Acessibilidade / Reportar erro

Phylogenetic systematics of the Eucarida (Crustacea malacostraca)

Abstract

Ninety-four morphological characters belonging to particular ontogenetic sequences within the Eucarida were used to produce a hierarchy of 128 evolutionary novelties (73 synapomorphies and 55 homoplasies) and to delimit 15 monophyletic taxa. The following combined Recent-fossil sequenced phylogenetic classification is proposed: Superorder Eucarida; Order Euphausiacea; Family Bentheuphausiidae; Family Euphausiidae; Order Amphionidacea; Order Decapoda; Suborder Penaeidea; Suborder Pleocyemata; Infraorder Stenopodidea; Infraorder Reptantia; Infraorder Procarididea, Infraorder Caridea. The position of the Amphionidacea as the sister-group of the Decapoda is corroborated, while the Reptantia are proposed to be the sister-group of the Procarididea + Caridea for the first time. The fossil groups Uncina Quenstedt, 1850, and Palaeopalaemon Whitfield, 1880, are included as incertae sedis taxa within the Reptantia, which establishes the minimum ages of all the higher taxa of Eucarida except the Procarididea and Caridea in the Upper Devonian. The fossil group "Pygocephalomorpha" Beurlen, 1930, of uncertain status as a monophyletic taxon, is provisionally considered to belong to the "stem-group" of the Reptantia. Among the more important characters hypothesized to have evolved in the stem-lineage of each eucaridan monophyletic taxon are: (1) in Eucarida, attachement of post-zoeal carapace to all thoracic somites; (2) in Euphausiacea, reduction of endopod of eighth thoracopod; (3) in Bentheuphausiidae, compound eyes vestigial, associated with abyssal life; (4) in Euphausiidae, loss of endopod of eighth thoracopod and development of specialized luminescent organs; (5) in Amphionidacea + Decapoda, ambulatory ability of thoracic exopods reduced, scaphognathite, one pair of maxillipedes, pleurobranch gill series and carapace covering gills, associated with loss of pelagic life; (6) in Amphionidacea, unique thoracic brood pouch in females formed by inflated carapace and specialized first pieopod, eclosion in zoea phase, body dorsoventrally depressed, thoracopods reduced and antennular statocyst lost, associated with planktonic life; (7) in Decapoda, double series of arthrobranchiae, laminar rostrum, acute stylocerite, two additional pairs of maxillipedes, three pairs of chelipedes and two pairs of walking legs, associated with nekto-benthonic life; (8) in Penaeidea, dendrobranchiae and post-larval mandibular palp expanded; (9) in Pleocyemata, pleopodal incubation of eggs and eclosion in zoea phase; (10) in Stenopodidea, pereiopodal exopods lost in adults and massive third chelipedes, associated with benthonic life; (11) in Reptantia + Procarididea + Caridea, pleura of second abdominal somite overlapping first and specialized setal brushes on propodus of fourth and fifth pereiopods; (12) in Reptantia, hypertrophied first chelipede, associated with benthonic life; (13) in Procarididea + Caridea, chela lost from third pereiopod and epipod-setobranch complexes for gill cleaning; (14) in Procarididea, chelae lost from first and second pereiopods; and (15) in Caridea, ocellus on ocular peduncle.


Phylogenetic systematics of the Eucarida (Crustacea malacostraca)

Martin L. Christoffersen

Departamento de Sistemática e Ecologial, Universidade Federal da Paraíba, João Pessoa, Pb

