Acessibilidade / Reportar erro

Anatomical and histochemical characterization of Dipteryx odorata and Taralea oppositifolia, two native Amazonian species

Abstract

Dipteryx odorata (Aubl.) Willd. and Taralea oppositifolia Aubl., Fabaceae: Dipterygeae, are two Amazonian species of great economic and pharmacological potential. The anatomy of these species, however, remains poorly studied. The aim of this work was to inventory leaf anatomical characteristics of D. odorata and T. oppositifolia and to locate and identify secretory structures and determine the main classes of metabolites they store. Vegetative branches were collected in Parque Ecológico de Gunma, Belém, state of Pará, Brazil. Some of the branches were destined for herborization while the remainder was submitted to standard protocols for anatomical analysis and histochemical tests. Both species were found to possess an unstratified epidermis, with D. odorata being amphistomatic and T. oppositifolia being hypostomatic, and dorsiventral mesophyll with spongy parenchyma and wide cellular space. The two species were also found to possess idioblasts and secretory cavities that produce a heterogeneous exudate consisting of polysaccharides, lipids, alkaloids and phenolic compounds. The species presented differences in leaf anatomy and chemical composition of the secretory structures, which may be useful in their differentiation.

Keywords:
Fabaceae; Idioblasts; Leaflet blade; Medicinal plants; Secretory structures

Introduction

Dipterygeae (Leguminosae, Papilionoideae) is an exclusively Neotropical clade of approximately 25 species of woody legumes distributed among four genera whose representatives occur in phytogeographical domains of the Amazon: Monopteryx Spruce ex Benth, Pterodon Vogel, Dipteryx Schreb. and Taralea Aubl. (Cardoso et al., 2013Cardoso, D., Pennington, R.T., Queiroz, L.P., Boatwright, J.S., Van Wyk, B.E., Wojciechowski, M.F., Lavin, M., 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. S. Afr. J. Bot. 89, 58-75.). Among these genera, Dipteryx and Taralea stand out due to the economic potential of their species. Although these genera share a number of vegetative characters, such as thick leaves, winged rachises, terminal appendices probable arising from the reduction of the terminal leaflet, 4–18 alternate leaflets, leaflet apexes ranging from cuspidate to obtuse and the presence of translucent punctuations, their fruits have distinctive morphological characteristics, including drupe-type fruit with late dehiscence in Dipteryx and legume fruit with elastic dehiscence in Taralea (Barroso et al., 1999Barroso, G.M., Morim, M.P., Peixoto, A.L., Ichasso, C.L., 1999. Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. UFV, Viçosa, pp. 443p.; Francisco, 2010Francisco, V.M.C.R., 2010. Filogenia Molecular e Morfológica da Tribo Dipterygeae (Papilionoideae, Leguminosae). In: Rio de janeiro, Dissertação de Mestrado, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro., pp. 91.).

Dipteryx odorata (Aubl.) Willd and Taralea oppositifolia Aubl. are popularly known in Brazil as “cumaru” or “cumaru-ferro” (Sousa et al., 2007Sousa, M.A.R., Moutinho, V.H.P., Silva, S.S., 2007. Levantamento das espécies comercializadas vernacularmente como cumaru no Estado do Pará. Rev. Bras. Biocienc. 5, 81-83.; Carvalho, 2009Carvalho, P.E.R., 2009. Cumaru-Ferro, Dipteryx odorata. In: Embrapa Florestas, Comunicado Técnico, n. 225, Colombo, PR. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/578657/1/CT225.pdf, (Accessed 10 April 2019).
https://www.infoteca.cnptia.embrapa.br/i...
) and “cumarurana” or “cumaru-amarelo” (Faria and Lima, 2002Faria, S.M., Lima, H.C.L., 2002. Levantamento de nodulação em leguminosas arbóreas e arbustivas em áreas de influência da mineração Rio do Norte - Porto Trombetas/PA. In: Embrapa, Agrobiologia, Documentos 159. https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/27941/1/doc159.pdf, (Accessed 10 April 2019).
https://ainfo.cnptia.embrapa.br/digital/...
; Sousa et al., 2007Sousa, M.A.R., Moutinho, V.H.P., Silva, S.S., 2007. Levantamento das espécies comercializadas vernacularmente como cumaru no Estado do Pará. Rev. Bras. Biocienc. 5, 81-83.), respectively. Both species have multiple uses, and have been used in medicine, pharmacology, and the perfumery and cosmetics industries (Uchida and Campos, 2000Uchida, T., Campos, M.A., 2000. Influência do sombreamento no crescimento de mudas de cumaru (Dipteryx odorata (Aubl.) Willd. Fabaceae), cultivadas em viveiro. Acta Amaz. 30, 107-114.; Bessa et al., 2001Bessa, D.T.O., Mendonça, M.S., Araújo, M.G.P., 2001. Morfo-anatômico de sementes de Dipteryx odorata (Aubl) Will. (Fabaceae) como contribuição ao estudo farmacognóstico de plantas da região. Rev. Acta Amaz. 31, 357-364.; Takemoto et al., 2001Takemoto, E., Okada, I.A., Garbelotti, M.M., Tavares, M., Aued-Pimenel, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alada Vog.) nativo do município de Pirenópolis, Estado de Goiás. Rev. Inst. Adolfo Lutz 60, 113-117.; Pesce, 2009Pesce, C., 2009. Oleaginosas da Amazônia, 2nd ed. Museu Paraense Emílio Goeldi, Belém-PA http://repiica.iica.int/docs/B2252p/B2252p.pdf.
http://repiica.iica.int/docs/B2252p/B225...
; Breitbach et al., 2013Breitbach, U.B., Niehues, M., Lopes, N.P., Faria, J.Q., Brandão, M.G.L., 2013. Amazonian Brazilian medicinal plants described by C.F.P. Von Martius in the 19th century. J. Ethnopharmacol. 147, 180-189.), as well as in the timber sector (Sousa et al., 2007Sousa, M.A.R., Moutinho, V.H.P., Silva, S.S., 2007. Levantamento das espécies comercializadas vernacularmente como cumaru no Estado do Pará. Rev. Bras. Biocienc. 5, 81-83.; Herrero-Jáuregui et al., 2012Herrero-Jáuregui, C., Sist, P., Casado, M.A., 2012. Population structure of two low-density neotropical tree species under different management systems. Forest Ecol. Manag. 280, 31-39.; Soriano et al., 2012Soriano, M., Kainer, K.A., Staudhammer, C.L., Soriano, E., 2012. Implementing multiple forest management in Brazil nut-rich community forests: effects of logging on natural regeneration and forest disturbance. Forest Ecol. Manag. 268, 92-102.). Almonds of Dipteryx odorata have also been used as a raw material in the production of biodiesel (Ramalingam et al., 2018Ramalingam, S., Rajendran, S., Ganesan, P., Govindasamy, M., 2018. Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine—a review. Renew. Sust. Energ. Rev. 81, 775-788.).

