Acessibilidade / Reportar erro

Annonaceous acetogenins: A comparative analysis of insecticidal activity

Acetogeninas de Anonáceas: uma análise comparativa de sua atividade inseticida

Abstract:

The Annonaceae family besides its commercial value ( Annona cherimola, , A. macroprophyllata, A. muricata, A. reticulata, A. purpurea , A. squamosa, Annona x atemoya) also produces several active secondary metabolites. Among these metabolites, Annonaceous acetogenins which are exclusive in this family, are reported with insecticidal activity on various species of insects that are crop pests and disease vectors. This review systematizes what is reported in the scientific literature about them: aspects such as the plant species from which the acetogenins come, and the insecticidal potential using the comparative activity index; it also takes into account lethality, morphological, physiological, and behavioral changes, including deterrent and anti-feeding effects. Eighty-five annonaceous acetogenins are documented on thirty species of insects, as well as toxic activities at various stages of development, broad-spectrum, and differential. The studies on Aedes aegypti (Diptera) and Spodoptera frugiperda (Lepidoptera) and the activity of squamocin on fifteen species of insects stand out. Annonaceous acetogenins are toxic at low concentrations, considering evaluation standards and comparison with commercial insecticides, and are active at various stages of insect development. The low proportion of studied species of the Annonaceae means the opportunity to find molecules with this biological potential, and an argument for its conservation.

Index terms
Annonaceae; Aedes aegypti; Spodoptera frugiperda; squamocin; annonacin; asimicin

Resumo:

A família Annonaceae possui espécies frutícolas que, além do valor comercial ( Annona cherimola, A. macroprophyllata, A. muricata, A. reticulata, A. purpurea, A. squamosa e Annona x atemoya), produzem diversos metabólitos especializados muito ativos. Dentre estes, relata-se o grupo das acetogeninas, que são moléculas específicas da família e que apresentam atividade inseticida em várias espécies de insetos, que são pragas de culturas e vetores de doenças. Esta revisão sistematiza o que é relatado na literatura científica sobre acetogeninas: tais como acedas espécies vegetais de onde provêm e seu potencial inseticida referido peloíndice comparativo de atividade; também leva em consideração a letalidade, as alteraçõesmorfológicas,fisiológicas e comportamentais, incluindo efeitos dissuasores eantialimentares. Oitenta e cinco acetogeninas anonáceas estão documentadas com atividades sobre trinta espécies de insetos, com atividades tóxicas em vários estágios de desenvolvimento, comamplo espectro de ação e de modo diferencial. Destacam-se os estudos sobre Aedes aegypti(Diptera) e Spodoptera frugiperda (Lepidoptera) e a atividade da acetogenina squamocinasobre quinze espécies de insetos. Acetogeninas anonáceas são tóxicas em baixasconcentrações, considerando padrões de avaliação e comparação com inseticidas comerciais, e são ativas em vários estágios de desenvolvimento do inseto. A baixa proporção de espécies estudadasda família Annonaceae significa a oportunidade de encontrar muito mais moléculas com essepotencial biológico, e um argumento para sua conservação.

Termos para indexação
Annonaceae; Aedes aegypti; Spodoptera frugiperda; esquamocina; anonacina; asimicina

Introduction

Over millions of years, herbivorous insects developed a series of behavioral and physiological mechanisms that allowed them to take advantage of plants as a food resource while evading their morphological and chemical protection ( BRATTSTEN, 1988 BRATTSTEN, L. Enzymic adaptations in leaf-feeding insects to host-plant allelochemical. Journal of Chemical Ecology, New York, v.14, n.10, p.1919-39, 1988. ; WAR et al., 2012 WAR, A.; PAULRAJ, M.; AHMAD, T.; BUHROO, A.; HUSSAIN, B.; IGNACIMUTHU, S.; SHARMA, H. Mechanisms of plant defense against insect herbivores. Plant Signaling e Behavior, Austin, v.7, n.10, p.1306-20, 2012. ). With the emergence of crops, some insects proliferated, becoming pests that nowadays damage crops, totally or partially. In the search for new forms of control that are friendly to the environment, molecules with insecticidal activity have been detected from the secondary metabolism of plants that are not usually the target of pests. Among the most powerful are the so-called “annonaceous acetogenins”.

Annonaceous acetogenins (ACGs) are a group of secondary metabolites exclusive to the Annonaceae family. They are made of 35 to 37 carbon atoms, with a long alkyl chain that ends with a substituted methyl lactone ring, α, β unsaturated, saturated, or as a ketolactone.

The alkyl chain can have double or triple bonds, oxygenated substituents such as ketones, hydroxyls, epoxides, tetrahydrofuran (THF), or tetrahydropyran (THP) rings ( CAVÉ et al., 1997 CAVÉ, A.; FIGADÈRE, B.; LAURENS, A.; CORTÉS, D. Acetogenins from Annonaceae. Fortschritte der Chemie organischer Naturstoffe, New York, v.70, p.81-288, 1997. ; LIAW et al., 2016 LIAW, C.C.; LIOU, J.R.; WU, T.Y.; CHANG, F.R.; WU, Y.C. Acetogenins from Annonaceae. In: KINGHORM, A.D.; FALK, H.; GIBBONS, S.; KOBAYASHI, J. Progress in the chemistry of organic natural products. London: Springer, 2016. v.101. p.113-230. ).

Since its discovery, and because of the finding of the toxic and antiproliferative potential that accompanies these molecules ( JOLAD et al., 1982 JOLAD, D.; HOFFMANN, J.; SCHRAM, K.; COLE, J. Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). Journal of Organic Chemistry, Washington, v.47, p.3151-3153, 1982. ), several investigations have focused on their search and the determination of their biological spectrum and pharmaceutical potential. Due to the vast information on the insecticidal activity of ACGs, in this paper is made a recount of the available data on the chemical structure and species from which these secondary metabolites have been isolated. Also, the insecticide potential on various insects, generally crop pests, and the activity of the ACGs in the stages of development are systematized and compared. Systematic and coordinated studies will allow for shortening the research times on the insecticidal capacity of these molecules.

Materials and Method

A retrospective bibliographic review was carried out, since January 2022, about the insecticidal activity reported in the literature about annonaceous acetogenins. The words used for the search were: secondary metabolites of annonaceous, annonaceous acetogenins, acetogenins, acetogenins toxicity, annonaceous toxicity, acetogenins activity, insecticidal activity of acetogenins, toxic metabolites, insecticidal activity of annonaceous, acetogenins insects, acetogenins against insects, acetogenins pests, acetogenins pesticides, pests of annonaceous, bioactive acetogenins, linear acetogenins, mono-tetrahydrofuran acetogenins, tetrahydrofuran acetogenins, lactone acetogenins, acetogenins action, acetogenins inhibitor, annonaceous extracts, acetogenins seeds, acetogenins leaves, acetogenins roots, acetogenins fruits, acetogenins plants, new acetogenins, novel acetogenins. Compound synonyms were also checked to avoid duplication in Cavé et al. (1997 CAVÉ, A.; FIGADÈRE, B.; LAURENS, A.; CORTÉS, D. Acetogenins from Annonaceae. Fortschritte der Chemie organischer Naturstoffe, New York, v.70, p.81-288, 1997. ) and on the National Center for Biotechnology Information PubChem website (https://pubchem.ncbi.nlm.nih.gov). In addition, the names of the Annonaceae species in “Tropicos” of the Missouri Botanical Garden (http://www.tropicos.org/) were updated.

To compare and relativize the insecticidal activity between acetogenins, the amounts of ACGs used were converted to μmol, and the Comparative Activity Index (CAI) was calculated: CAI= % mortality/acetogenin concentration (μmol) ( DE-LA-CRUZCHACÓN et al., 202 DE-LA-CRUZ-CHACÓN, I.; CHONG-RODRÍGUEZ, E.A.; RILEY-SALDAÑA, C.A.; LÓPEZ-FERNÁNDEZ, N.Y.; GONZÁLEZ-ESQUINCA, A.R. Estudios de la actividad antifúngica de anonáceas de la Selva Baja Caducifolia de Chiapas. In: MONTALVO-GONZÁLEZ, E.; CHACÓN-LÓPEZ, M.A.; GUTIÉRREZ-MARTÍNEZ, P.; SÁNCHEZ BURGOS, J. Anonáceas, plantas antiguas, estudios recientes. México: Samsara Editorial, 2020. p.114-26. 0). The data was transformed to log10.

Results and discussion

1. Chemical diversity of annonaceous acetogenins and their biological potential

The Annonaceae family comprises about 130 genera and more than 2,000 species. To date, many biological activity studies have been carried out with organic extracts obtained from 42 species of these plants, assessing their potential in controlling 60 species of insects ( KRINSKI et al., 2014 KRINSKI, D.; MASSAROLI, A. Nymphicidal effect of vegetal extracts of Anonna mucosa and Anonna crassiflora (Magnoliales, Annonaceae) against rice stalk stink bug, Tibraca limbativentris (Hemiptera, Pentatomidae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.225-242, 2014. Número especial ). There are reported 535 ACGs obtained from 16 genera and 59 species of plants ( NESKE et al., 2020 NESKE, A.; RUIZ HIDALGO, J.; CABEDO, N.; CORTES, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry, Oxford, v.174, p.112332, 2020. ). Of these, 85 molecules with insecticidal activity are documented, 35 are of the mono-THF rings type structure, 30 are of the adjacent bis-THF rings type, six non-adjacent bis-THF rings, and one with non-adjacent THF-THP rings ( Table 1).

There are also documented 13 acetogenins with chemical transformations (derivatives) (two mono-THF rings and 11 adjacent bis- THF rings), originally isolated from 11 species of the genus Annona, two from Asimina, one from Disepalum, and another from Goniothalamus ( Table 2).

Table 1.
Types of Annonaceae acetogenins with insecticidal activity.

Table 2
Acetogenins isolated from Annonaceae species.