ABSTRACT

Ninety-four morphological characters belonging to particular ontogenetic sequences within the Eucarida were used to produce a hierarchy of 128 evolutionary novelties (73 synapomorphies and 55 homoplasies) and to delimit 15 monophyletic taxa. The following combined Recent-fossil sequenced phylogenetic classification is proposed: Superorder Eucarida; Order Euphausiacea; Family Bentheuphausiidae; Family Euphausiidae; Order Amphionidacea; Order Decapoda; Suborder Penaeidea; Suborder Pleocyemata; Infraorder Stenopodidea; Infraorder Reptantia; Infraorder Procarididea, Infraorder Caridea. The position of the Amphionidacea as the sister-group of the Decapoda is corroborated, while the Reptantia are proposed to be the sister-group of the Procarididea + Caridea for the first time. The fossil groups Uncina Quenstedt, 1850, and Palaeopalaemon Whitfield, 1880, are included as incertae sedis taxa within the Reptantia, which establishes the minimum ages of all the higher taxa of Eucarida except the Procarididea and Caridea in the Upper Devonian. The fossil group "Pygocephalomorpha" Beurlen, 1930, of uncertain status as a monophyletic taxon, is provisionally considered to belong to the "stem-group" of the Reptantia. Among the more important characters hypothesized to have evolved in the stem-lineage of each eucaridan monophyletic taxon are: (1) in Eucarida, attachement of post-zoeal carapace to all thoracic somites; (2) in Euphausiacea, reduction of endopod of eighth thoracopod; (3) in Bentheuphausiidae, compound eyes vestigial, associated with abyssal life; (4) in Euphausiidae, loss of endopod of eighth thoracopod and development of specialized luminescent organs; (5) in Amphionidacea + Decapoda, ambulatory ability of thoracic exopods reduced, scaphognathite, one pair of maxillipedes, pleurobranch gill series and carapace covering gills, associated with loss of pelagic life; (6) in Amphionidacea, unique thoracic brood pouch in females formed by inflated carapace and specialized first pieopod, eclosion in zoea phase, body dorsoventrally depressed, thoracopods reduced and antennular statocyst lost, associated with planktonic life; (7) in Decapoda, double series of arthrobranchiae, laminar rostrum, acute stylocerite, two additional pairs of maxillipedes, three pairs of chelipedes and two pairs of walking legs, associated with nekto-benthonic life; (8) in Penaeidea, dendrobranchiae and post-larval mandibular palp expanded; (9) in Pleocyemata, pleopodal incubation of eggs and eclosion in zoea phase; (10) in Stenopodidea, pereiopodal exopods lost in adults and massive third chelipedes, associated with benthonic life; (11) in Reptantia + Procarididea + Caridea, pleura of second abdominal somite overlapping first and specialized setal brushes on propodus of fourth and fifth pereiopods; (12) in Reptantia, hypertrophied first chelipede, associated with benthonic life; (13) in Procarididea + Caridea, chela lost from third pereiopod and epipod-setobranch complexes for gill cleaning; (14) in Procarididea, chelae lost from first and second pereiopods; and (15) in Caridea, ocellus on ocular peduncle.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

ACKNOWLEDGMENTS

This being my first output in phylogenetic systematics, I find it adequate to acknowledge Nelson Bernardi, who many years ago aroused my interest in this approach to systematics through a stimulating course on the subject. I am grateful to Dalton S. Amorim, for several conversations on phylogenetic methods and problems, and for his reading and commenting upon different versions of the manuscript. I likewise acknowledge Sérgio A. Rodrigues for his taking the time to read this paper and provide suggestions. I would particularly like to thank Frederick R. Schram, who despite not agreeing at all with my style, terminology, methods and conclusions, nevertheless pointed out a few inconsistencies in a first version of this manuscript and instigated me to be more explicit about some personal views. I am also very grateful to Yukio Hanamura for examining the shape of the epipod of the third maxillipede in several species of Oplophoridae (Caridea) from Japan. This study was supported by an allowance from the Conselho Nacional de Desenvolvimento Científico e Tecnológico.