Studies related to the anatomy of vegetative and reproductive organs involving genera of Leguminosae have provided new characters to support both taxonomic (Lackey, 1978Lackey, J.A., 1978. Leaflet anatomy of Phaseoleae (Leguminosae: papilionoideae) and its relation to taxonomy. Bot. Gaz. 139, 436-446.; Leelavathi et al., 1980Leelavathi, P., Ramayya, N., Prabhakar, M., 1980. Foliar stomatal distribution patterns in Leguminosae and their taxonomic significance. Phytomorphology 30, 195-204.; Coutinho et al., 2016Coutinho, I.A.C., Rando, J.G., Conceição, A.S., Meira, R.M.S.A., 2016. A study of the morphoanatomical characters of Chamaecrista sect. Apoucouita. Acta Bot. Bras. 30, 205-222.), and phylogenetic investigations such as, for example, morphological data combined with molecular markers for the reconstruction of phylogenies and the indication of possible synapomorphies for genera (Francisco, 2010Francisco, V.M.C.R., 2010. Filogenia Molecular e Morfológica da Tribo Dipterygeae (Papilionoideae, Leguminosae). In: Rio de janeiro, Dissertação de Mestrado, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro., pp. 91.). In general, anatomical studies and studies of the chemical compounds produced by these species have mainly emphasize wood (Gasson, 1999Gasson, P., 1999. Wood anatomy of the tribe Dipterygeae with comments on related Papilionoid and Caesalpinioid Leguminosae. IAWA J. 20, 441-455.) and seeds (Bessa et al., 2001Bessa, D.T.O., Mendonça, M.S., Araújo, M.G.P., 2001. Morfo-anatômico de sementes de Dipteryx odorata (Aubl) Will. (Fabaceae) como contribuição ao estudo farmacognóstico de plantas da região. Rev. Acta Amaz. 31, 357-364.; Takemoto et al., 2001Takemoto, E., Okada, I.A., Garbelotti, M.M., Tavares, M., Aued-Pimenel, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alada Vog.) nativo do município de Pirenópolis, Estado de Goiás. Rev. Inst. Adolfo Lutz 60, 113-117.; Pesce, 2009Pesce, C., 2009. Oleaginosas da Amazônia, 2nd ed. Museu Paraense Emílio Goeldi, Belém-PA http://repiica.iica.int/docs/B2252p/B2252p.pdf.
http://repiica.iica.int/docs/B2252p/B225...
), leaving little known about the anatomical and histochemical characterization of the leaves (Palermo et al., 2017Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381.; Silva et al., 2018Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.). Nonetheless, anatomical and histochemical characterization is necessary for identifying potentially useful species and for determining sites of accumulation and/or secretion of biologically active products (Thadeo et al., 2009Thadeo, M., Meira, R.M.S.A., Azevedo, A.A., Araújo, J.M., 2009. Anatomia e histoquímica das estruturas secretoras da folha de Casearia decandra Jacq. (Salicaceae). Rev. Bras. Bot. 32, 329-338.; Palermo et al., 2017Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381.), since species of Dipteryx and Taralea possess considerable pharmacological value.

In view of the above considerations, the aim of this study was to characterize the anatomy and histochemistry of the leaves of D. odorata and T. oppositifolia, looking for diagnostic characters to delimit the taxa since the occurrence and distribution of secretory spaces varies in the Dipterygeae clade and the species are morphologically similar.

Materials and methods

Study area

Material of the two species was collected in Parque Ecológico de Gunma – PEG (1°13′86″S; 48°17′41.18″W), located in the municipality of Santa Bárbara, about 48 km from Belém, in the northeastern region of the state of Pará, Brazil. The park possesses approximately 580 ha with vegetation composed of “terra-firme” forest along with environments of igapós and várzeas (Almeida et al., 2009Almeida, E.F., Potiguara, R.C.V., Macedo, E.G., Lins, A.L.F., 2009. Anatomia foliar de espécies de Xylopia L. (Annonanaceae) ocorrentes no Parque Ecológico de Gunma, Santa Bárbara Estado do Pará. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 4, 175-194.). The climate of the region is Afi – tropical humid (Köeppen classification), with a mean annual temperature of around 26 °C, a minimum of 22 °C and a maximum of 31 °C. Annual rainfall varies from 2500 to 3000 mm, with relative air humidity reaching about 85% (Sudam, 1984Sudam, 1984. Atlas Climatológico da Amazônia Brasileira. SUDAM/PHCA, Belém.).

Plant material

Dipteryx odorata (Aubl.) Willd., Fabaceae, leaves composite, alternate, rachis winged and protruding without leaflets in the apical zone; leaflets sub-opposite, 3–4 pairs per pinna, ovate-lanceolate, margin entire, apex acuminate and base round, and translucent punctuations present.

Taralea oppositifolia Aubl., Fabaceae, leaves composite, alternate, opposite, rachis winged, appendix terminal; leaflets alternating, sub-opposed, rarely opposite, 4–8 pairs per pinna, elliptic, lanceolate, ovate to oval-elliptical, margin entire, apex acuminate to cuspidate, and translucent punctuations present.

Flowering branches of D. odorata and T. oppositifolia were collected in Parque Ecológico do Gunma with vouchers for the two species being deposited in Herbarium MG, with the registration numbers MG 20.0490 and MG 20.1435, respectively.

Structural and histochemical characterization

For anatomical and histochemical characterization, fully expanded leaflets and petiolules were collected form the third to the fourth node of the medial portions of vegetative branches (including the main rib, margin and region between the margin and main rib) and petiolules and fixed in FAA (formaldehyde, glacial acetic acid and 70% ethyl alcohol; 1:1:18 v/v; Johansen, 1940)Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York. for 24 h. Portions of these samples (3–4) were fixed in neutral-buffered formalin [NBF; Lillie (1965)Lillie, R.D., 1965. Histopathologic Technic and Pratical Histochemistry, 3rd ed. McGraw Hill, New York.] or ferrous sulphate in formalin [FSF; Johansen (1940)Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.] for 48 h for the detection of lipophilic and phenolic substances, respectively. After fixation, the samples were washed in distilled water, dehydrated in a tertiary butyl series and embedded in paraffin (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.). Transverse and longitudinal sections (12–14 µm) were made using a semiautomatic rotary microtome (Leica RM 2245), stained with 1.5% alcoholic safranin and 1% aqueous astra blue (Bukatsch, 1972Bukatsch, F., 1972. Bemerkungen Zur Doppelfarbung Astrablau-Safranin. Mikrokosmos. 61, 255.), and mounted in Permount® synthetic resin.

The epidermis of leaflets was dissociated using the solution of Franklin (1945)Franklin, G.L., 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 51, 24-39., followed by washing in water, staining with astra blue and 1% safranin (Bukatsch, 1972Bukatsch, F., 1972. Bemerkungen Zur Doppelfarbung Astrablau-Safranin. Mikrokosmos. 61, 255.), and mounting in 1:1 v/v water/glycerin temporary medium (Purvis et al., 1964Purvis, M.J., Collier, D.C., Walls, D., 1964. Laboratory Techniques in Botany. Butterworths, London.).