The count indicates that 16 ACGs with some insecticidal activity have been isolated from A. montana and A. mucosa (formerly Rollinia mucosa), 14 from A. squamosa, 13 from A.cherimola, and nine from A. muricata; and from one to eight ACGs of the other species.

Some ACGs are common, for example rolliniastatin- 2 is in A. bullata ( HUI et al., 1989 HUI, Y.H.; RUPPRECHT, J.K.; LIU, M.; ANDERSON, J.E.; SMITH, D.L.; CHANG, C.J.; MCLAUGHLIN, J.L. Bullatacin and bullatacinone: two highly potent bioactive acetogenins from Annona bullata. Journal of Natural Products, Washington, v.52, n.3, p.463-477, 1989. ), A. cherimolia ( GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ), A. emarginata ( TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ), A. montana ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ), A. mucosa ( HE et al., 1997 HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997. ) and A. squamosa ( LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ), or even in different genera such as the annonacin isolated from Annona species ( ÁLVAREZ COLOM et al., 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ; DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. , 2012 DI TOTO BLESSING, L.; RAMOS, J.; DIAZ, S.; ALTABEF, A.B.; BARDÓN, A.; BROVETTO, M.; SEOANE, G.; NESKE, A. Insecticidal properties of annonaceous acetogenins and their analogues. Interaction with lipid membranes. Natural Product Communications, Ohio, v.7, p.1-5, 2012. , 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ; DOMÍNGUEZ-MARTÍNEZ et al., 2003 DOMÍNGUEZ-MARTÍNEZ, VG.; MARTÍNEZ-VÁZQUEZ, M.; COLAR GÓMEZ, E.; ATZIN GARCÍA, A.; CHIMALPOPOCA, F.L. Pupicidal activity of annonacin for Aedes aegypti (L.) (Diptera: Culicidae). Folia Entomológica Mexicana, Estado de México, v.42, n.3, p.349-58, 2003. ; GUADAÑO et al., 2000 GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000. ; HE et al. 1997 HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997. ; KAWAZU et al., 1989 KAWAZU, K.; ALCANTARA, J.; KOBAYASHI, A. Isolation and structure of neoannonin, a novel insecticidal compound from the seeds of Annona squamosa. Agricultural and Biological Chemistry, Tokyo, v.53, n.10, p.2719-2722, 1989. ; LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ; RODRIGUES et al., 2019 RODRIGUES, A.M.; SILVA, A.A.S.; PINTO, C.C.C.; SANTOS, D.L.D.; FREITAS, J.C.C.D.; MARTINS, V.E.P.; MORAIS, S.M.D. Larvicidal and enzymatic inhibition effects of Annona muricata seed extract and main constituent annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharmaceuticals, Basel, v.12, n.3, p.112, 2019. ; RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) and Goniothalamus ( GOH et al., 1995 GOH, S.H.; EE, G.C.L.; CHUAH, C.H.; WEI, C. Styrylpyrone derivatives from Goniothalamus dolichocarpus. Australian Journal of Chemistry, Melbournem v.48, n.2, p.199-205, 1995. ). These rather circumstantial findings imply conserved biosynthetic pathways that suggest a genetic and or evolutionary closeness.

Secondary metabolites generally have an organ-specific distribution ( GONZÁLEZ-ESQUINCA et al., 2014 GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I.; CASTRO-MORENO M.; OROZCO-CASTILLO, J.A.; RILEY-SALDAÑA, C.A. Alkaloids and acetogenins in Annonaceae development: Biological considerations. Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.001-016, 2014. Número especial ; RILEY-SALDAÑA et al., 2017 RILEY-SALDAÑA, C.A.; CRUZ-ORTEGA, M.R.; MARTÍNEZ VÁZQUEZ, M.; DE-LA-CRUZ-CHACÓN, IVÁN.; GONZÁLEZ-ESQUINCA, A.R. Acetogenins and alkaloids during the initial development of Annona muricata L. (Annonaceae). Zeitschrift für Naturforschung C, Tübingen, v.72, n.11-12, p.497-506, 2017. ). In the case of ACGs, its largest presence is in the oily endosperm of its seeds ( LIAW et al., 2016 LIAW, C.C.; LIOU, J.R.; WU, T.Y.; CHANG, F.R.; WU, Y.C. Acetogenins from Annonaceae. In: KINGHORM, A.D.; FALK, H.; GIBBONS, S.; KOBAYASHI, J. Progress in the chemistry of organic natural products. London: Springer, 2016. v.101. p.113-230. ). This fact indicates that is preferable the search for ACGs that does not imply the destruction of the plants, but rather obtaining them directly from seeds. Other acetogenins are also isolated from stems, leaves, and branches.

The insecticidal activity of ACGs has been evaluated in 30 species of insects, 24 of them are crop pests, five disease vectors, and one of them is considered an urban pest. These insects are distributed in seven orders, especially between Coleoptera and Lepidoptera ( Table 3).

Table 3.
Insect pests and disease vectors.

Most of the reports refer to the control of Aedes aegypti (48 ACGs) and Spodoptera frugiperda (42 ACGs), species that cause significant damage to sectors of the world population.

For example, S. frugiperda, also known as the fall armyworm, threatens food security by being a pest of more than 80 species of crops, such as corn, wheat, rice, sugar cane, and cotton ( FAO, 2022 FAO - Food and Agricultural Organization of the United Nations. Acción mundial de lucha contra el gusano cogollero del maíz. 2022. Disponível em: https://www.fao.org/fall-armyworm/background/es/. Acesso em: 1 Jan. 2022.
https://www.fao.org/fall-armyworm/backgr...
); and A. aegypti is a transmitter of diseases such as yellow fever, Zika, chikungunya, and dengue ( KRAEMER et al., 2019 KRAEMER, M.U.; REINER JR, R.C.; BRADY, O.J.; MESSINA; J.P.; GILBERT, M.; PIGOTT, D.M.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, London, v.4, p.854-63, 2019. ; WHO, 2022 WHO - World Health Organization. Chikungunya. 2022. Disponível em:https://www.who.int/health-topics/chikungunya#tab=tab_1. Acesso em: 10 Jan. 2022
https://www.who.int/health-topics/chikun...
).

Of the 85 acetogenins reported with insecticidal activity, those with the widest spectrum of activity are squamocin on 15 species of insects, followed by asimicin in nine, annonacin in eight, and rolliniastatin-1 and rolliniastatin- 2 in seven species ( Table 4). These data may be related to their abundance in some Annonaceae, their relative easy extraction, their high toxicity, or also the fact that they were among the first isolated acetogenins (1986-1989) ( FUJITOMO et al., 1988 FUJIMOTO, Y.; EGUCHI, T.; KAKINUMA, K.; IKEKAWA, N.; SAHAI, M.; GUPTA, Y. Squamocin, a new cytotoxic bis-tetrahydrofuran containing acetogenin from Annona squamosa. Chemical and Pharmaceutical Bulletin, Tokyo, v.36, n.12, p.4802-6, 1988. ; HUI et al., 1989 HUI, Y.H.; RUPPRECHT, J.K.; LIU, M.; ANDERSON, J.E.; SMITH, D.L.; CHANG, C.J.; MCLAUGHLIN, J.L. Bullatacin and bullatacinone: two highly potent bioactive acetogenins from Annona bullata. Journal of Natural Products, Washington, v.52, n.3, p.463-477, 1989. ; PETTIT et al., 1987 PETTIT, G.R.; CRAGG, G.M.; POLONSKY, J.; HERALD, D.L.; GOSWAMI, A.; SMITH, C.R.; MORETTI, C.; WEISLEDER, D. Isolation and structure of rolliniastatin 1 from the South American tree Rollinia mucosa. Canadian Journal of Chemistry, Ottawa, v.65, n.6, p.1433-1435, 1987. , 1989 PETTIT, G.; RIESEN, R.; LEET, J.; POLONSKY, J.; SMITH, C.; SCHMIDT, J.; DUFRESNE, C.; SCHAUFELBERGER, D.; MORETII, C. Isolation and structure of rolliniastatin 2: a new cell growth inhibitory acetogenin from Rollinia mucosa. Heterocycles, Tokyo, v.28, n.1, p.213-7, 1989. ; RUPPRECHT et al., 1986 RUPPRECHT, J.K.; CHANG, C.J.; CASSADY, J.M.; MCLAUGHLIN, J.L.; MIKOLAJCZAK, K.L.; WEISLEDER, D. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae). Heterocycles, Tokyo, v.24, n.5, p.1197-201, 1986. ).

Table 4
Annonaceae acetogenins vs insects.

