais utilizados na modelagem.

4.

CONCLUSÕES

O modelo neuronal desenvolvido foi obtido a partir de 275 exemplos resultantes de 14 ensaios em diferentes tipos de solos (arenosos, siltosos e argilosos). Para a modelagem, os exemplos foram separados em 85% para o treinamento e 15% para o teste. Com base nos fatores que governam o comportamento hidráulico dos solos não saturadas, oito parâmetros foram considerados como variáveis de entrada: índice de vazios inicial, teor de umidade gravimétrico inicial, frações de areia, silte e argila, índice de plasticidade, coeficiente de permeabilidade saturado e sucção matricial.

O modelo neuronal que obteve o melhor desempenho, durante a modelagem, é composto por oito estímulos na camada de entrada, quatro neurônios na primeira camada oculta, dois neurônios na segunda camada oculta e apenas um neurônio de saída. Para este modelo, foram obtidos um RMS de 0,016 cm/s e uma correlação de 0,97, no teste, correspondentes a 500 mil iterações.

Na fase de validação, o modelo proposto foi empregado na previsão da função de condutividade hidráulica de dois solos do conjunto de treinamento e de teste, obtendo bons resultados e comprovando que essa ferramenta é capaz prever de forma satisfatória funções de condutividade hidráulica dentro do conjunto de exemplos do banco de dados coletados.

Verifica-se, portanto, que o uso de redes neurais artificiais do tipo perceptrons multicamadas para modelagem de fenômenos complexos e não lineares é uma ferramenta valiosa, uma vez que obteve êxito ao estimar o comportamento hidráulico de solos não saturados. Um dos benefícios desse recurso é que o modelo de melhor performance, após as fases de treinamento, de teste e de validação, pode ser facilmente implementado em planilhas de cálculo, a partir do conhecimento da arquitetura da rede, dos pesos sinápticos, dos bias e das funções de ativação de todos os neurônios.

É importante salientar que o uso de redes neurais artificiais na estimativa de fenômenos de engenharia não substitui quaisquer procedimentos de teste para determinar as propriedades geotécnicas dos materiais envolvidos em algum problema. Essa ferramenta deve ser utilizada apenas como um meio alternativo inicial para se obter uma resposta adequada a um determinado problema, a fim de otimizar todo o trabalho experimental necessário.

AGRADECIMENTOS

Os autores agradecem à Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro.