Histochemical tests of fresh samples were performed using PAS (Periodic Acid Schiff reagent) for total polysaccharides (McManus, 1946McManus, J.F.A., 1946. Histological demonstration of mucin after periodic acid. Nature 158, 202-211.
https://doi.org/10.1038/158202a0...
); Ruthenium red for the detection of acidic mucilages (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.); tannic acid/ferric chloride for mucilages (Pizzolato and Lillie, 1973Pizzolato, T.D., Lillie, R.D., 1973. Mayer’s tannic acid-ferric chloride stain for mucins. J. Histochem. Cytochem. 21, 56-64.); Lugol for starch (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.); Sudan black B for total lipids (Pearse, 1980Pearse, A.G.E., 1980. Histochemistry Theretical and Applied, 4 ed. Longman group Limited., Baltimore.); Nile blue for acidic and neutral lipids (Cain, 1947Cain, A.J., 1947. The use of Nile blue in examination of lipoids. Q. J. Microsc. Sci. 33, 383-392.); NADI reagent for essential oils and oil resin (David and Carde, 1964David, R., Carde, J.P., 1964. Coloration differentielle dês inclusions lipidique et terpeniques des pseudophylles Du Pin maritime au moyen du resctif Nadi. Comptes Rendus de L’academie des Sciences Paris. 258, 1338-1340.); Dragendorff (Sverdsen and Verpoorte, 1983Sverdsen, A.B., Verpoorte, R., 1983. Chromatography of Alkaloids. Elsevier Scientific Publish Company, New York.) and Wagner reagents (Furr and Mahlberg, 1981Furr, M., Mahlberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J. Nat. Prod. 44, 153-159.) for alkaloids, and ferric chloride for total phenolic compounds (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.).

For the control for tests for lipophilic substances, samples were stored in extraction solution (methanol/chloroform/water/HCl; High, 1985High, O.B., 1985. Lipid Histochemistry. Oxford University Press, New York.) for 48 h, fixed in neutral buffered formalin (NBF) and submitted to the aforementioned reagents and dyes. The control for the tests for hydrophilic substances was performed according to the respective techniques. Samples were also analyzed without any treatment (blank), for visualization of color in natura. The tests were applied to sections cut by free hand and then mounted in glycerin jelly (Kaiser, 1880Kaiser, E., 1880. Verfahren zur herstellung einer tadellosen glycerin-gelatine. Botanisch Zentralb, Stuttgart 180, 25-26.).

Photographic documentation was performed using an Axiolab Zeiss microscope coupled to a Canon Powershot A640 digital camera.

Scanning electron microscopy (SEM)

For SEM analyses, leaflets samples were fixed in FAA, dehydrated in an ethanolic series and critical point dried with CO2 (Bozzola and Russel, 1991Bozzola, J.J., Russel, L.D., 1991. Eletron Microscopy: principles and techniques for biologists. Jones and Barlett Publishers, Boston, London, Singapore.). The leaf fragments were then glued to a metallic support, metalized with gold and examined under a LEO 1450 VP scanning electron microscope.

Results

Anatomical characterization of leaves

In frontal view, the adaxial leaf surface of D. odorata and T. oppositifolia exhibited epidermal cells with anticlinal (Fig. 1A) and sinuous (Fig. 1B) walls, respectively. The adaxial leaf surface of both species exhibited cells with sinuous anticlinal walls (Fig. 1C and D). The leaves of D. odorata and T. oppositifolia were found to be amphistomatic and hypostomatic, respectively. Both anomocytic (Fig. 1C) and paracytic stomatal types were present in D. odorata, while only paracytic stomata were present in T. opositifolia (Fig. 1D). Stellate non-glandular trichomes were observed in D. odorata (Fig. 1G) while simple non-glandular trichomes were observed in T. oppositifolia (Fig. 1H). In cross section, both species were found to possess uniseriate epidermis on both faces, along with a thick cuticle (Fig. 1E and F).

Fig. 1
Leaf anatomy of Dipteryx odorata (A, C, E and G) and Taralea oppositifolia (B, D, F and H) under light (A–F) and scanning electron (G and H) microscopy. A. Adaxial face with straight epidermal cells and stomata; B. adaxial face with sinuous epidermal cells; C. abaxial face with sinuous epidermal cells and stomata; D. abaxial face with sinuous epidermal cells and stomata; E and F. detail of the epidermis and the palisade parenchyma; G. stellate non-glandular trichomes; H. simple non-glandular trichomes. Bars: 50 m (A, and C–F); 150 m (B); 13 m (G); 20 m (H).

Both species exhibited dorsiventral mesophyll with stratified palisade parenchyma and stratified spongy parenchyma with conspicuous intercellular spaces (Fig. 2CF).

Fig. 2
Leaf anatomy of Dipteryx odorata (A, C, E and G) and Taralea oppositifolia (B, D, F and H) under light (A–D, G and H) and scanning electron (E and F) microscopy. A. Curved downward leaf margin; B. straight leaf margin with secretory cavity (SC); C. general view of mesophyll; D. general view of mesophyll with secretory cavity; E and F. detail of spongy parenchyma (SP); G and H. general view of central rib. Legend: (PP) palisade parenchyma; (VB) vascular bundle. Bars: 150 m (A, C and D); 50 µm (B); 60 m (E and F); 300 m (G and H).

The leaf blade of the two species exhibited small-caliber vascular bundles surrounded by fibers forming an extensive vascular bundle sheath (Figs. 2A, C, and D). The vascular system of the central rib of both species was found to be composed of collateral-type vascular bundles surrounded by fibers forming a closed arch in D. odorata and an open arch in T. oppositifolia, which possess idioblasts and secretory cavities in the cortical parenchyma and only idioblasts in the medullar parenchyma (Fig. 2G and H).

Leaf margins were curved in D. odorata (Fig. 2A) and straight in T. oppositifolia (Fig. 2B). Leaf margins of the latter species were observed to be completely sclerenchymatic and possessing secretory cavities.

The petiole of both species revealed a circular outline with fundamental tissue composed of several layers of parenchyma containing idioblasts and secretory cavities (Fig. 3A and B). All of these anatomical characteristics are summarized in Table 1.

Fig. 3
Petiole anatomy of Dipteryx odorata (A, C and E) and Taralea oppositifolia (B, D and F) under light (A–D) and scanning electron (E and F) microscopy. A and B. overall view of petiole; C and D. detail of secretory cavity (SC); E and F. longitudinal section of secretory cavities. Legend: (Xy) xylem; (Ph) phloem; (Fi) fibers. Bars: 300 m (A and B); 50 m (C and D); 130 m (E); 230 m (F).

Table 1
Leaf anatomy of Dipteryx odorata and Taralea oppositifolia.

Histochemistry of leaflet secretory structures

The secretory structures of the leaves of both species were found to comprise idioblasts and cavities, which are located in the cortical parenchyma of the central rib and the petiole (Figs. 2G, H and 3A, B). The mesophyll of T. oppositifolia also exhibited secretory cavities in the adaxial face (Fig. 2D). Idioblasts were revealed in red when stained by safranin (Figs. 2G and 3B).