In the search for targets of insecticidal activity, the tests were carried out at various stages of the development of the insects, including eggs (1%), larvae (54%), pupae (10%), and or adults (23%) to holometabolous insects, and nymphs (7%) and or adults (5%) for hemimetabolous organisms. For example, squamocin activity is reported in larvae, adults, nymphs, and pupae (eight, five, two, one studies, respectively) ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. , 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. , 2010 ÁLVAREZ COLOM, O.; SALVATORE, A.; WILLINK, E.; ORDÓÑEZ, R.; ISLA, M.I.; NESKE, A.; BARDÓN, A. Insecticidal, mutagenic and genotoxic evaluation of annonaceous acetogenins. Natural Product Communications, Ohio, v.5, n.3, p.391-4, 2010. ; COSTA et al., 2014 COSTA, M.S.; COSSOLIN, J.F.; PEREIRA, M.J.; SANT'ANA, A.E.; LIMA, M.D.; ZANUNCIO, J.C.; SERRÃO, J.E. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae). Toxins, Basel, v.6, n.4, p.1169-76, 2014. , 2016a COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a. , 2016b COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-40, 2016b. , 2018 COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018. ; FIAZ et al., 2018 FIAZ, M.; MARTÍNEZ, L.C.; DA SILVA COSTA, M.; COSSOLIN, J.F.S.; PLATA-RUEDA, A.; GONZAZA GONÇALVES, W.; GOULART SANT’ANA, A.E.; COLA ZANUNCIO, J.; SERRÃO, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environment Safety, Amsterdam, v.156, p.1-8, 2018. ; GUADAÑO et al., 2000 GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000. ; LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ; OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2021 RUIZ HIDALGO, J.R.; MURÚA, M.G.; NESKE, A. A semi-field approach to testing botanical insecticides. Effects of natural and analogues annonaceous acetogenins on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.10, n.4, p.458-68, 2021. ; TOLOSA et al., 2014 TOLOSA, D.; RUIZ HIDALGO, J.; SAL, P.; POPICH, S.; BARDÓN, A.; NESKE, A. Insecticidal effects of the Annonaceous acetogenins squamocin and the acetogenin fraction of seeds of Rollinia occidentalis on soybean and corn pests. Journal of Agricultural Chemistry and Environment, Irvine, v.3, n.4, p.156-160, 2014. ). Most of the experiments are oriented toward the larvae ( Figure 1). The analyzes of the insecticidal activity of the ACGs are carried out using routes of administration topically, by ingestion or injection ( ÁLVAREZ COLOM et al., 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ; ANSANTE et al., 2015 ANSANTE, T.F.; RIBEIRO, L.P.; BICALHO, K.U.; FERNANDES, J.B.; SILVA, M.F.G.F.; VIEIRA, P.C.; VENDRAMIM, J.D. Secondary metabolites from Neotropical Annonaceae: Screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Industrial Crops e Products, Amsterdam, v.74, p.969-76. 2015. ; OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ). Any variant of the chemo application is toxic.

Figure 1
Annonaceae acetogenins against insect development stages.

2. Comparative analysis of the potency and spectrum of ACGs

Consumption or exposure to ACGs causes behavioral, morphological, and or physiological changes in insects, although they can also be toxic and cause death, depending on the molecule, concentration, exposure time, insect, and stage of development ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. , 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ; HE et al., 1997 HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997. ; KAWAZU et al., 1989 KAWAZU, K.; ALCANTARA, J.; KOBAYASHI, A. Isolation and structure of neoannonin, a novel insecticidal compound from the seeds of Annona squamosa. Agricultural and Biological Chemistry, Tokyo, v.53, n.10, p.2719-2722, 1989. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. , 2021 RUIZ HIDALGO, J.R.; MURÚA, M.G.; NESKE, A. A semi-field approach to testing botanical insecticides. Effects of natural and analogues annonaceous acetogenins on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.10, n.4, p.458-68, 2021. ). In this section, the ACGs are grouped and documented with an effect equal to or greater than 50% in [1.] Lethality and [2.] Morphological, physiological, and behavioral changes, including the deterrent and anti-feeding effects of the ACGs. For this, is used the Comparative Activity Index (CAI).

3. Lethality

According to the Comparative Activity Index (CAI), the most toxic acetogenin is squamocin (adjacent bis-THF rings), on the midgut model of A. aegypti larvae ( COSTA et al., 2016a COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a. ) with a CAI of 6.75. This molecule shows low CAI with various insect species and developmental stages ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. , 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. , 2010 ÁLVAREZ COLOM, O.; SALVATORE, A.; WILLINK, E.; ORDÓÑEZ, R.; ISLA, M.I.; NESKE, A.; BARDÓN, A. Insecticidal, mutagenic and genotoxic evaluation of annonaceous acetogenins. Natural Product Communications, Ohio, v.5, n.3, p.391-4, 2010. ; COSTA et al., 2014 COSTA, M.S.; COSSOLIN, J.F.; PEREIRA, M.J.; SANT'ANA, A.E.; LIMA, M.D.; ZANUNCIO, J.C.; SERRÃO, J.E. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae). Toxins, Basel, v.6, n.4, p.1169-76, 2014. , 2016a COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a. , 2016b COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-40, 2016b. , 2018 COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018. ; FIAZ et al., 2018 FIAZ, M.; MARTÍNEZ, L.C.; DA SILVA COSTA, M.; COSSOLIN, J.F.S.; PLATA-RUEDA, A.; GONZAZA GONÇALVES, W.; GOULART SANT’ANA, A.E.; COLA ZANUNCIO, J.; SERRÃO, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environment Safety, Amsterdam, v.156, p.1-8, 2018. ; GUADAÑO et al., 2000 GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000. ; LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ; OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. ; TOLOSA et al., 2014 TOLOSA, D.; RUIZ HIDALGO, J.; SAL, P.; POPICH, S.; BARDÓN, A.; NESKE, A. Insecticidal effects of the Annonaceous acetogenins squamocin and the acetogenin fraction of seeds of Rollinia occidentalis on soybean and corn pests. Journal of Agricultural Chemistry and Environment, Irvine, v.3, n.4, p.156-160, 2014. ).

An example of the broad spectrum of acetogenins is documented in the asimicin acetogenin (adjacent bis-THF rings), which has larvicidal activity on several insects, such as Acalymma vittatum, Epilachna varivestis ( MIKOLAJCZAK et al., 1988 MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988. , 1989 MIKOLAJCZAK, K.; MCLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins. [Patent number: 4.855.319, Aug. 8, 1989]. Washington: Secretary of Agriculture, 1989. ), Callosobruchus chinensis (Coleoptera) ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ), A. aegypti, Calliphora vicina (Diptera) ( HE et al., 1997 HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997. ; MIKOLAJCZAK et al., 1988 MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988. ), Aphis gossypii (Hemiptera) ( MIKOLAJCZAK et al., 1988 MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988. ), Blatella germanica (Blattodea) ( ALALI et al., 1998 ALALI, F.; KAAKEH, W.; BENNETT, G.; MCLAUGHLIN, J. Annonaceous acetogenins as natural pesticides: potent toxicity against insecticide-susceptible and -resistant German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology, Concord, v.91, n.3, p.641-9, 1998. ), Ostrinia nubilalis ( LEWIS et al., 1993 LEWIS, M.; ARNASON, J.; PHILOGENE, B.J.R.; RUPPRECHT, J.K.; MCLAUGHLIN, J.L. Inhibition of respiration at Site I by asimicin, an insecticidal acetogenin of the pawpaw, Asimina triloba (Annonaceae). Pesticide Biochemistry and Physiology, Orlando, v.45, p.15-23, 1993. ) and S. frugiperda (Lepidoptera) ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ). Likewise, the squamocin acetogenin has toxic activity on the dipterous A. aegypti ( COSTA et al., 2014, 2016a COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a. ; LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ), the Lepidoptera Anticarsia gemmatalis ( FIAZ et al., 2018 FIAZ, M.; MARTÍNEZ, L.C.; DA SILVA COSTA, M.; COSSOLIN, J.F.S.; PLATA-RUEDA, A.; GONZAZA GONÇALVES, W.; GOULART SANT’ANA, A.E.; COLA ZANUNCIO, J.; SERRÃO, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environment Safety, Amsterdam, v.156, p.1-8, 2018. ), S. frugiperda ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2021 RUIZ HIDALGO, J.R.; MURÚA, M.G.; NESKE, A. A semi-field approach to testing botanical insecticides. Effects of natural and analogues annonaceous acetogenins on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.10, n.4, p.458-68, 2021. ; TOLOSA et al., 2014 TOLOSA, D.; RUIZ HIDALGO, J.; SAL, P.; POPICH, S.; BARDÓN, A.; NESKE, A. Insecticidal effects of the Annonaceous acetogenins squamocin and the acetogenin fraction of seeds of Rollinia occidentalis on soybean and corn pests. Journal of Agricultural Chemistry and Environment, Irvine, v.3, n.4, p.156-160, 2014. ), Crocidolomia binotalis and Plutella xylostella ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ), the beetles C. chinensis, Henosepilachna vigintioctopunctata ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ), Leptinotarsa decemlineata ( GUADAÑO et al., 2000 GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000. ), the Hemiptera Oncopeltus fasciatus ( ÁLVAREZ COLOM et al., 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ), and Nephotettix cincticeps ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ), and the orthopteran Locusta migratoria ( LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ).

Surveys show that the toxicity of acetogenins is also different between organisms and stages of development, however, the comparison of potency reveals the absence of standardized tests that give certainty of the toxicity of the ACGs. For example, with the same concentration on S. frugiperda larvae, annonacin (ACG mono THF) is reported with mortality rates of 5% (CAI 1.47) (RUIZ HIDALGO et al., 2018), 50% (CAI 2.47) (DI TOTO BLESSING et al., 2010) and 70% (CAI 2.62) (DI TOTO BLESSING et al., 2012, 2015). Other ACGs, including semi-synthetic ones, with variations in their potency on this insect, are annonacin 3 OAc 5% (CAI 1.56) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) or 75% (CAI 2.73) ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ), annonacin 4 OAc 10% (CAI 1.88) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) or 60% (CAI 2.66), itrabin 5% (CAI 1.47) ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ) or 45% (CAI 2.43) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ), itrabin 3 OAc 10% (CAI 1.86) ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ) or 65% (CAI 2.67) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) rolliniastatin-2 5% (CAI 1.49) ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ) or 100% (CAI 2.79) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ; TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ).

