Acessibilidade / Reportar erro

Revisiting the morphology and systematic placement of the enigmatic Cretaceous ommatid beetle Bukhkalius lindae (Coleoptera: Archostemata: Ommatidae)

Abstract

The systematic position of Bukhkalius lindae (Jarzembowski et al. 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
) from mid-Cretaceous Burmese amber is revised based on a re-examination of the type specimen. Our observations confirm that B. lindae lacks unique apomorphies of Tetraphalerus Waterhouse, in which it was originally placed, including complete antennal grooves and mushroom-shaped micro-tubercles. It is well justified to place it into a separate genus, i.e., Bukhkalius Kirejtshuk & Jarzembowski, 2020. The incomplete but distinct antennal grooves and the Tetraphalerus-like mouthparts of B. lindae suggest that it has a close affinity to Tetraphalerus. Therefore, B. lindae may represent a missing link bridging the morphological gap between extant ommatid subfamilies Tetraphalerinae and Ommatinae.

Keywords:
Archostemata; Ommatidae; Bukhkalius; Tetraphalerus; Burmese amber

INTRODUCTION

Extant Ommatidae is a small archostematan family, which can be divided into two subfamilies, Ommatinae sensu stricto and Tetraphalerinae (Bouchard et al., 2011Bouchard, P.; Bousquet, Y.; Davies, A.E.; Alonso-Zarazaga, M.A.; Lawrence, J.F.; Chris, H.C.; Lyal, C.H.C.; Newton, A.F.; Reid, C.A.M.; Schmitt, M.; Ślipiński, S.A. & Smith, A.B.T. 2011. Family-group names in Coleoptera (Insecta). ZooKeys, 88: 1-972. http://doi.org/10.3897/zookeys.88.807
http://doi.org/10.3897/zookeys.88.807...
). Extant Tetraphalerinae comprises a single genus, Tetraphalerus Waterhouse, and two species, T. bruchi Heller and T. wagneri Waterhouse. Both occur in the southern half of South America (Hörnschemeyer & Beutel, 2016Hörnschemeyer, T. & Beutel, R.G. 2016. Ommatidae Sharp & Muir, 1912. In: Beutel, R.G. & Leschen, R.A.B. (Eds.). Handbook of Zoology, Arthropoda: Insecta, Coleoptera, beetles, Vol. 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). 2. ed. Berlin, Walter de Gruyter. p. 52-56. http://doi.org/10.1515/9783110373929-008
http://doi.org/10.1515/9783110373929-008...
). Seven apomorphies of Tetraphalerus have been identified by a morphology-based phylogenetic analysis, including head with antennal grooves below the eyes and mushroom-shaped micro-tubercles inserted with minute scales (Hörnschemeyer, 2009Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
http://doi.org/10.1111/j.1365-3113.2009....
).

Since Ponomarenko (1964Ponomarenko, A.G. 1964. [New beetles of the family Cupedidae from the Jurassic of Karatau]. Paleontologicheskii Zhurnal, 2: 49-61. [in Russian]), numerous Mesozoic compression-impression fossils have been placed in the extant genus Tetraphalerus by various authors (summarized in Kirejtshuk, 2020Kirejtshuk, A.G. 2020. Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10: 73. http://doi.org/10.3390/geosciences10020073
http://doi.org/10.3390/geosciences100200...
). However, the most characteristic feature of Tetraphalerus, ventrolateral antennal grooves, was not detectable in any of these compression-impression fossils. Recently, Jarzembowski et al. (2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
) reported a new species, T. lindaeJarzembowski et al, 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
, from mid-Cretaceous Burmese amber, and assigned it to Tetraphalerus. The specimen, although nicely preserved, was poorly photographed and illustrated in Jarzembowski et al. (2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
), which hindered an accurate evaluation of its systematic position within Ommatidae. Kirejtshuk & Jarzembowski (inKirejtshuk, 2020Kirejtshuk, A.G. 2020. Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10: 73. http://doi.org/10.3390/geosciences10020073
http://doi.org/10.3390/geosciences100200...
) later recognized that T. lindae is probably not a member of the genus Tetraphalerus, and therefore erected a new genus Bukhkalius Kirejtshuk & Jarzembowski to accommodate B. lindae (Jarzembowski et al., 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
). Unfortunately, the diagnosis of Bukhkalius was insufficiently proposed to justify such a taxonomic act. In this paper, we aim to clarify the external morphology of B. lindae based on new images under epifluorescence and confocal microscopy to evaluate its systematic position within the Ommatidae.