Spherical epithelial cells were observed to delimit an isodiametric lumen in cavities (Fig. 3CF). Histochemical tests of idioblasts and secretory cavities revealed that they contain a series of chemical compounds, namely: total lipids (acidic and neutral), polysaccharides, alkaloids and phenolic compounds (Table 2). Secretions were seen preserved in idioblasts and cavities, with the latter being present both in epithelial cells and inside the lumen (Figs. 4AF and 5AF). The exudates present in the idioblasts possessed a dark brown coloration in both species, evidencing the presence of phenolic compounds (Fig. 5F).

Table 2
Histochemistry of the idioblasts and secretory cavities of leaves of Dipteryx odorata and Taralea oppositifolia.

Fig. 4
Leaf histochemistry of Dipteryx odorata (A–F). A–E. idioblasts; F. cavities; A and B. Wagner and Dragendorff reaction for “alkaloids”; C and D. ferric chloride reaction for “tannins”; E. Lugol reaction for “starch”; F. Nile blue sulphate reaction for “acidic and neutral lipids”. Bars: 50 m (A–F).
Fig. 5
Leaf histochemistry of Taralea oppositifolia (A–F). A–D. idioblasts; E and F. cavities; A. PAS reaction for “polysaccharides”; B. Ruthenium red reaction for “mucilage”; C and E. Sudan black B reaction for “total lipids”; D. Nile blue sulphate reaction for “acidic and neutral lipids”; F. iron sulphate in formalin reaction for “phenolic compounds”. Bars: 50 µm (A–E); 500 m (F).

Discussion

Among taxa of the Dipterygeae clade, the outline of the epidermal cells of both leaf surfaces varies from rectilinear to sinuous (Silva et al., 2018Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.), as observed in the present study. Cells with straight and sinuous walls have been widely reported among others species of Fabaceae, such as Aldina heterophylla Spruce ex Benth. (Araújo and Mendonça, 1998Araújo, M.G.P., Mendonça, M.S., 1998. Escleromorfismo foliar de Aldina heterophylla Spruce ex Benth (Leguminosae: Papilionoideae) em três campinas da Amazônia Central. Acta Amaz. 28, 353-371.), Bauhinia microstachya (Raddi) J.F. Macbr. (Duarte and Debur, 2003Duarte, M.R., Debur, M.C., 2003. Caracteres morfo-anatômicos de folha e caule de Bauhinia microstachya (Raddi) J. F.. Macbr. (Fabaceae). Rev. Bras. Farmacogn. 13, 7-15.), Hymenaea stilbocarpa Hayne (Moreira-Coneglian and Oliveira, 2006Moreira-Coneglian, I.R., Oliveira, D.T., 2006. Anatomia comparada dos limbos cotiledonares e eofilares de dez espécies de Caesalpinoideae (Fabaceae). Rev. Bras. Bot. 29, 193-207.), Glycine max (L.) Merr. (Leal-Costa et al., 2008Leal-Costa, M.V., Aragão, F.J.L., Reinert, F., Tavares, E.S., 2008. Anatomia foliar de plantas transgênicas e não transgênicas de Glycine max (L.) Merrill (Fabaceae). Rev. Biociênc. 14, 23-31.), and Senna alata (L.) Roxb. (Rodrigues et al., 2009Rodrigues, I.M.C., Souza Filho, A.P.S., Ferreira, F.A., Ilkiu-Borges, F., Gurgel, E.S.C., 2009. Anatomia e histoquímica das folhas de Senna alata. Planta Daninha 27, 515-526.), as well as for various species of Chamaecrista (L.) Moench (Coutinho et al., 2016Coutinho, I.A.C., Rando, J.G., Conceição, A.S., Meira, R.M.S.A., 2016. A study of the morphoanatomical characters of Chamaecrista sect. Apoucouita. Acta Bot. Bras. 30, 205-222.). Sinuosity of cell walls, however, may be related to the environment where a plant occurs (Esau, 1997Esau, K., 1997. Anatomy of Seed Plants. Jonh Wiley, New York.), as observed by Araújo and Mendonça (1998)Araújo, M.G.P., Mendonça, M.S., 1998. Escleromorfismo foliar de Aldina heterophylla Spruce ex Benth (Leguminosae: Papilionoideae) em três campinas da Amazônia Central. Acta Amaz. 28, 353-371. for the walls of the epidermal cells of Aldina heterophylla, which can be strait in the majority of sun leaves and sinuous in shade leaves.

The amphistomatic pattern with paracytic stomata observed here for leaves of D. odorata, as was also observed by Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117., in Senna alata (L.) Roxb. by Rodrigues et al. (2009)Rodrigues, I.M.C., Souza Filho, A.P.S., Ferreira, F.A., Ilkiu-Borges, F., Gurgel, E.S.C., 2009. Anatomia e histoquímica das folhas de Senna alata. Planta Daninha 27, 515-526., and in species of Bauhinia L. by Pereira et al. (2018)Pereira, L.B.S., Costa-Silva, R., Felix, L.P., Agra, M.F., 2018. Leaf morphoanatomy of “mororó” (Bauhinia and Schnella, Fabaceae).. Rev. Bras. Farmacogn. 28, 383-392.. Hypostomatic leaves, as observed in T. oppositifolia, are more common in the subfamily Mimosoideae, as reported by Metcalfe and Chalk (1950)Metcalfe, C.R., Chalk, L., 1950. Anatomy of the Dicotyledons Leaves, Stem and Wood in Relation to Taxonomy With Notes on Economy Uses. Clarendon Press, Oxford.. Amphistomatic leaves have also been observed in Schnella Raddi (Pereira et al., 2018Pereira, L.B.S., Costa-Silva, R., Felix, L.P., Agra, M.F., 2018. Leaf morphoanatomy of “mororó” (Bauhinia and Schnella, Fabaceae).. Rev. Bras. Farmacogn. 28, 383-392.), as well as in the genera Abarema Pittier and Inga Mill. (Silva et al., 2012Silva, M.S., Reis, C., Pontes-Pires, A.F.P., 2012. Anatomical characteristics of leaf of five species of family Fabaceae found in Sinop, MT. Sci. Electron. Arch. 1, 16-19.).

The occurrence of different types of stomata in the same species, as observed for D. odorata and T. oppositifolia, corroborate that, in general, species of Fabaceae do not have a species-specific stomatal type, as previously reported by Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.. The occurrence of anomocytic and paracytic stomata in Fabaceae is common, with the latter being most frequent in the subfamilies Caesalpinoideae and Papilionoideae, as mentioned by Solereder (1908)Solereder, H., 1908. Systematic anatomy of the dicotyledons. Introduction, polypetalae, Gamopetalae. Oxford at the Carendon press , .; Metcalfe and Chalk (1979)Metcalfe, C.R., Chalk, L., 1979. Anatomy of the Dicotyledons, 2nd ed. Claredon Press, Oxford. and Araújo and Mendonça (1998)Araújo, M.G.P., Mendonça, M.S., 1998. Escleromorfismo foliar de Aldina heterophylla Spruce ex Benth (Leguminosae: Papilionoideae) em três campinas da Amazônia Central. Acta Amaz. 28, 353-371..