It is also evident that the response of insects to ACGs is variable so that at the same concentration, a compound can be more or less active. For example, annonacin causes 70% mortality in A. aegypti (CAI 3.62) ( ALKOFAHI et al., 1988 ALKOFAHI, A.; RUPPRECHT, K.J.; SMITH, D.L.; CHANG, CH.J.; MCLAUGHLIN, J.L. Goniothalamicin and annonacin: Bioactive acetogenins from Goniothalamus giganteus (Annonaceae). Experientia, Basel, v.44, p.83-5, 1988. ) and only 23% in O. fasciatus (CAI 3.14) ( ÁLVAREZ COLOM et al., 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ), while asimicin shows 85% activity (CAI 2.72) on S. frugiperda ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ), 100% (CAI 2.79) on Aedes aegypti (Diptera) and E. varivestis (Coleoptera) and 20% for A. gossypii (CAI 2.09) ( MIKOLAJCZAK et al., 1988, 1989 MIKOLAJCZAK, K.; MCLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins. [Patent number: 4.855.319, Aug. 8, 1989]. Washington: Secretary of Agriculture, 1989. ); squamocin, shows 30% (CAI 2.27) activity on M. persicae (Hemiptera) ( GUADAÑO et al., 2000 GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000. ), 100% for A. egypti (CAI 2.79) ( COSTA et al., 2014 COSTA, M.S.; COSSOLIN, J.F.; PEREIRA, M.J.; SANT'ANA, A.E.; LIMA, M.D.; ZANUNCIO, J.C.; SERRÃO, J.E. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae). Toxins, Basel, v.6, n.4, p.1169-76, 2014. ) and for S. frugiperda (CAI 2.79) ( RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. ; TOLOSA et al., 2014 TOLOSA, D.; RUIZ HIDALGO, J.; SAL, P.; POPICH, S.; BARDÓN, A.; NESKE, A. Insecticidal effects of the Annonaceous acetogenins squamocin and the acetogenin fraction of seeds of Rollinia occidentalis on soybean and corn pests. Journal of Agricultural Chemistry and Environment, Irvine, v.3, n.4, p.156-160, 2014. ).

ACGs can affect various stages of development of insects causing up to 100% mortality of eggs, larvae, pupae, nymphs, and adults. Most of the data refer to Diptera larvae ( A. aegypti, A. albopictus, C. vicina, Culex pipiens quinquefasciatus, Drosophila melanogaster ); Lepidoptera ( A. gemmatalis, C. binotalis, Helicoverpa armigera, S.frugiperda, P. xylostella) and Coleoptera ( E. varivestis, Diabrotica undecimpunctata howardii , Phaedon cochleariae and Tribolium castaneum). In the pupae, mortality seems to be caused as a result of malformations. In the adult phase, there are many reports of coleopteorous causing damage to stored seeds, for example, L. decemlineata is susceptible to the ACGs laherradurin, rolliniastatin-1, and rolliniastatin- 2 ( GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ); O. fasciatus to the ACGs almuñequin and itrabin ( ÁLVAREZ COLOM et al., 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ) and C.chinensis to asimicin ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ) and, at this stage of development, also squamocin on the orthoptera L. migratoria ( LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ). B. germanica nymphs are highly sensitive to the acetogenins annomontacin, cherimolin-1, gigantetrocin- A, asimicin, parviflorin, and sylvaticin (100% mortality at different times 6-34 days) ( ALALI et al., 1998 ALALI, F.; KAAKEH, W.; BENNETT, G.; MCLAUGHLIN, J. Annonaceous acetogenins as natural pesticides: potent toxicity against insecticide-susceptible and -resistant German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology, Concord, v.91, n.3, p.641-9, 1998. ); and the nymphs of the Hemiptera N. cincticeps squamocin cause 100% mortality ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ). Eggs are also vulnerable to the toxic activity of ACGs, for example, neoannonacin and annonacin can cause 50% and 100% of D. melanogaster egg mortality ( KAWAZU et al., 1989 KAWAZU, K.; ALCANTARA, J.; KOBAYASHI, A. Isolation and structure of neoannonin, a novel insecticidal compound from the seeds of Annona squamosa. Agricultural and Biological Chemistry, Tokyo, v.53, n.10, p.2719-2722, 1989. ). In S. frugiperda, ACGs cause damage due to toxicity or malformations in larvae, pupae, and adults ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. , 2008 ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008. ; DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. , 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. , 2020 RUIZ HIDALGO, J.R.; GILABERT, M.; CABEDO, N.; CORTES, D.; NESKE, A. Montanacin-L and montanacin-K two previously non-described acetogenins from Annona montana twigs and leaves. Phytochemistry Letters, Amsterdam, v.38, p.78-83, 2020. ; TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ).

4. Morphological, physiological, and behavioral changes

The ACGs also cause malformations in larvae, pupae, and adults of insects, which even when they survive its toxicity end up dying due to deformations in the head, thorax, and abdomen. In A. aegypti larvae, annonacin at 0.1007 μmol·g-1 (CAI 3.0), induced changes in the opening of the anal papilla, and head deformations, as well as changes in pigmentation.

In pupae and adults, an excess of melanization and deformations were observed ( DOMÍNGUEZ-MARTÍNEZ et al., 2003 DOMÍNGUEZ-MARTÍNEZ, VG.; MARTÍNEZ-VÁZQUEZ, M.; COLAR GÓMEZ, E.; ATZIN GARCÍA, A.; CHIMALPOPOCA, F.L. Pupicidal activity of annonacin for Aedes aegypti (L.) (Diptera: Culicidae). Folia Entomológica Mexicana, Estado de México, v.42, n.3, p.349-58, 2003. ).

Morphological alterations in S. frugiperda caused by 16 natural and 6 semi-synthetic acetogenins that have toxic activity greater than or equal to 50% have been documented.

The same ACGs can cause deformations at different stages of development, for example, those caused in larvae and pupae by gigantetronenin (CAI 2.64, 2.27), densicomacin- 1 (CAI 2.38, 2.55), murihexocin-B (CAI 2.28, 2.64) and tucupentol (CAI 2.26, 2.63); in larvae and adult by annonacin (CAI 2.47, 2.75); in pupae and adults by almunequin (IAC 3.06, 2.71), itrabin (CAI 3.08, 2.52), asimicin (CAI 3.09, 1.97), cherimolin-1 (CAI 3.11, 2.73), motrilin (CAI 3.05, 2.09), cherimolin- 2 (CAI 3.06, 2.78), tucumanin (CAI 3.00, 2.40), sylvaticin (CAI 2.95, 2.28), squamocin 3 OAc (CAI 2.35, 2.27), and molvizarin 3 OAc (CAI 2.33, 1.86) or in larval pupae and adults by cis-annonacin-10-one (CAI 2.55, 2.38, 2.75) ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ; TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ).

The larval deformities included retention of residues in the head capsule and exuvia ( DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. ); in the pupae, low melanization and deformations in the wings, legs, and antenna cover were observed, while in adults malformations in the abdomen and wings were detected; these anomalies caused the death of the insects before having offspring ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. , 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ; TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ). Malformations also included damage at the cellular level, such as morphological and physiological disfigurement caused by squamocin in the digestive cells of the midgut of larvae of A. aegypti and A. gemmatalis, and in the case of the mosquito, impairment in the anal papillae of larvae and adults. Malformations also included loss of the original shape of epithelium cells, with cytoplasm highly vacuolated, and cell surface damage with loss or disorganization of microvilli ( COSTA et al., 2014 COSTA, M.S.; COSSOLIN, J.F.; PEREIRA, M.J.; SANT'ANA, A.E.; LIMA, M.D.; ZANUNCIO, J.C.; SERRÃO, J.E. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae). Toxins, Basel, v.6, n.4, p.1169-76, 2014. , 2016a COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a. , 2018 COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018. ; FIAZ et al., 2018). In the anal papillae wall of A. aegypti, vacuolization increased with cell disorganization and loss of mitochondria ( COSTA et al., 2018 COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018. ).

ACGs in plants can have powerful deterrent effects to prevent insect herbivory, for example, in vitro squamocin, at 16.08 μmol∙mL-1 causes a feeding deterrent on the butterfly Mamestra brassicae larvae ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ). This same effect is reported with asimicin at 8.04 μmol∙mL-1 on the beetle A.vittatum ( MIKOLAJCZAK et al., 1988 MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988. , 1989 MIKOLAJCZAK, K.; MCLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins. [Patent number: 4.855.319, Aug. 8, 1989]. Washington: Secretary of Agriculture, 1989. ).

Moreover, Álvarez Colom et al. (2010) ÁLVAREZ COLOM, O.; SALVATORE, A.; WILLINK, E.; ORDÓÑEZ, R.; ISLA, M.I.; NESKE, A.; BARDÓN, A. Insecticidal, mutagenic and genotoxic evaluation of annonaceous acetogenins. Natural Product Communications, Ohio, v.5, n.3, p.391-4, 2010. documented this effect on oviposition of Ceratitis capitata with itrabin at 0.05 μmol·cm-2 and squamocin at 0.05 μmol·cm-2. The addition of itrabin, molvizarin, squamocin, almuñequin, tucumanin, cherimolin-1, and cherimolin-2 to the females’ diet of this species affected the oviposition capacity without altering the viability of the eggs.

The antifeedant effects of ACGs are documented in L. decemlineata and S. frugiperda.

In adults of the beetle L. decemlineata, annonacin at 0.17 μmol·cm-2 (CAI 2.74) (GUADAÑO et al., 2000) and rolliniastatin-2 at 0.03 μmol·insect-1 (CAI 3.19) have an antifeedant effect of 50% ( GONZÁLEZ- COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ). In S. frugiperda, they are higher than 80%, caused by the ACG mono-THF: cis-annonacin-10-one at 0.17 μmol∙g of diet-1 (CAI 2.75), densicomacin-1 at 0.17 μmol∙g of diet -1 (CAI 2.68) and gigantetronenin at 0.16 μmol∙g of diet-1 (CAI 2.75) ( DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. ), with annonacin-10-one being the most potent, causing 94% ( DI TOTO BLESSING et al., 2010 DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010. ).