LITERATURE CITED

  • 1
    AMORIM, D.S., 1982. Classificação por sequenciação: Uma proposta para a denominação dos ramos retardados. Revta bras. Zool., S. paulo 1:1-9.
  • BATE, C.S., 1888. Report on the Crustacea Macrura collected by H.M.S. Challenger during the years 1873-1876. Rep. scient. Results explor. Voy. Challenger, Zool. 24:1-942.
  • BAUER, R.T., 1978. Antifouling adaptations of caridean shrimps: Cleaning of the antennal flagellum and general body grooming. Mar. Biol. 49:69-82.
  • BAUER, R.T., 1979. Antifouling adaptations of marine shrimp (Decapoda: Caridea): Gill cleaning mechanisms and grooming of brooded embryos. Zool. J. linn. Soc. 65:281-303.
  • BAUER, T.T., 1981. Grooming behavior and morphology in the decapod Crustacea. J. crust. Biol. 1 (2):153-173.
  • BORRADAILE, L.A., 1907. On the classification of the decapod Crustacea. Ann. Mag. nat. Hist. (7) 19:457-486.
  • BOUDREAUX, H.B., 1979. Arthropod phytogeny with special reference to insects. Pp. 1-320. John Wiley and Sons, New York.
  • BROOKS, H.K., 1969. Eocarida. In: R.C. Moore, ed., Treatise on invertebrate Paleontology, Part R, Arthropoda 4, Vol. 1. Pp. 332-345. The Geological Society of America and the University of Kansas Press, Lawrence.
  • BURKENROAD, M.D., 1963. The evolution of the Eucarida (Crustacea, Eumalacostraca), in relation to the fossil record. Tulane stud. Geol. 2 (1):1-17.
  • BURKENROAD, M.D., 1981. The higher taxonomy and evolution of the Decapoda (Crustacea). Trans. San Diego Soc. nat. Hist. 19:251-268.
  • BURKENROAD, M.D., 1983. Natural classification of Dendrobranchiata, with a key to Recent genera. In: F. Schram, ed., Crustacean issues 1, crustacean phytogeny. Pp. 279-290. A.A. Balkema, Rotterdam.
  • CALMAN, W.T., 1904. On the classification of the Crustacea Malacostraca. Ann. Mag. nat. Hist. (7) 13:144-158
  • CALMAN, W.T. 1909. Crustacea. In: R. Lankester, ed., A treatise on Zoology, Part 7, Fascicle 3. Pp. 1-345. Adam and Black, London.
  • CASANOVA, B., 1984. Phylogénie des euphausiacés (Crustacés eucarides). Bull. Mus. natl Hist, nat., Paris, ser. 4, zool., n. 4:1077-1089.
  • FARRIS, J.S., 1969. A successive approximations approach to character weighting. Syst. Zool. 18:374-385.
  • FELGENHAUER, B.E. & L.G. Abele, 1983. Phylogenetic relationships among shrimp-like decapods. In: F. Schram, ed., Crustacean issues 1, crustacean phylogeny. Pp. 291-311. A.A. Balkema, Rotterdam.
  • GLAESSNER, M.F., 1969. Decapoda. In: R.C. Moore, ed., Treatise on invertebrate Paleontology, Arthropoda 4, Part R, Vol. 2. Pp. 399-533. The Geological Society of America and the University of Kansas Press, Lawrence.
  • GOSLINER, T.M. & M.T. Ghiselin, 1984. Parallel evolution in opisthobranch gastropods and its implications for phylogenetic methodology. Syst. Zool. 33 (3)255-274.
  • GRIFFITHS, G.C.D., 1974. On the foundations of biological systematics. Act. biotheor. 23 (3/4):85-131.
  • GRIFFITHS, G.C.D., 1976. The future of Linnean nomenclature. Syst. Zool. 25:168-173.
  • GURNEY, R., 1942. Larvae of decapod Crustacea. Pp. 1-305. Ray Society, London.
  • HEEGAARD, P., 1957. Studies on maxillae in decapods. Vidensk. Meded. Dansk naturhist. For. 119:107-114.
  • HEEGAARD, P., 1969. Larvae of decapod Crustacea: The Amphionidae. Dana Rep. 77:1-82.
  • HENNIG, W., 1966. Phylogenetic systematics. Pp. 1-263. University of Illinois Press, Urbana.
  • HENNIG, W., 1981. Insect phytogeny. Pp. 1-514. John Wiley and Sons, Chichester.