The patterns of the epidermis and stomata observed in the present study have also been observed in other species of Fabaceae, such as species of Albizia Durazz. (Simões et al., 2003Simões, M.O.M., Lopes, P.S.N., Oliveira, M.N.S., Junior, E.M.F., Ribeiro, L.M., 2003. Estudo anatômico do mesofilo foliar de Albizia spp (Leguminosae/Mimosoideae). Rev. Unimontes Científica 5, 1-9.), and Bauhinia forficata Link and B. variegata Linn. (Lusa and Bona, 2009Lusa, M.G., Bona, C., 2009. Análise morfoanatômica comparativa da folha de Bauhinia forficata Link e Bauhinia variegata Linn. (Leguminosae, Caesalpinioideae). Acta Bot. Bras. 23, 196-211.), and Indigofera microcarpa Desv. (Lima et al., 2003Lima, A.K., Elba, L.C.A., Aquino, T.M., Lima, C.S.A., Pimentel, R.M.M., Higino, J.S., Albuquerque, U.P., 2003. Estudo farmacognóstico de Indigofera microcarpa Desv. (Fabaceae).. Rev. Bras. Cienc. Farm. 39, 373-379.), as well as among species of the Dipterygeae clade (Silva et al., 2018Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.).

Different from the results of the present study, the fine cuticle observed in D. odorata by Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117. was probably due to the use of herborized material from different collection sites. The thick cuticle observed in the present study for T. oppositifolia was also observed by these authors, as well as in other species of Taralea.

Non-glandular trichomes have been frequently reported among representatives of Papilionoideae and Caesalpinoideae (Metcalfe and Chalk, 1950Metcalfe, C.R., Chalk, L., 1950. Anatomy of the Dicotyledons Leaves, Stem and Wood in Relation to Taxonomy With Notes on Economy Uses. Clarendon Press, Oxford.). This trichome type has been observed in several tribes of Leguminosae, such as Dalbergieae, Hedysareae, Phaseoleae, Sophoreae and Swartzeae (Solereder, 1908Solereder, H., 1908. Systematic anatomy of the dicotyledons. Introduction, polypetalae, Gamopetalae. Oxford at the Carendon press , .), including the Dipterygeae clade (Silva et al., 2018Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.). The taxonomic importance of trichomes in Leguminosae has also been discussed for other angiosperm families (Cowan, 1950Cowan, J.M., 1950. The Rhododendron Leaf, a Study of the Epidermal Appendages. Oliver and Boyd, Edinburgo.; Carlquist, 1961Carlquist, S., 1961. Comparative Plant Anatomy. Holt, Rinchart and Winston, New York.; Tomlinson, 1969Tomlinson, P.B., 1969. Anatomy of the Monocotyledons III. Commelinales - Zingiberales. Clarendon press, Oxford.). In addition, analyses of the significance of trichomes for the taxonomy of Phaseoleae proved essential for delimiting groups (Lackey, 1978Lackey, J.A., 1978. Leaflet anatomy of Phaseoleae (Leguminosae: papilionoideae) and its relation to taxonomy. Bot. Gaz. 139, 436-446.). In contrast to the findings reported here, Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117. found glabrous leaves in T. oppositifolia, which was probably due to the different origins of the plant material used and the methodologies employed.

The dorsiventral mesophyll recorded in the two species studied here conforms with what has been reported for other genera of Fabaceae by Metcalfe and Chalk (1950)Metcalfe, C.R., Chalk, L., 1950. Anatomy of the Dicotyledons Leaves, Stem and Wood in Relation to Taxonomy With Notes on Economy Uses. Clarendon Press, Oxford. and Silva et al. (2012)Silva, M.S., Reis, C., Pontes-Pires, A.F.P., 2012. Anatomical characteristics of leaf of five species of family Fabaceae found in Sinop, MT. Sci. Electron. Arch. 1, 16-19., and who reported the same characteristic in Bauhinia microstachya (Duarte and Debur, 2003Duarte, M.R., Debur, M.C., 2003. Caracteres morfo-anatômicos de folha e caule de Bauhinia microstachya (Raddi) J. F.. Macbr. (Fabaceae). Rev. Bras. Farmacogn. 13, 7-15.). According to Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117., dorsiventral mesophyll prevails in the Dipterygeae clade, although these authors observed isolateral mesophyll in D. odorata, in contrast to the findings reported here. In addition to the dorsiventral organization of the mesophyll, the occurrence of bistratified palisade parenchyma and developed spongy parenchyma have been widely reported among species of Fabaceae (Araújo and Mendonça, 1998Araújo, M.G.P., Mendonça, M.S., 1998. Escleromorfismo foliar de Aldina heterophylla Spruce ex Benth (Leguminosae: Papilionoideae) em três campinas da Amazônia Central. Acta Amaz. 28, 353-371.; Duarte and Debur, 2003Duarte, M.R., Debur, M.C., 2003. Caracteres morfo-anatômicos de folha e caule de Bauhinia microstachya (Raddi) J. F.. Macbr. (Fabaceae). Rev. Bras. Farmacogn. 13, 7-15.; Rodrigues et al., 2009Rodrigues, I.M.C., Souza Filho, A.P.S., Ferreira, F.A., Ilkiu-Borges, F., Gurgel, E.S.C., 2009. Anatomia e histoquímica das folhas de Senna alata. Planta Daninha 27, 515-526.).

Small-caliber vascular bundles surrounded by fibers forming a sheath have also been reported to occur in the Dipterygeae clade by Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.. According these authors, the shape of the leaflet margin is curved downward in D. odorata and T. oppositifolia, which was confirmed here only for the former.