The low weight of the insects seems to be related to the alteration in the ability to transform food into biomass ( ÁLVAREZ COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ; DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ; TOLOSA et al., 2012 TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012. ). In S. littoralis, a significant decrease in weight gain was demonstrated by rolliniastatin-1 (0.0322 mmol⋅insect -1) ( GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ) and squamocin (0.0804 mmol⋅g of diet -1) ( ÁLVAREZ-COLOM et al., 2007 ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda. Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007. ); rolliniastatin- 1 also limited the growth of S. frugiperda to 0.16 mmol⋅g of diet-1 ( DI TOTO BLESSING et al., 2012 DI TOTO BLESSING, L.; RAMOS, J.; DIAZ, S.; ALTABEF, A.B.; BARDÓN, A.; BROVETTO, M.; SEOANE, G.; NESKE, A. Insecticidal properties of annonaceous acetogenins and their analogues. Interaction with lipid membranes. Natural Product Communications, Ohio, v.7, p.1-5, 2012. ) and 0.14 mmol⋅g-1 ( ANSANTE et al., 2015 ANSANTE, T.F.; RIBEIRO, L.P.; BICALHO, K.U.; FERNANDES, J.B.; SILVA, M.F.G.F.; VIEIRA, P.C.; VENDRAMIM, J.D. Secondary metabolites from Neotropical Annonaceae: Screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Industrial Crops e Products, Amsterdam, v.74, p.969-76. 2015. ).

Up to 13 ACGs have been reported to inhibit the larval growth of S. frugiperda. Asimicin 3 OAc ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ), itrabin 3 OAc, laherradurin, and laherradurin 3 OAc ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) caused more than 90% reduction in larvae, at concentrations from 0.13 to 0.16 μmol∙g of diet-1. The acetogenin laherradurin 3 OAc is the most potent of them, a 97% decline in the growth of the larvae of this species has been recorded (CAI 2.86). Likewise, the ACGs squamocin (ÁLVAREZ COLOM et al., 2007), annonacin 3-OAc (DI TOTO BLESSING et al., 2015), rolliniastatin- 1 (DI TOTO BLESSING et al., 2012), motrilin, squamocin 3 OAc, molvizarin 3 OAc, ( RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. ), rolliniastatin-2 3 OAc, itrabin, asimicin and cis-annonacin ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) caused a decrease of more than 50%. Moreover, squamocin inhibits the growth of other larvae, such as the cabbage moth M. brassicae at 16.08 μmol∙mL-1, the cabbage moth C.binotalis, and the nymphs of the green rice leafhoppers N. cincticeps, at 0.16 μmol∙mL-1 ( OHSAWA et al., 1991 OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991. ).

The Efficiency in the Consumption Index is used to determine the ability of insects to convert food into biomass, and this efficiency is affected after ACGs treatments.

The Efficiency in the Consumption Index is directly related to the growth rate of the insects, since the same ACGs (except for squamocin, molvizarin 3 OAc, and rolliniastatin- 2 3 OAc, which cause a decrease in the growth of the larvae) have low rates of consumption efficiency (RUIZ HIDALGO et al., 2016, 2018). Asimicin 3 OAc (0.14 μmol∙g of diet-1) (CAI 2.83), laherradurin 3 OAc (0.13 μmol∙g of diet-1) (CAI 2.84), and laherradurin (0.16 μmol∙g of diet-1) (CAI 2.76) in S. frugiperda affected about 92% of consumption, allowing only assimilation of 7% and 8% of the food (RUIZ HIDALGO et al., 2018). Motrilin (CAI 2.72) (0.16 μmol∙g of diet -1) (RUIZ HIDALGO et al., 2016), annonacin 3 OAc (0.13 μmol∙g of diet-1) (CAI 2.77) ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ) and itrabin 3 OAc (0.13 μmol∙g of diet-1) (CAI 2.76) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ), also reduced biomass gain, by 84, 82 and 80%, respectively. While squamocin 3 OAc (0.13 μmol∙g of diet-1) (CAI 2.69) ( RUIZ HIDALGO et al., 2016 RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016. ), asimicin (CAI 2.53), cis-annonacin (0.16 μmol∙g of diet-1) (CAI 2.48), itrabin (0.16 μmol∙g of diet -1) (CAI 2.66) ( RUIZ HIDALGO et al., 2018 RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018. ) and rolliniastatin-1 (0.16 μmol∙g of diet-1) (CAI 2.69) decreased more than 50% of biomass gain ( GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ).

For S. littoralisrolliniastatin-1 caused a 75% decrease in the consumption efficiency at a low concentration (0.03 μmol·insect-1). The activity of other ACGs was almost nil, with rates lower than 50%.

Annonaceae acetogenins are molecules with great biotechnological potential due to their documented insecticidal activity against different species of insects and at all stages of their development. Insects cause significant damage to the health and agricultural sectors. Asimicin was patented 34 years ago as an insecticide due to its toxicity against insects such as the Mexican bean beetle E. varivestis, the melon aphid A. gossypii, A. aegypti, and the blowfly C. vicina ( MIKOLAJCZAK et al., 1988 MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988. ).

Costa et al. (2016b) COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-40, 2016b. carried out a series of toxicological tests with squamocin on A. aegypti larvae for the use of acetogenins as insecticides, as well as to recognize the possible damage or secondary effects that the use of these molecules can cause in human cells and the natural predators of insects. This acetogenin in low concentrations (LC50= 1.60x10-5 μgmol⋅mL-1 and LC90= 0.0002 μmol⋅mL -1) caused the mortality of these organisms, while with concentrations up to 1.60 μmol⋅mL-1 it did not affect their natural predators Culex bigoti and Toxorhynchites theobaldi (Diptera), neither to leukocytes from human cells. These results suggest a possible alternative of squamocin as an insecticide shortly.

It is thought that the use of ACGs as organic insecticides is possible since their toxic activity equals or exceeds that caused by commercial insecticides. For example, squamocin exceeded the toxicity of pyrethrum on P. cochlearial (Coleoptera) and P.xylostella (Lepidoptera) ( LIEB et al., 1990 LIEB, F.; NONFON, M.; WACHENDORFF-NEUMANN, U.; WENDISCH, D. Annonacins and annonastatin from Annona squamosa. Planta Medica, New York,, v.56, n.3, p.317-319, 1990. ), and rotenone toxicity in L. migratoria cells ( LONDERSHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ). Moreover, rolliniastatin-2 has a better effect than rotenone in midgut mitochondria of Manduca sexta ( AHAMMADSAHIB et al., 199 AHAMMADSAHIB, K.I.; HOLLINGWORTH, R.M.; MCGOVREN, J.P.; HUI, Y.H.; MCLAUGHLIN, J.L. Mode of action of bullatacin: A potent antitumor and pesticidal Annonaceous acetogenin. Life Sciences, Ohio, v.53, n.14, p.1113-20, 1993. 3) and A.aegypti, as well as trilobin in A. aegypti ( HE et al., 1997 HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997. ) and rolliniastatin-1 in cells Sf-9 from S. frugiperda ( GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ). On the cockroach B. germanica, bullatalicin, sylvaticin, gigantetrocin-A, and annomontacin have equal or larger activity than hydramethylnon (amidinohydrazone), and even these four acetogenins showed low resistance, which places them as promising insecticides ( ALALI et al., 1998 ALALI, F.; KAAKEH, W.; BENNETT, G.; MCLAUGHLIN, J. Annonaceous acetogenins as natural pesticides: potent toxicity against insecticide-susceptible and -resistant German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology, Concord, v.91, n.3, p.641-9, 1998. ).

Although the toxicity of acetogenins is undeniable, other less studied chemical relationships show that some insects have adapted to the intake of these molecules, possibly using them as a defense mechanism against their predators. Such is the case of the zebra swallowtail butterfly Protographium marcellus (syn. Eurytides marcellus), whose larvae retain and sequestrate the acetogenins asimicin, bullatalicin, trilobacin, and rolliniastatin- 2, from their feeding on Asimina triloba leaves, which they preserve during their metamorphosis and store in their body and the wings tissues when they have already become butterflies ( MARTIN et al., 1999 MARTIN, J.; MADIGOSKY, S.; GU, Z.M.; ZHOU, D.; WU, J.; MCLAUGHLIN, J. Chemical defense in the zebra swallowtail butterfly, Eurytides marcellus, involving annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.62, n.1, p.2-4, 1999. ). Likewise, it is thought that when the Bephratelloides cubensis wasp ingests the acetogenins laherradurin and rolliniastatin-2 from their consumption of the endosperm of the seeds of Annona macroprophyllata, they might be transformed in the metabolism of the wasp to be used as an energy reserve, or as a source for the production of other molecules, according to the hypothesis of Durán- Ruiz et al. (2019) DURÁN-RUIZ, C.A.; CRUZ-ORTEGA, R.; ZALDÍVAR-RIVERÓN, A.; ZAVALETA-MANCERA, H.A.; DE-LA-CRUZ-CHACÓN, I.; GONZÁLEZ-ESQUINCA, A.R. Ontogenic synchronization of Bephratelloides cubensis, Annona macroprophyllata seeds and acetogenins from Annonaceae. Journal of Plant Research, Tokyo, v.132, n.1, p.81-91, 2019. .