BIBLIOGRAFIA

  • [1]
    COSTA, M.B.A.,Modelagem numérica do fluxo transiente em meio poroso não saturado sob a ação de centrifugação Dissertação (Mestrado em Geotecnia), Universidade de Brasília, Brasília, 2017.
  • [2]
    GERSCOVICH, D.M.S, “Equações para modelagem da curva característica aplicadas a solos brasileiros”, In:IV Simpósio Brasileiro de Solos Não Saturados,pp. 76-92, Porto Alegre, 2001.
  • [3]
    GERSCOVICH, D.M.S,Fluxo em solos saturados 1 ed. Rio de Janeiro: Universidade Estadual do Rio de Janeiro, 2011.
  • [4]
    MACHADO Jr., J.C., NOGUEIRA, C.L., “Análise bidimensional de problemas de fluxo em meios porosos não saturados pelo método dos elementos finitos”, In: 30ª CILAMCE - Iberian Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, 2000.
  • [5]
    FREDLUND, D.G., RAHARDJO, H., FREDLUND, M.D.,Unsaturated soil mechanics in engineering practice 1 ed. New Jersey: John Wiley & Sons, 2012.
  • [6]
    BICALHO, K.V., MACHADO, S.L., GERSCOVICH, D.M.S., “Condutividade hidráulica e fluxo em solos não saturados”, In: Carvalho, J.C., Gitirana Junior, G.F.N., Machado, S.L.,et al.(orgs),Solos não saturados no contexto geotécnico.São Paulo: Associação Brasileira de Mecânica dos Solos, 2015. pp. 297-326.
  • [7]
    GARDNER, W.R., “Mathematics of isothermal water conduction in unsaturated soils”,Highway Research Board Special Report n. 40 Washington: National Research Council, 1958.
  • [8]
    BROOKS, R.H., COREY, A.T., “Hydraulics properties of porous media”,Hydrology Papers 3 Fort Collins: Colorado State University, 1964.
  • [9]
    VAN GENUCHEN, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”,Journal of Soil Science Society of America, v. 44, n. 5, pp. 892-898, 1980.
  • [10]
    FREDLUND, D.G., XING, A., “Equations for the soil-water characteristic curve”,Canadian Geotechnical Journal, v. 31, n. 4, pp. 521-532, 1994.
  • [11]
    FREDLUND, D.G., HUANG, S., “Predicting the permeability function for unsaturated soils using the soil water characteristic curve”,Canadian Geotechnical Journal, v. 31, n. 4, pp. 533-546, 1994.
  • [12]
    STERCK, W.N.,Estudo da função de condutividade hidráulica de solos não saturados através de amostras centrifugadas Dissertação (Mestrado em Engenharia Civil), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 2011.
  • [13]
    HAYKIN, S.,Neural networks and learning machines 3 ed. Upper Saddle River: Prentice Hall, 2009.
  • [14]
    AKBULUT, S., “Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils”,Eurasian Soil Science, v. 38, n. 4, pp. 392-398, 2005.
  • [15]
    AL-SULAIMAN, M.A., ABOUKARIMA, A.M., “Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#”,Journal of Agriculture and Ecology Research International, v. 5, n. 4, 21622, 2016.
  • [16]
    KRUK, E., MALEC, M., KLATKA, S.,et al, “Pedotransfer function for determining saturated hydraulic conductivity using artificial neural network (ANN)”, Acta Scientiarum Polonorum. Formatio Circumiectus, v. 16, n. 4, pp. 115-126, 2017.
  • [17]
    SÃO MATEUS, M.S.C., VILAR, O.M., “Determinação experimental da condutividade hidráulica de solos não saturados”, In:2º Simpósio Sobre Solos Não Saturados,pp. 53-59, Recife, 1994.
  • [18]
    CONCIANI, W., CARNEIRO, B.J.I., MACHADO, S.L., “Estimativa da condutividade hidráulica de solos não saturados através do TDR”, In:3º Simpósio Brasileiro de Solos Não Saturados,pp. 221-229, Rio de Janeiro, 1997.
  • [19]
    GERSCOVICH, D.M.S., VARGAS Jr., E.A., CAMPOS, T.M.P., “Modelagem tridimensional do regime de fluxo de um talude na cidade do Rio de Janeiro, Brasil”, In:3º Simpósio Sobre Solos Não Saturados,pp. 281-294, Rio de Janeiro, 1997.
  • [20]
    GERSCOVICH, D.M.S., GUEDES, M.N., “Avaliação das relações de condutividade hidráulica em solos brasileiros não saturados”, In:5º Simpósio Brasileiro de Solos Não Saturados,pp. 249-254, São Carlos, 2004.
  • [21]
    MACHADO, S.L., CARVALHO M.F., MATTA, B.M., “Utilização do permeâmetro Guelph para estudo da condutividade hidráulica de solos residuais de granulito da cidade de Salvador – BA”, In:5º Simpósio Brasileiro de Solos Não Saturados,pp. 255-261, São Carlos, 2004.
  • [22]
    LISBOA, R.L.L., Determinação da condutividade hidráulica não saturada de solos residuais com o permeâmetro Guelph e ensaios de laboratório. Dissertação (Mestrado em Engenharia Civil), Universidade Federal de Viçosa, Viçosa, 2006.
  • [23]
    SILVA, M.M., COUTINHO, R.Q., “Caracterização geotécnica de um solo não saturado da Formação Barreiras envolvido num movimento de massa em Camaragibe – PE”, In:6º Simpósio Brasileiro de Solos Não Saturados,pp. 391-398, Salvador, 2007.
  • [24]
    MENDES, R.M.,Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP) Tese (Doutorado em Engenharia Geotécnica), Universidade de São Paulo, São Paulo, 2008.
  • [25]
    FERNANDES, M.A., VILAR, O.M., “Medida da condutividade hidráulica em solo não saturado por meio de infiltrômetro de disco”, In:7º Simpósio Brasileiro de Solos Não Saturados,pp. 47-55, Pirenópolis, 2011.
  • [26]
    HANANDEH, S., ARDAH, A., ABU-FARSAKH, M., “Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula”,Transportation Geotechnics, v. 24, n. 198, 100358, 2020.
  • [27]
    DANTAS NETO, S.A., INDRARATNA, B., OLIVEIRA, D.A.F.,et al, “Modelling the shear behaviour of clean rock discontinuities using artificial neural networks”,Rock Mechanics and Rock Engineering, v. 50, n. 2017, pp. 1817-1831, 2017.
  • [28]
    LEITE, A.R.S., DANTAS NETO, S.A., POLEMIS Jr., K.,et al, “Study on the shear behaviour of rock joints using different models of artificial neural networks”, In:14th International Congress on Rock Mechanics and Rock Engineering,Foz do Iguaçu, 2019.
  • [29]
    SAMUI, P., “Three-dimensional site characterization model of bangalore using support vector machine”,ISRN Soil Science, v. 2012, 346439, 2012.
  • [30]
    TIZPA, P., CHENARI, R.J., FARD, M.K.,et al, “ANN prediction of some geotechnical properties of soil from their index parameters”,Arabian Journal of Geosciences, v. 8, n. 5, pp. 2911-2920, 2014.
  • [31]
    MOTA, D.G.A.,Prediction of soil shear strength parameters using atrtificial neural networks Dissertação (Mestrado em Engenharia Civil), Universidade Federal do Ceará, Fortaleza, 2019.
  • [32]
    VAN GENUCHEN, M.T., LEIJ, F.J., YATES, S.R.,The RETC code for quantifying the hydraulic functions of unsaturated soils.Washington: U.S. Environmental Protection Agency, 1991.

Datas de Publicação

  • Publicação nesta coleção
    03 Jun 2022
  • Data do Fascículo
    2022

Histórico

  • Recebido
    11 Mar 2022
  • Aceito
    05 Maio 2022
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com