Secretory structures, such as idioblasts and cavities, have been previously reported for species of Papilionoideae and Caesalpinoideae (Solereder, 1908Solereder, H., 1908. Systematic anatomy of the dicotyledons. Introduction, polypetalae, Gamopetalae. Oxford at the Carendon press , .; Metcalfe and Chalk, 1950Metcalfe, C.R., Chalk, L., 1950. Anatomy of the Dicotyledons Leaves, Stem and Wood in Relation to Taxonomy With Notes on Economy Uses. Clarendon Press, Oxford.; Fahn, 1985Fahn, A., 1985. Anatomia Vegetal. Ediciones Pirámide S.A., Madrid.; Teixeira and Gabrielli, 2000Teixeira, S.P., Gabrielli, A.C., 2000. Anatomia de eixo vegetativo de Dahlstedtia pinna (Benth.) Malme e D. pentaphylla (Taub.) Burk (Leguminosae, Papilionoideae). Rev. Bras. Bot. 23, 1-11.; Lusa and Bona, 2009Lusa, M.G., Bona, C., 2009. Análise morfoanatômica comparativa da folha de Bauhinia forficata Link e Bauhinia variegata Linn. (Leguminosae, Caesalpinioideae). Acta Bot. Bras. 23, 196-211.; Leite et al., 2014Leite, V.G., Mansano, V.F., Teixeira, S.P., 2014. Floral ontogeny in Dipterygeae (Fabaceae) reveals new insights into one of the earliest branching tribes in papilionoid legumes. Bot. J. Linn. Soc. 174, 529-550.; Palermo et al., 2017Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381.), including the Dipterygeae clade (Silva et al., 2018Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.). Although the present study did not find secretory canals in the cortical parenchyma of the main rib and petiole of T. oppositifolia, as previously reported by Palermo et al. (2017)Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381., their presence in this species would serve as a valuable taxonomic character in distinguishing it from D. odorata, for which there are no records of these structures. Except for starch and acidic and neutral lipids, the secretory systems of D. odorata and T. oppositifolia produced secretions of the same chemical nature. This similarity is probably due to the fact that these two species occur in similar phytogeographic domains, such as the Amazon. Histochemical tests performed by Palermo et al. (2017)Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381. on leaves of T. oppositifolia detected the presence of total lipids in the epithelial cells and/or lumen of secretory spaces, as was found in the present study. Idioblasts and secretory cavities are structures that are specialized in the secretion of compounds such as mucilage and/or gum, phenolic compounds, and lipophilic material, including heterogeneous secretions, among others (Fahn, 1985Fahn, A., 1985. Anatomia Vegetal. Ediciones Pirámide S.A., Madrid.), which have deterrent and antimicrobial effects (Langenheim, 2003Langenheim, J.H., 2003. Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany. Timber Press, Portland, Cambridge.). The presence of phenolic compounds in the leaves of D. odorata and T. oppositifolia, as well as the absence of mucilage, observed in the present study, was similar to that reported by Silva et al. (2018)Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.. However, the results of this author diverged in regards to the other compounds (starch, lipids and pectins), probably due to the fact that they worked with herbaria material.

The categories of chemical compounds inventoried in the idioblasts and cavities in the two studied species represent an important series for plants in general. For example, polysaccharides are one way that plants store sugar and build structures, such as the cell wall. Starch, also detected in the present study, is a polysaccharide with great food value, and has also been reported to occur in large quantities in the cotyledons of D. odorata, from which coumarin, a substance with proven therapeutic action, is extracted (Bessa et al., 2001Bessa, D.T.O., Mendonça, M.S., Araújo, M.G.P., 2001. Morfo-anatômico de sementes de Dipteryx odorata (Aubl) Will. (Fabaceae) como contribuição ao estudo farmacognóstico de plantas da região. Rev. Acta Amaz. 31, 357-364.).

Mucilage comprises complex polymers of acidic or neutral polysaccharides of hydrophilic nature and with high molecular weights (Mastroberti and Mariath, 2008Mastroberti, A.A., Mariath, J.E.A., 2008. Immunocytochemistry of the mucilage cells of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Rev. Bras. Bot. 31, 1-13.), conferring important roles in plant development, such as protection of structures and organs, water retention, carbohydrate reserve, transpiration reduction, protection from solar radiation and herbivory, root lubrication, insect trapping, seed dispersal and regulation of germination (Langenheim, 2003Langenheim, J.H., 2003. Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany. Timber Press, Portland, Cambridge.; Pimentel et al., 2011Pimentel, R.R., Machado, S.R., Rocha, J.F., 2011. Estruturas secretoras de Pavonia alnifolia (Malvaceae), uma espécie ameaçada de extinção. Rodrigusia 62, 253-262.; Rocha et al., 2011Rocha, J.F., Pimentel, R.R., Machado, S.R., 2011. Estruturas secretoras de mucilagem em Hibiscus pernambucensis Arruda (Malvaceae): distribuição, caracterização morfoanatômica e histoquímica. Acta Bot. Bras. 25, 51-763.; Alves et al., 2012Alves, C.Z., Godoy, A.R., Oliveira, N.C., 2012. Efeito da remoção da mucilagem na germinação e vigor de sementes de Hylocereus undatus Haw. Rev. Bras. de Ciênc. Agrar. 7, 586-589.).

Alkaloids, which were found in the present work, have also been found in other species of Dipterygeae, such as Dipteryx alata Vogel and Pterodon pubescens (Benth.) Benth. (Palermo et al., 2017Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381.). They are nitrogen compounds of varying structure and are among the most toxic classes of compounds. Pyrrolizidine-like alkaloids are found in several plant families, but are most common in Asteraceae, Boraginaceae and Fabaceae. In general, they function in defense against predators and are known to cause intoxication in animals, including humans (Silva et al., 2006Silva, C.M., Bolzan, A.A., Heinzmann, B.M., 2006. Alcalóides pirrolizidínicos em espécies do gênero Senecio. Quím. Nova. 29, 1047-1053.; Lucena et al., 2010Lucena, R.B., Rissi, D.R., Maia, L.A., Flores, M.F., Dantas, A.F.M., Nobre, V.M.T., Riet-Correa, F., Claudio, S.L., Barros, C.S.L., 2010. Intoxicação por alcaloides pirrolizidínicos em ruminantes e equinos no Brasil. Pesqui. Vet. Bras. 3, 447-452.; Matos et al., 2011Matos, F.J.A., Lorenzi, H., Santos, L.F.L., Matos, M.E.O., Silva, M.G.V., Sousa, M.P., 2011. Plantas Tóxicas: Estudo de Fitotoxicologia Química de Plantas Brasileiras. Plantarum, Flora, Nova Odessa.).

Braga et al. (2007)Braga, F.G., Bouzada, M.L., Fabri, R.L., Matos, O.M., Moreira, F.O., Scio, E., Coimbra, E.S., 2007. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 111, 396-402. attributed the biological activity of extracts of various medicinal plants with anti-leishmaniasis and anti-fungal actions to secondary metabolites, such as flavonoids, alkaloids and coumarin. It general, the uses of the oil that these species provide are widely known, both in folk medicine and in cosmetics, which has resulted in great commercial value and reinforces the importance of studies characterizing species that have these substances to enhance their economic potential.

Although D. odorata and T. oppositifolia produce secretions with similar classes of chemical compounds, the anatomical structure of their leaves can aid in distinguishing them (the species are morphologically similar, which makes distinguishing them in the field difficult when fruit is absent), and support their inclusion in the Dipterygeae clade.

In conclusion, the occurrence and chemical composition of idioblasts and secretory cavities in leaves, the location of stomata, the types of trichomes, the curvature and lignification of the leaf margin and the shape of the vascular bundle of the petiole are all anatomical characters with potential diagnostic value for the Dipterygeae clade, and especially for the species D. odorata and T. oppositifolia.

Acknowledgments

The authors thank the Laboratório de Anatomia Vegetal of the Coordenação de Botânica, Museu Paraense Emílio Goeldi for providing infrastructure, and CAPES for providing the scholarship to the first author; and the reviewers and editor for their comments and suggestions to improve the manuscript.