The studies on the mechanisms of action of ACGs were done with squamocin and rolliniastatin-2 on the mitochondria of the flight muscle of blowfly Lucilia cuprina, and on P. xylostella ( LONDERHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ); and with asimicin on the midgut of larvae of the corn borer O. nubilalis ( LEWIS et al., 1993 LEWIS, M.; ARNASON, J.; PHILOGENE, B.J.R.; RUPPRECHT, J.K.; MCLAUGHLIN, J.L. Inhibition of respiration at Site I by asimicin, an insecticidal acetogenin of the pawpaw, Asimina triloba (Annonaceae). Pesticide Biochemistry and Physiology, Orlando, v.45, p.15-23, 1993. ), as well as on Sf-9 cells from the ovary of pupae of the fall armyworm S. frugiperda ( AHAMMADSAHIB et al., 1993 AHAMMADSAHIB, K.I.; HOLLINGWORTH, R.M.; MCGOVREN, J.P.; HUI, Y.H.; MCLAUGHLIN, J.L. Mode of action of bullatacin: A potent antitumor and pesticidal Annonaceous acetogenin. Life Sciences, Ohio, v.53, n.14, p.1113-20, 1993. ; GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ; HOLLINGWORTH et al., 1994 HOLLINGWORTH, R.M.; AHAMMADSAHIB, K.I.; GADELHAK. G.; MCLAUGHLIN, J.L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides. Biochemical Society Transactions, London, v.22, n.1, p.230-233, 1994. ). From this, it was determined that acetogenins inhibit mitochondrial respiration due to their specific action on NADH-ubiquinone oxidoreductase (mitochondrial Complex I), a fact widely corroborated in eukaryotic cells ( BARRACHINA et al., 2004 BARRACHINA, I.; NESKE, A.; GRANELL, S.; BERMEJO, A.; CHAHBOUNE, N.; EL AOUAD, N.; ÁLVAREZ COLOM, O.; BARDÓN, A.; ZAFRA-POLO, M.C. Tucumanin, a ß-Hydroxy-?-lactone bistetrahydrofuranic acetogenin from Annona cherimolia, is a potent Inhibitor of Mitochondrial Complex I. Planta Medica, New York, v.70, n.9, p.866-8, 2004. ; DEGLI-ESPOSTI et al., 1994 DEGLI ESPOSTI, M.; GHELLI, A.; RATTA, M.; CORTES, D.; ESTORNELL, E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochemical Journal, London, v.301, n.1, p.161-7, 1994. ; FEBRES-MOLINA et al., 2021 FEBRES-MOLINA, C.; AGUILAR-PINEDA, J.A.; GAMERO-BEGAZO, P.L.; BARAZORDA-CCAHUANA, H.L.; VALENCIA DE VERA-LÓPEZ, K.J.; DAVILA-DEL-CARPIO, G.; GÓMEZ, B. Structural and energetic affinity of annocatacin B with ND1 subunit of the human mitochondrial respiratory complex I as a potential inhibitor: an in silico comparison study with the known inhibitor rotenone. Polymers, Basel, v.13, p.1840, 2021. https://doi.org/10.3390/polym13111840
https://doi.org/10.3390/polym13111840...
; GONZÁLEZ et al., 1997 GONZÁLEZ, M.; TORMO, J.; BERMEJO, A.; ZAFRA-POLO, M.; ESTORELL, E.; CORTÉS, D. Rollimembrin, a novel acetogenin inhibitor of mammalian mitochondrial complex I. Bioorganic and Medicinal Chemistry Letters, Oxfor, v.7, n.9, p.1113-8, 1997. ; GONZÁLEZ-COLOMA et al., 2002 GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002. ; HERNÁNDEZ-FUENTES et al., 2019 HERNÁNDEZ-FUENTES, G.A.; GARCÍA-ARGÁEZ, A.N.; PERAZA CAMPOS, A.; DELGADO-ENCISO, I.; MUÑIZ-VALENCIA, R., MARTÍNEZ-MARTÍNEZ, F.J.; TONINELLO, A.; GÓMEZ-SANDOVAL, Z., MOJICA-SÁNCHEZ, J.P.; DALLA VIA, L.; PARRA-DELGADO, H. Cytotoxic acetogenins from the roots of Annona purpurea. International Journal of Molecular Sciences, Basel, v.20, n.8, p.1870, 2019. ; LONDERHAUSEN et al., 1991 LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991. ; TORMO et al., 1999 TORMO, J.; GONZÁLEZ, M.; CORTÉS, D.; STORNELL, E. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins. Archives of Biochemistry and Biophysics, Orlando, v.369, n.1, p.119-26, 1999. https://doi.org/10.1006/abbi.1999.1343
https://doi.org/10.1006/abbi.1999.1343...
; ZAFRA-POLO et al., 1996 ZAFRA-POLO, M.; GONZÁLEZ, M.; ESTORNELL, E.; SAHPAZ, S.; CORTÉS, D. Acetogenins from Annonaceae, inhibitors of mitochondrial complex I. Phytochemistry, Oxford, v.42, n.2, p.253-71, 1996. ). Toxic activity is also associated with the molecular arrangements of the polyketide structure and the formation of the chelating complex with Ca 2+ and Mg2+ that interrupts the intracellular and mitochondrial calcium homeostasis ( LIAW et al., 2011 LIAW, C.C.; LIAO, W.Y.; CHEN, C.S.; JAO, S.C.; WU, Y.C., SHEN, C.N., WU, SH. The calcium-chelating capability of tetrahydrofuranic moieties modulates the cytotoxicity of annonaceous acetogenins. Angewandte Chemie International Edition, German, v.50, n.34, p.7885-7891, 2011. ). Other studies mention that ACGs can induce cell death by autophagy ( COSTA et al., 2018 COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018. ; FIAZ et al., 2018 FIAZ, M.; MARTÍNEZ, L.C.; DA SILVA COSTA, M.; COSSOLIN, J.F.S.; PLATA-RUEDA, A.; GONZAZA GONÇALVES, W.; GOULART SANT’ANA, A.E.; COLA ZANUNCIO, J.; SERRÃO, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environment Safety, Amsterdam, v.156, p.1-8, 2018. ) or destabilize the mitochondrial membrane due to the dehydration they cause around the phosphate groups that constitute it ( DI TOTO BLESSING et al., 2015 DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda. Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015. ).

Conclusions

There are eighty-five acetogenins with insecticidal activity on thirty different insects reported in this review. Acetogenins are toxic at low concentrations, considering evaluation standards and comparison with commercial insecticides, and are active at various stages of insect development. However, there is still no clarity about the insecticidal action sites of ACGs at a cellular level. The fact that acetogenins act on a specific target, mitochondrial complex I, suggests that Annonaceae have used these molecules for years as a defense mechanism against herbivorous insects, which explains the broad spectrum and potency of their insecticide activity. The low proportion of studied species of the Annonaceae family means the opportunity to find many more molecules with this biological potential, and an argument for its conservation. A biological approach that explains the interaction of these compounds with insects that are natural pests of Annonaceae is also required, and that contributes to the resolution f ecological questions about the presence of acetogenins, as exclusive molecules, in the Annonaceae family.

Acknowledgments

The authors are thankful to the Consejo Nacional de Ciencia y Tecnología (CONACYT), and to the “Posgrado en Ciencias Biológicas”, at Universidad Nacional Autónoma de México (UNAM). This research is part of a Ph.D. Thesis lead in the ‘‘Posgrado en Ciencias Biológicas’’, UNAM.