  • HESSLER, R.R., 1969. Euphausiacea. In: R.C. Moore, ed., Treatise on invertebrate Paleontology, Part R, Arthropoda 4, Vol. 1. Pp. 394-398. The Geological Society of America and the University of Kansas Press, Lawrence.
  • HESSLER, R.R., 1982. Evolution within the Crustacea. Part 1: General: Remipedia, Branchiopoda, and Malacostraca. In: L.G. Abele, ed., Systematics, the fossil record, and Biogeography. In: D.E. Bliss, ed., The Biology of Crustacea, Vol 1. Pp. 149-185. Academic Press, New York.
  • HESSLER, R.R., 1983. A defence of the caridoid facies: Wherein the early evolution of the Eumalacostraca is discussed. In: F. Schram, ed., Crustacean issues 1, crustacean phytogeny. Pp. 145-164. A.A. Balkema, Rotterdam.
  • HUXLEY, T.H., 1878. On the classification and the distribution of the crayfishes. Proc. zool. Soc. London 1878:752-788.
  • LAUTERBACH, K.E., 1973. Schlüsselereignisse in der evolution der Stammgruppe der Euarthropoda. Zool. Beitr. 19:251-299.
  • LAUTERBACH, K.E., 1980. Schlüsselereignisse in der evolution des Grundplans der Mandibulata (Arthropoda). Abh. Verh. naturw. Ver. Hamburg (N.F.) 23:105-161.
  • LAUTERBACH, K.E., 1983. Zum problem der Monophylie der Crustacea. Ibid. 26:293-320.
  • MADDISON, W.P., M.J. Donoghue & D.R. Maddison, 1984. Outgroup analysis and parsimony. Syst. Zool. 33 (1):83-103.
  • MANTON, S.M., 1977. The Arthropoda. Habits, funcional morphology, and evolution. Pp. 1-527. Claredon Press, Oxford.
  • MCLAUGHLIN, P.A., 1980. Comparative morphology of Recent Crustacea. Pp. 1-177. W.H. Freeman and Company, San Francisco.
  • NELSON, G., 1985. Outgroups and ontogeny. Cladistics 1 (1):29-45.
  • NELSON, G. & N. Platnick, 1981. Systematics and Biogeography. Cladistics and Vicariance. Pp. 1-567. Columbia University Press, New York.
  • NEWMAN, W.A & M.G. Knight, 1984. The carapace and crustacean evolution - a rebuttal. J. crust. Biol. 4 (4):682-687.
  • PROVENZANO, A.J. & R.B. Manning, 1978. Studies on development of stomatopod Crustacea II. The later larval stages of Gonodactylus oerstedii Hansen reared in the laboratory. Bull. mar. Sci. 28 (2):297-315.
  • SCHRAM, F.R., 1974a. The Mazon Creek caridoid Crustacea. Fieldiana, Geol., 30 (2):9-65.
  • SCHRAM, F.R., 1974b. Convergences between late Paleozoic and modern caridoid Malacostraca. Svst. Zool. 23 (3):323-332.
  • SCHRAM, F.R., 1984. Relationships within eumalacostracan Crustacea. Trans. San Diego Soc. nat. Hist. 20 (16):301-312.
  • SCHRAM, F.R., R.M. Feldmann & M.J. Copeland, 1978. The Late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. J. Paleont. 52 (6):1375-1387.
  • SCHRAM, F.R. & R.H. Mapes, 1984. Imocaris tuberculata. n. gen., n.sp. (Crustacea: Decapoda) from the Upper Mississippian Imo formation, Arkansas. Trans. San Diego Soc. nat. Hist. 20 (11):165-168.
  • WILEY, E.O., 1981. Phylogenetics. The theory and practice of Phylogenetic Systematics. Pp. 1-439. John Wiley and Sons, New York.
  • WILLIAMSON, D.I., 1973. Amphionides, reynaudii (H. Milne Edwards) representative of a proposed new order of eucaridan Malacostraca. Crustaceana 25 (1):35-50.
  • WILLIAMSON, D.I., 1982. Larval morphology and diversity. In: L.G. Abele, ed., Embriology, Morphology and Genetics. In: D.E. Bliss, ed., The biology of Crustacea, Vol. 2. Pp. 43-110. Academic Press, New York.

Publication Dates

  • Publication in this collection
    17 Aug 2009
  • Date of issue
    1988
Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: +55 41 3266-6823, - Curitiba - PR - Brazil
E-mail: sbz@bio.ufpr.br