References

  • Almeida, E.F., Potiguara, R.C.V., Macedo, E.G., Lins, A.L.F., 2009. Anatomia foliar de espécies de Xylopia L. (Annonanaceae) ocorrentes no Parque Ecológico de Gunma, Santa Bárbara Estado do Pará. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 4, 175-194.
  • Alves, C.Z., Godoy, A.R., Oliveira, N.C., 2012. Efeito da remoção da mucilagem na germinação e vigor de sementes de Hylocereus undatus Haw. Rev. Bras. de Ciênc. Agrar. 7, 586-589.
  • Araújo, M.G.P., Mendonça, M.S., 1998. Escleromorfismo foliar de Aldina heterophylla Spruce ex Benth (Leguminosae: Papilionoideae) em três campinas da Amazônia Central. Acta Amaz. 28, 353-371.
  • Barroso, G.M., Morim, M.P., Peixoto, A.L., Ichasso, C.L., 1999. Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. UFV, Viçosa, pp. 443p.
  • Bessa, D.T.O., Mendonça, M.S., Araújo, M.G.P., 2001. Morfo-anatômico de sementes de Dipteryx odorata (Aubl) Will. (Fabaceae) como contribuição ao estudo farmacognóstico de plantas da região. Rev. Acta Amaz. 31, 357-364.
  • Bozzola, J.J., Russel, L.D., 1991. Eletron Microscopy: principles and techniques for biologists. Jones and Barlett Publishers, Boston, London, Singapore.
  • Braga, F.G., Bouzada, M.L., Fabri, R.L., Matos, O.M., Moreira, F.O., Scio, E., Coimbra, E.S., 2007. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 111, 396-402.
  • Breitbach, U.B., Niehues, M., Lopes, N.P., Faria, J.Q., Brandão, M.G.L., 2013. Amazonian Brazilian medicinal plants described by C.F.P. Von Martius in the 19th century. J. Ethnopharmacol. 147, 180-189.
  • Bukatsch, F., 1972. Bemerkungen Zur Doppelfarbung Astrablau-Safranin. Mikrokosmos. 61, 255.
  • Cain, A.J., 1947. The use of Nile blue in examination of lipoids. Q. J. Microsc. Sci. 33, 383-392.
  • Cardoso, D., Pennington, R.T., Queiroz, L.P., Boatwright, J.S., Van Wyk, B.E., Wojciechowski, M.F., Lavin, M., 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. S. Afr. J. Bot. 89, 58-75.
  • Carlquist, S., 1961. Comparative Plant Anatomy. Holt, Rinchart and Winston, New York.
  • Carvalho, P.E.R., 2009. Cumaru-Ferro, Dipteryx odorata In: Embrapa Florestas, Comunicado Técnico, n. 225, Colombo, PR. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/578657/1/CT225.pdf, (Accessed 10 April 2019).
    » https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/578657/1/CT225.pdf
  • Coutinho, I.A.C., Rando, J.G., Conceição, A.S., Meira, R.M.S.A., 2016. A study of the morphoanatomical characters of Chamaecrista sect. Apoucouita. Acta Bot. Bras. 30, 205-222.
  • Cowan, J.M., 1950. The Rhododendron Leaf, a Study of the Epidermal Appendages. Oliver and Boyd, Edinburgo.
  • David, R., Carde, J.P., 1964. Coloration differentielle dês inclusions lipidique et terpeniques des pseudophylles Du Pin maritime au moyen du resctif Nadi. Comptes Rendus de L’academie des Sciences Paris. 258, 1338-1340.
  • Duarte, M.R., Debur, M.C., 2003. Caracteres morfo-anatômicos de folha e caule de Bauhinia microstachya (Raddi) J. F.. Macbr. (Fabaceae). Rev. Bras. Farmacogn. 13, 7-15.
  • Esau, K., 1997. Anatomy of Seed Plants. Jonh Wiley, New York.
  • Fahn, A., 1985. Anatomia Vegetal. Ediciones Pirámide S.A., Madrid.
  • Faria, S.M., Lima, H.C.L., 2002. Levantamento de nodulação em leguminosas arbóreas e arbustivas em áreas de influência da mineração Rio do Norte - Porto Trombetas/PA. In: Embrapa, Agrobiologia, Documentos 159. https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/27941/1/doc159.pdf, (Accessed 10 April 2019).
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/27941/1/doc159.pdf
  • Francisco, V.M.C.R., 2010. Filogenia Molecular e Morfológica da Tribo Dipterygeae (Papilionoideae, Leguminosae). In: Rio de janeiro, Dissertação de Mestrado, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro., pp. 91.
  • Franklin, G.L., 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 51, 24-39.
  • Furr, M., Mahlberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J. Nat. Prod. 44, 153-159.
  • Gasson, P., 1999. Wood anatomy of the tribe Dipterygeae with comments on related Papilionoid and Caesalpinioid Leguminosae. IAWA J. 20, 441-455.
  • Herrero-Jáuregui, C., Sist, P., Casado, M.A., 2012. Population structure of two low-density neotropical tree species under different management systems. Forest Ecol. Manag. 280, 31-39.
  • High, O.B., 1985. Lipid Histochemistry. Oxford University Press, New York.
  • Johansen, D.A., 1940. Plant Microtechnique. Mcgraw-Hill, New York.
  • Kaiser, E., 1880. Verfahren zur herstellung einer tadellosen glycerin-gelatine. Botanisch Zentralb, Stuttgart 180, 25-26.
  • Lackey, J.A., 1978. Leaflet anatomy of Phaseoleae (Leguminosae: papilionoideae) and its relation to taxonomy. Bot. Gaz. 139, 436-446.
  • Langenheim, J.H., 2003. Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany. Timber Press, Portland, Cambridge.
  • Leal-Costa, M.V., Aragão, F.J.L., Reinert, F., Tavares, E.S., 2008. Anatomia foliar de plantas transgênicas e não transgênicas de Glycine max (L.) Merrill (Fabaceae). Rev. Biociênc. 14, 23-31.
  • Leelavathi, P., Ramayya, N., Prabhakar, M., 1980. Foliar stomatal distribution patterns in Leguminosae and their taxonomic significance. Phytomorphology 30, 195-204.
  • Leite, V.G., Mansano, V.F., Teixeira, S.P., 2014. Floral ontogeny in Dipterygeae (Fabaceae) reveals new insights into one of the earliest branching tribes in papilionoid legumes. Bot. J. Linn. Soc. 174, 529-550.
  • Lillie, R.D., 1965. Histopathologic Technic and Pratical Histochemistry, 3rd ed. McGraw Hill, New York.
  • Lima, A.K., Elba, L.C.A., Aquino, T.M., Lima, C.S.A., Pimentel, R.M.M., Higino, J.S., Albuquerque, U.P., 2003. Estudo farmacognóstico de Indigofera microcarpa Desv. (Fabaceae).. Rev. Bras. Cienc. Farm. 39, 373-379.