  • AHAMMADSAHIB, K.I.; HOLLINGWORTH, R.M.; MCGOVREN, J.P.; HUI, Y.H.; MCLAUGHLIN, J.L. Mode of action of bullatacin: A potent antitumor and pesticidal Annonaceous acetogenin. Life Sciences, Ohio, v.53, n.14, p.1113-20, 1993.
  • ALALI, F.; KAAKEH, W.; BENNETT, G.; MCLAUGHLIN, J. Annonaceous acetogenins as natural pesticides: potent toxicity against insecticide-susceptible and -resistant German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology, Concord, v.91, n.3, p.641-9, 1998.
  • ALKOFAHI, A.; RUPPRECHT, K.J.; SMITH, D.L.; CHANG, CH.J.; MCLAUGHLIN, J.L. Goniothalamicin and annonacin: Bioactive acetogenins from Goniothalamus giganteus (Annonaceae). Experientia, Basel, v.44, p.83-5, 1988.
  • ÁLVAREZ COLOM, O.; NESKE, A.; POPICH, S.; BARDÓN, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda Journal of Pest Science, Heidelberg, v.80, p.63-7, 2007.
  • ÁLVAREZ COLOM, O.; BARRACHINA, I.; AYALA, I.; GONZÁLEZ, M.; MOYA, P.; NESKE, A.; BARDON, A. Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus Journal of Pest Science, Heidelberg, v.81, p.85-9, 2008.
  • ÁLVAREZ COLOM, O.; SALVATORE, A.; WILLINK, E.; ORDÓÑEZ, R.; ISLA, M.I.; NESKE, A.; BARDÓN, A. Insecticidal, mutagenic and genotoxic evaluation of annonaceous acetogenins. Natural Product Communications, Ohio, v.5, n.3, p.391-4, 2010.
  • ANSANTE, T.F.; RIBEIRO, L.P.; BICALHO, K.U.; FERNANDES, J.B.; SILVA, M.F.G.F.; VIEIRA, P.C.; VENDRAMIM, J.D. Secondary metabolites from Neotropical Annonaceae: Screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Industrial Crops e Products, Amsterdam, v.74, p.969-76. 2015.
  • BARRACHINA, I.; NESKE, A.; GRANELL, S.; BERMEJO, A.; CHAHBOUNE, N.; EL AOUAD, N.; ÁLVAREZ COLOM, O.; BARDÓN, A.; ZAFRA-POLO, M.C. Tucumanin, a ß-Hydroxy-?-lactone bistetrahydrofuranic acetogenin from Annona cherimolia, is a potent Inhibitor of Mitochondrial Complex I. Planta Medica, New York, v.70, n.9, p.866-8, 2004.
  • BRATTSTEN, L. Enzymic adaptations in leaf-feeding insects to host-plant allelochemical. Journal of Chemical Ecology, New York, v.14, n.10, p.1919-39, 1988.
  • CAVÉ, A.; FIGADÈRE, B.; LAURENS, A.; CORTÉS, D. Acetogenins from Annonaceae. Fortschritte der Chemie organischer Naturstoffe, New York, v.70, p.81-288, 1997.
  • COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One, San Francisco, v.11, n.8, p. e0160928, 2016a.
  • COSTA, M.S.; COSSOLIN, J.F.; PEREIRA, M.J.; SANT'ANA, A.E.; LIMA, M.D.; ZANUNCIO, J.C.; SERRÃO, J.E. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae). Toxins, Basel, v.6, n.4, p.1169-76, 2014.
  • COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-40, 2016b.
  • COSTA, M.S.; DE PAULA, S.O.; MARTINS, G.F.; ZANUNCIO, J.C.; SANTANA, A.E.G.; SERRÃO, J.E. Modes of action of squamocin in the anal papillae of Aedes aegypti larvae Physiological and Molecular Plant Pathology, London, v.101, p.172-177, 2018.
  • DE-LA-CRUZ-CHACÓN, I.; CHONG-RODRÍGUEZ, E.A.; RILEY-SALDAÑA, C.A.; LÓPEZ-FERNÁNDEZ, N.Y.; GONZÁLEZ-ESQUINCA, A.R. Estudios de la actividad antifúngica de anonáceas de la Selva Baja Caducifolia de Chiapas. In: MONTALVO-GONZÁLEZ, E.; CHACÓN-LÓPEZ, M.A.; GUTIÉRREZ-MARTÍNEZ, P.; SÁNCHEZ BURGOS, J. Anonáceas, plantas antiguas, estudios recientes México: Samsara Editorial, 2020. p.114-26.
  • DEGLI ESPOSTI, M.; GHELLI, A.; RATTA, M.; CORTES, D.; ESTORNELL, E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochemical Journal, London, v.301, n.1, p.161-7, 1994.
  • DI TOTO BLESSING, L.; ÁLVAREZ COLOM, O.; POPICH, S.; NESKE, A.; BARDÓN, A. Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda Journal of Pest Science, Heidelberg, v.83, p.307-10, 2010.
  • DI TOTO BLESSING, L.; RAMOS, J.; DIAZ, S.; ALTABEF, A.B.; BARDÓN, A.; BROVETTO, M.; SEOANE, G.; NESKE, A. Insecticidal properties of annonaceous acetogenins and their analogues. Interaction with lipid membranes. Natural Product Communications, Ohio, v.7, p.1-5, 2012.
  • DI TOTO BLESSING, L.E.; BUDEGUER, F.; RAMOS, J.; BARDON, A.; DÍAZ, S.; BROVETTO, M.; SEOANE, G.; NESKE, A. Structural factors of annonaceous acetogenins and their semisynthetic analogues related with the toxicity on Spodoptera frugiperda Journal of Agricultural Chemistry and Environment, Irvine, v.4, n.2, p.56-61, 2015.
  • DOMÍNGUEZ-MARTÍNEZ, VG.; MARTÍNEZ-VÁZQUEZ, M.; COLAR GÓMEZ, E.; ATZIN GARCÍA, A.; CHIMALPOPOCA, F.L. Pupicidal activity of annonacin for Aedes aegypti (L.) (Diptera: Culicidae). Folia Entomológica Mexicana, Estado de México, v.42, n.3, p.349-58, 2003.
  • DURÁN-RUIZ, C.A.; CRUZ-ORTEGA, R.; ZALDÍVAR-RIVERÓN, A.; ZAVALETA-MANCERA, H.A.; DE-LA-CRUZ-CHACÓN, I.; GONZÁLEZ-ESQUINCA, A.R. Ontogenic synchronization of Bephratelloides cubensis, Annona macroprophyllata seeds and acetogenins from Annonaceae. Journal of Plant Research, Tokyo, v.132, n.1, p.81-91, 2019.
  • EE, G.C.L.; CHUAH, C.H.; SHA, C.K.; GOH, S.H. Disepalin, a new acetogenin from Disepalum anomalum (Annonaceae). Natural Product Letters, London, v.9, p.141-51, 1996. https://doi.org/10.1080/10575639608044938
    » https://doi.org/10.1080/10575639608044938
  • FAO - Food and Agricultural Organization of the United Nations. Acción mundial de lucha contra el gusano cogollero del maíz 2022. Disponível em: https://www.fao.org/fall-armyworm/background/es/ Acesso em: 1 Jan. 2022.
    » https://www.fao.org/fall-armyworm/background/es/
  • FEBRES-MOLINA, C.; AGUILAR-PINEDA, J.A.; GAMERO-BEGAZO, P.L.; BARAZORDA-CCAHUANA, H.L.; VALENCIA DE VERA-LÓPEZ, K.J.; DAVILA-DEL-CARPIO, G.; GÓMEZ, B. Structural and energetic affinity of annocatacin B with ND1 subunit of the human mitochondrial respiratory complex I as a potential inhibitor: an in silico comparison study with the known inhibitor rotenone. Polymers, Basel, v.13, p.1840, 2021. https://doi.org/10.3390/polym13111840
    » https://doi.org/10.3390/polym13111840
  • FIAZ, M.; MARTÍNEZ, L.C.; DA SILVA COSTA, M.; COSSOLIN, J.F.S.; PLATA-RUEDA, A.; GONZAZA GONÇALVES, W.; GOULART SANT’ANA, A.E.; COLA ZANUNCIO, J.; SERRÃO, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environment Safety, Amsterdam, v.156, p.1-8, 2018.
  • FUJIMOTO, Y.; EGUCHI, T.; KAKINUMA, K.; IKEKAWA, N.; SAHAI, M.; GUPTA, Y. Squamocin, a new cytotoxic bis-tetrahydrofuran containing acetogenin from Annona squamosa Chemical and Pharmaceutical Bulletin, Tokyo, v.36, n.12, p.4802-6, 1988.
  • GOH, S.H.; EE, G.C.L.; CHUAH, C.H.; WEI, C. Styrylpyrone derivatives from Goniothalamus dolichocarpus Australian Journal of Chemistry, Melbournem v.48, n.2, p.199-205, 1995.
  • GONZÁLEZ, M.; TORMO, J.; BERMEJO, A.; ZAFRA-POLO, M.; ESTORELL, E.; CORTÉS, D. Rollimembrin, a novel acetogenin inhibitor of mammalian mitochondrial complex I. Bioorganic and Medicinal Chemistry Letters, Oxfor, v.7, n.9, p.1113-8, 1997.
  • GONZÁLEZ-COLOMA, A.; GUADAÑO, A.; DE INÉS, C.; MARTÍNEZ-DÍAZ, R.; CORTÉS, D. Selective action of acetogenin Mitochondrial Complex I inhibitors. Zeitschrift für Naturforschung C, Tübingen, v.57, n.11/12, p.1028-34, 2002.
  • GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I.; CASTRO-MORENO M.; OROZCO-CASTILLO, J.A.; RILEY-SALDAÑA, C.A. Alkaloids and acetogenins in Annonaceae development: Biological considerations. Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.001-016, 2014. Número especial
  • GUADAÑO, A.; GUTIÉRREZ, C.; DE LA PEÑA, E.; CORTÉS, D.; GONZÁLEZ-COLOMA, A. Insecticidal and mutagenic evaluation of two annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.63. n.6, p.773-6, 2000.
  • HE, K.; ZENG, L.; YE, Q.; SHI, G.; OBERLIES, N.; ZHAO, GX.; NJOKU, C.; MCLAUGHLIN, J. Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pest Management Science, West Sussex, v.49, p.372-378, 1997.
  • HERNÁNDEZ-FUENTES, G.A.; GARCÍA-ARGÁEZ, A.N.; PERAZA CAMPOS, A.; DELGADO-ENCISO, I.; MUÑIZ-VALENCIA, R., MARTÍNEZ-MARTÍNEZ, F.J.; TONINELLO, A.; GÓMEZ-SANDOVAL, Z., MOJICA-SÁNCHEZ, J.P.; DALLA VIA, L.; PARRA-DELGADO, H. Cytotoxic acetogenins from the roots of Annona purpurea International Journal of Molecular Sciences, Basel, v.20, n.8, p.1870, 2019.
  • HOLLINGWORTH, R.M.; AHAMMADSAHIB, K.I.; GADELHAK. G.; MCLAUGHLIN, J.L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides. Biochemical Society Transactions, London, v.22, n.1, p.230-233, 1994.
  • HUI, Y.H.; RUPPRECHT, J.K.; LIU, M.; ANDERSON, J.E.; SMITH, D.L.; CHANG, C.J.; MCLAUGHLIN, J.L. Bullatacin and bullatacinone: two highly potent bioactive acetogenins from Annona bullata Journal of Natural Products, Washington, v.52, n.3, p.463-477, 1989.
  • JOLAD, D.; HOFFMANN, J.; SCHRAM, K.; COLE, J. Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). Journal of Organic Chemistry, Washington, v.47, p.3151-3153, 1982.