  • Lucena, R.B., Rissi, D.R., Maia, L.A., Flores, M.F., Dantas, A.F.M., Nobre, V.M.T., Riet-Correa, F., Claudio, S.L., Barros, C.S.L., 2010. Intoxicação por alcaloides pirrolizidínicos em ruminantes e equinos no Brasil. Pesqui. Vet. Bras. 3, 447-452.
  • Lusa, M.G., Bona, C., 2009. Análise morfoanatômica comparativa da folha de Bauhinia forficata Link e Bauhinia variegata Linn. (Leguminosae, Caesalpinioideae). Acta Bot. Bras. 23, 196-211.
  • Mastroberti, A.A., Mariath, J.E.A., 2008. Immunocytochemistry of the mucilage cells of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Rev. Bras. Bot. 31, 1-13.
  • Matos, F.J.A., Lorenzi, H., Santos, L.F.L., Matos, M.E.O., Silva, M.G.V., Sousa, M.P., 2011. Plantas Tóxicas: Estudo de Fitotoxicologia Química de Plantas Brasileiras. Plantarum, Flora, Nova Odessa.
  • McManus, J.F.A., 1946. Histological demonstration of mucin after periodic acid. Nature 158, 202-211.
    » https://doi.org/10.1038/158202a0
  • Metcalfe, C.R., Chalk, L., 1950. Anatomy of the Dicotyledons Leaves, Stem and Wood in Relation to Taxonomy With Notes on Economy Uses. Clarendon Press, Oxford.
  • Metcalfe, C.R., Chalk, L., 1979. Anatomy of the Dicotyledons, 2nd ed. Claredon Press, Oxford.
  • Moreira-Coneglian, I.R., Oliveira, D.T., 2006. Anatomia comparada dos limbos cotiledonares e eofilares de dez espécies de Caesalpinoideae (Fabaceae). Rev. Bras. Bot. 29, 193-207.
  • Palermo, F.H., Teixeira, S.P., Mansano, V.F., Leite, V.G., Rodrigues, T.M., 2017. Secretory spaces in species of the clade Dipterygeae (Leguminosae, papilionoideae). Acta Bot. Bras. 31, 374-381.
  • Pearse, A.G.E., 1980. Histochemistry Theretical and Applied, 4 ed. Longman group Limited., Baltimore.
  • Pereira, L.B.S., Costa-Silva, R., Felix, L.P., Agra, M.F., 2018. Leaf morphoanatomy of “mororó” (Bauhinia and Schnella, Fabaceae).. Rev. Bras. Farmacogn. 28, 383-392.
  • Pesce, C., 2009. Oleaginosas da Amazônia, 2nd ed. Museu Paraense Emílio Goeldi, Belém-PA http://repiica.iica.int/docs/B2252p/B2252p.pdf
    » http://repiica.iica.int/docs/B2252p/B2252p.pdf
  • Pimentel, R.R., Machado, S.R., Rocha, J.F., 2011. Estruturas secretoras de Pavonia alnifolia (Malvaceae), uma espécie ameaçada de extinção. Rodrigusia 62, 253-262.
  • Pizzolato, T.D., Lillie, R.D., 1973. Mayer’s tannic acid-ferric chloride stain for mucins. J. Histochem. Cytochem. 21, 56-64.
  • Purvis, M.J., Collier, D.C., Walls, D., 1964. Laboratory Techniques in Botany. Butterworths, London.
  • Ramalingam, S., Rajendran, S., Ganesan, P., Govindasamy, M., 2018. Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine—a review. Renew. Sust. Energ. Rev. 81, 775-788.
  • Rocha, J.F., Pimentel, R.R., Machado, S.R., 2011. Estruturas secretoras de mucilagem em Hibiscus pernambucensis Arruda (Malvaceae): distribuição, caracterização morfoanatômica e histoquímica. Acta Bot. Bras. 25, 51-763.
  • Rodrigues, I.M.C., Souza Filho, A.P.S., Ferreira, F.A., Ilkiu-Borges, F., Gurgel, E.S.C., 2009. Anatomia e histoquímica das folhas de Senna alata. Planta Daninha 27, 515-526.
  • Silva, C.M., Bolzan, A.A., Heinzmann, B.M., 2006. Alcalóides pirrolizidínicos em espécies do gênero Senecio. Quím. Nova. 29, 1047-1053.
  • Silva, M.S., Reis, C., Pontes-Pires, A.F.P., 2012. Anatomical characteristics of leaf of five species of family Fabaceae found in Sinop, MT. Sci. Electron. Arch. 1, 16-19.
  • Silva, N.F., Arruda, R.C.O., Alves, F.M., Sartori, A.L.B., 2018. Leaflet anatomy of the Dipterygeae clade (Faboideae: fabaceae): evolutionary implications and systematics. Bot. J. Linn. Soc. 187, 99-117.
  • Simões, M.O.M., Lopes, P.S.N., Oliveira, M.N.S., Junior, E.M.F., Ribeiro, L.M., 2003. Estudo anatômico do mesofilo foliar de Albizia spp (Leguminosae/Mimosoideae). Rev. Unimontes Científica 5, 1-9.
  • Solereder, H., 1908. Systematic anatomy of the dicotyledons. Introduction, polypetalae, Gamopetalae. Oxford at the Carendon press , .
  • Soriano, M., Kainer, K.A., Staudhammer, C.L., Soriano, E., 2012. Implementing multiple forest management in Brazil nut-rich community forests: effects of logging on natural regeneration and forest disturbance. Forest Ecol. Manag. 268, 92-102.
  • Sousa, M.A.R., Moutinho, V.H.P., Silva, S.S., 2007. Levantamento das espécies comercializadas vernacularmente como cumaru no Estado do Pará. Rev. Bras. Biocienc. 5, 81-83.
  • Sudam, 1984. Atlas Climatológico da Amazônia Brasileira. SUDAM/PHCA, Belém.
  • Sverdsen, A.B., Verpoorte, R., 1983. Chromatography of Alkaloids. Elsevier Scientific Publish Company, New York.
  • Takemoto, E., Okada, I.A., Garbelotti, M.M., Tavares, M., Aued-Pimenel, S., 2001. Composição química da semente e do óleo de baru (Dipteryx alada Vog.) nativo do município de Pirenópolis, Estado de Goiás. Rev. Inst. Adolfo Lutz 60, 113-117.
  • Teixeira, S.P., Gabrielli, A.C., 2000. Anatomia de eixo vegetativo de Dahlstedtia pinna (Benth.) Malme e D. pentaphylla (Taub.) Burk (Leguminosae, Papilionoideae). Rev. Bras. Bot. 23, 1-11.
  • Thadeo, M., Meira, R.M.S.A., Azevedo, A.A., Araújo, J.M., 2009. Anatomia e histoquímica das estruturas secretoras da folha de Casearia decandra Jacq. (Salicaceae). Rev. Bras. Bot. 32, 329-338.
  • Tomlinson, P.B., 1969. Anatomy of the Monocotyledons III. Commelinales - Zingiberales. Clarendon press, Oxford.
  • Uchida, T., Campos, M.A., 2000. Influência do sombreamento no crescimento de mudas de cumaru (Dipteryx odorata (Aubl.) Willd. Fabaceae), cultivadas em viveiro. Acta Amaz. 30, 107-114.

Publication Dates

  • Publication in this collection
    17 Oct 2019
  • Date of issue
    Jul-Aug 2019

History

  • Received
    4 Feb 2019
  • Accepted
    15 May 2019
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br