  • KAWAZU, K.; ALCANTARA, J.; KOBAYASHI, A. Isolation and structure of neoannonin, a novel insecticidal compound from the seeds of Annona squamosa Agricultural and Biological Chemistry, Tokyo, v.53, n.10, p.2719-2722, 1989.
  • KRAEMER, M.U.; REINER JR, R.C.; BRADY, O.J.; MESSINA; J.P.; GILBERT, M.; PIGOTT, D.M.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus Nature Microbiology, London, v.4, p.854-63, 2019.
  • KRINSKI, D.; MASSAROLI, A. Nymphicidal effect of vegetal extracts of Anonna mucosa and Anonna crassiflora (Magnoliales, Annonaceae) against rice stalk stink bug, Tibraca limbativentris (Hemiptera, Pentatomidae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.225-242, 2014. Número especial
  • LEWIS, M.; ARNASON, J.; PHILOGENE, B.J.R.; RUPPRECHT, J.K.; MCLAUGHLIN, J.L. Inhibition of respiration at Site I by asimicin, an insecticidal acetogenin of the pawpaw, Asimina triloba (Annonaceae). Pesticide Biochemistry and Physiology, Orlando, v.45, p.15-23, 1993.
  • LIAW, C.C.; LIAO, W.Y.; CHEN, C.S.; JAO, S.C.; WU, Y.C., SHEN, C.N., WU, SH. The calcium-chelating capability of tetrahydrofuranic moieties modulates the cytotoxicity of annonaceous acetogenins. Angewandte Chemie International Edition, German, v.50, n.34, p.7885-7891, 2011.
  • LIAW, C.C.; LIOU, J.R.; WU, T.Y.; CHANG, F.R.; WU, Y.C. Acetogenins from Annonaceae. In: KINGHORM, A.D.; FALK, H.; GIBBONS, S.; KOBAYASHI, J. Progress in the chemistry of organic natural products. London: Springer, 2016. v.101. p.113-230.
  • LIEB, F.; NONFON, M.; WACHENDORFF-NEUMANN, U.; WENDISCH, D. Annonacins and annonastatin from Annona squamosa Planta Medica, New York,, v.56, n.3, p.317-319, 1990.
  • LONDERSHAUSEN, M.; LEICHT, W.; LIEB, F.; MOESCHLER, H.; WEISS, H. Molecular mode of action of annonins. Pesticide Sciences, Tokyo, v.33, n.4, p.427-38, 1991.
  • LUNA-CAZÁRES, L.M.; GONZÁLEZ-ESQUINCA, A.R.; DE LA CRUZ CHACÓN, I. Actividad larvicida y antibacteriana de la acetogenina laherradurina. Revista Cubana de Farmacia, La Habana, v.38, n.2, p.130-1, 2004.
  • MARTIN, J.; MADIGOSKY, S.; GU, Z.M.; ZHOU, D.; WU, J.; MCLAUGHLIN, J. Chemical defense in the zebra swallowtail butterfly, Eurytides marcellus, involving annonaceous acetogenins. Journal of Natural Products, Cincinnati, v.62, n.1, p.2-4, 1999.
  • MIKOLAJCZAK, K.; McLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.721.727, Jan. 26, 1988]. Washington: Secretary of Agriculture, 1988.
  • MIKOLAJCZAK, K.; MCLAUGHLIN, J.; RUPPRECHT, J. Control of pests with annonaceous acetogenins [Patent number: 4.855.319, Aug. 8, 1989]. Washington: Secretary of Agriculture, 1989.
  • MOESCHLER, H.; PFLÜGER, W.; WENDISCH, D. Pure annonin and a process for the preparation thereof [Patent number: 4.689.232, Aug. 25, 1987]. Federal Republic of Germany: Bayer Aktiengesellschaft, 1987.
  • NESKE, A.; RUIZ HIDALGO, J.; CABEDO, N.; CORTES, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry, Oxford, v.174, p.112332, 2020.
  • OHSAWA, K.; ATSUZAWA, S.; MITSUI, T.; YAMAMOTO, I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. Journal of Pesticide Science, Tokyo, v.16, n.1, p.93-6, 1991.
  • PARVIN, S.; ISLAM, E.; RAHMAN, M.; HAQUE, E. Pesticidal activity of pure compound annotemoyin-1 isolated from chloroform extract of the plant Annona squamosa Linn. against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Biological Sciences, Karachi, v.6, n.12, p.1088-91, 2003.
  • PETTIT, G.R.; CRAGG, G.M.; POLONSKY, J.; HERALD, D.L.; GOSWAMI, A.; SMITH, C.R.; MORETTI, C.; WEISLEDER, D. Isolation and structure of rolliniastatin 1 from the South American tree Rollinia mucosa Canadian Journal of Chemistry, Ottawa, v.65, n.6, p.1433-1435, 1987.
  • PETTIT, G.; RIESEN, R.; LEET, J.; POLONSKY, J.; SMITH, C.; SCHMIDT, J.; DUFRESNE, C.; SCHAUFELBERGER, D.; MORETII, C. Isolation and structure of rolliniastatin 2: a new cell growth inhibitory acetogenin from Rollinia mucosa Heterocycles, Tokyo, v.28, n.1, p.213-7, 1989.
  • RIBEIRO, L.P.; GONC¸ALVES, G.L.P; BICALHO, K.U.; FERNANDES, J.B.; VENDRAMIM, J.D. Rolliniastatin-1, a bis-tetrahydrofuran acetogenin: The major compound of Annona mucosa Jacq. (Annonaceae) has potent grain-protective properties. Journal of Stored Products Research, Oxford, v.89, p.101686, 2020.
  • RILEY-SALDAÑA, C.A.; CRUZ-ORTEGA, M.R.; MARTÍNEZ VÁZQUEZ, M.; DE-LA-CRUZ-CHACÓN, IVÁN.; GONZÁLEZ-ESQUINCA, A.R. Acetogenins and alkaloids during the initial development of Annona muricata L. (Annonaceae). Zeitschrift für Naturforschung C, Tübingen, v.72, n.11-12, p.497-506, 2017.
  • RODRIGUES, A.M.; SILVA, A.A.S.; PINTO, C.C.C.; SANTOS, D.L.D.; FREITAS, J.C.C.D.; MARTINS, V.E.P.; MORAIS, S.M.D. Larvicidal and enzymatic inhibition effects of Annona muricata seed extract and main constituent annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharmaceuticals, Basel, v.12, n.3, p.112, 2019.
  • RODRIGUES, A.M.; ARAUJO DA SILVA, A.; CARNEIRO DE FREITAS, J.C.; PESSOA MARTINS, V.E.; PANTOJA FERREIRA, M.A.; SARMENTO FERREIRA, A.C.; SERRA CABEC¸A, C.L.; MOREIRA RODRIGUES, A.L.; RIBEIRO ALVES, D.; MAIA DE MORAIS, S. Larvicidal activity of Annona mucosa Jacq. extract and main constituents rolliniastatin 1 and rollinicin against Aedes aegypti and Aedes albopictus Industrial Crops e Products, Amsterdam, v.169, p.113678, 2021.
  • RUIZ HIDALGO, J.; PARELLADA, E.A.; DI TOTO BLESSING, L.; BARDÓN, A.; AMETA, K.L.; VERA, N.; NESKE, A. Natural and derivatized acetogenins promising for the control of Spodoptera frugiperda Smith. Journal of Agricultural Chemistry and Environment, Irvine, v.5, n.4, p.200-10, 2016.
  • RUIZ HIDALGO, J.; PARELLADA, E.A.; BARDÓN, A.; VERA, N.; NESKE, A. Insecticidal activity of annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.7, n.3, p.105-16, 2018.
  • RUIZ HIDALGO, J.R.; GILABERT, M.; CABEDO, N.; CORTES, D.; NESKE, A. Montanacin-L and montanacin-K two previously non-described acetogenins from Annona montana twigs and leaves. Phytochemistry Letters, Amsterdam, v.38, p.78-83, 2020.
  • RUIZ HIDALGO, J.R.; MURÚA, M.G.; NESKE, A. A semi-field approach to testing botanical insecticides. Effects of natural and analogues annonaceous acetogenins on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, Irvine, v.10, n.4, p.458-68, 2021.
  • RUPPRECHT, J.K.; CHANG, C.J.; CASSADY, J.M.; MCLAUGHLIN, J.L.; MIKOLAJCZAK, K.L.; WEISLEDER, D. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae). Heterocycles, Tokyo, v.24, n.5, p.1197-201, 1986.
  • SOUZA, C.M.; BALDIN, E.L.L.; RIBEIRO, L.P.; SILVA, I.F.; MORANDO, R.; BICALHO, K.U.; VENDRAMIM, J.D.; FERNANDES, J.B. Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera Journal of Pest Science, Heidelberg, v.90, p.701-9, 2016.
  • TOLOSA, D.; ÁLVAREZ COLOM, O.; BARDÓN, A.; NESKE, A. Insecticidal effects of acetogenins from Rollinia occidentalis seed extract. Natural Product Communications, Ohio, v.7, n.12, p.1645-6, 2012.
  • TOLOSA, D.; RUIZ HIDALGO, J.; SAL, P.; POPICH, S.; BARDÓN, A.; NESKE, A. Insecticidal effects of the Annonaceous acetogenins squamocin and the acetogenin fraction of seeds of Rollinia occidentalis on soybean and corn pests. Journal of Agricultural Chemistry and Environment, Irvine, v.3, n.4, p.156-160, 2014.
  • TORMO, J.; GONZÁLEZ, M.; CORTÉS, D.; STORNELL, E. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins. Archives of Biochemistry and Biophysics, Orlando, v.369, n.1, p.119-26, 1999. https://doi.org/10.1006/abbi.1999.1343
    » https://doi.org/10.1006/abbi.1999.1343
  • WAR, A.; PAULRAJ, M.; AHMAD, T.; BUHROO, A.; HUSSAIN, B.; IGNACIMUTHU, S.; SHARMA, H. Mechanisms of plant defense against insect herbivores. Plant Signaling e Behavior, Austin, v.7, n.10, p.1306-20, 2012.
  • WHO - World Health Organization. Chikungunya 2022. Disponível em:https://www.who.int/health-topics/chikungunya#tab=tab_1 Acesso em: 10 Jan. 2022
    » https://www.who.int/health-topics/chikungunya#tab=tab_1
  • ZAFRA-POLO, M.; GONZÁLEZ, M.; ESTORNELL, E.; SAHPAZ, S.; CORTÉS, D. Acetogenins from Annonaceae, inhibitors of mitochondrial complex I. Phytochemistry, Oxford, v.42, n.2, p.253-71, 1996.

Edited by

José Belaque Jr.

Data availability

Data citations

FAO - Food and Agricultural Organization of the United Nations. Acción mundial de lucha contra el gusano cogollero del maíz 2022. Disponível em: https://www.fao.org/fall-armyworm/background/es/ Acesso em: 1 Jan. 2022.

Publication Dates

  • Publication in this collection
    15 Apr 2024
  • Date of issue
    2024

History

  • Received
    14 Feb 2023
  • Accepted
    06 Dec 2023
Sociedade Brasileira de Fruticultura Via de acesso Prof. Paulo Donato Castellane, s/n , 14884-900 Jaboticabal SP Brazil, Tel.: +55 16 3209-7188/3209-7609 - Jaboticabal - SP - Brazil
E-mail: rbf@fcav.unesp.br