MATERIAL AND METHODS

The holotype of Bukhkalius lindae (Figs. 1-3), deposited in the Nanjing Institute of Geology and Paleontology (NIGP), Chinese Academy of Sciences, Nanjing, China, was re-examined. Additional Omma specimens in NIGP were also examined for comparison. The specimens were derived from amber mines near Noije Bum Village (26°20′N, 96°36′E), Hukawng Valley, Kachin State, northern Myanmar (Jarzembowski et al., 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
). The amber piece containing B. lindae was further ground with emery papers of different grit sizes and polished with polishing powder to improve the visibility of the beetle’s ventral side.

Figure 1
General habitus of Bukhkalius lindae, holotype, NIGP166152, under incident light. (A) Dorsal view. (B) Ventral view. Scale bars: 1 mm.

Figure 2
General habitus of Bukhkalius lindae, holotype, NIGP166152, under widefield fluorescence. (A) Dorsal view. (B) Ventral view. Scale bars: 1 mm.

Figure 3
Details of Bukhkalius lindae, holotype, NIGP166152, ventral view, under confocal microscopy. (A) Head, showing the possibly incomplete antennal groove (arrowhead). (B) Prothorax. Abbreviations: an1 = antennomere 1; ey = compound eye; lbp = labial palp; md = mandible; msv = mesoventrite; mt = mentum; mxp = maxillary palp; pf = profemur; pm = prementum; pp = propleuron; ps = prosternum; ptb = protibia. Scale bars: 200 μm.

Photographs under incident light were taken with a Zeiss Discovery V20 stereo microscope. Widefield fluorescence images were captured with a Zeiss Axio Imager 2 light microscope combined with a fluorescence imaging system. Confocal images were obtained with a Zeiss LSM710 confocal laser scanning microscope. Images under incident light and widefield fluorescence were stacked in Helicon Focus 7.0.2 or Zerene Stacker 1.04. Confocal images were manually stacked in Adobe Photoshop CC. Images were further processed in Adobe Photoshop CC to enhance contrast.

RESULTS

Systematic Paleontology

Order Coleoptera Linnaeus, 1758

Suborder Archostemata Kolbe, 1908

Family Ommatidae Sharp & Muir, 1912

Subfamily Tetraphalerinae Crowson, 1962

Genus Bukhkalius Kirejtshuk & Jarzembowski, 2020

Type species:Tetraphalerus lindaeJarzembowski, Wang & Zheng, 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
.

Revised diagnosis: Body elongate. Head moderately elongate; temples short; antennal grooves short, only reaching anterior margin of eyes; antennae short, subfiliform; separate mentum present. Pronotal disc without protuberances or ridges; propleura not reaching anterior prothoracic margin; procoxae contiguous. Elytra with indistinct longitudinal ridges (primary veins); lateral edge of elytra with double rows of teeth. Abdominal ventrites abutting.

Bukhkalius differs from Tetraphalerus in head only moderately elongate, antennal grooves incomplete, and mushroom-shaped micro-tubercles absent. Bukhkalius differs from the remaining genera in Ommatidae in the combination of antennal grooves present (though incomplete), separate mentum present, and propleura not reaching anterior prothoracic margin.

Remarks: The diagnosis provided in Kirejtshuk (2020Kirejtshuk, A.G. 2020. Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10: 73. http://doi.org/10.3390/geosciences10020073
http://doi.org/10.3390/geosciences100200...
) was insufficient, which cannot really differentiate Bukhkalius from Omma and Omma-like genera. For example, he claimed that “this new genus [Bukhkalius] differs from the genera with subglobous prothorax (Cionocoleus, Cionocups, Omma, Polyakius and Rhopalomma) in the clear ‘neck’ of the head”. However, neck is clearly present in both extant (Escalona et al., 2020Escalona, H.E.; Lawrence, J.F. & Ślipiński, A. 2020. The extant species of the genus Omma Newman and description of Beutelius gen. nov. (Coleoptera: Archostemata: Ommatidae: Ommatinae). Zootaxa, 4728: 547-574.) and fossil ommatines. The neck in some fossil Omma (Figs. 4B, C) could be even narrower than that of Bukhkalius.

Figure 4
Head of fossil Omma species from Burmese amber, showing the well-defined neck region. (A) Omma lii, holotype, NIGP164898. (B) Omma sp. 1. (C) Omma sp. 2. Scale bars: 500 μm.

Bukhkalius lindae ( Jarzembowski, Wang & Zheng, 2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
) ( Figs. 1 - 3 )

Material examined: Holotype, NIGP166152.

Redescription: Body 4.1 mm long (from anterior end of mandibles to posterior end of folded elytra), 1.4 mm wide, with moderately short setae.

Head (Fig. 3A) prognathous, moderately elongate, distinctly flattened, constricted posteriorly to form a neck. Temples short. Posterior protuberances wide and indistinct. Compound eyes entire and finely facetted, without interfacetal setae. Antennal insertions lateral. Antennal grooves incomplete but distinct, only reaching anterior margin of eyes. Antenna short, extending beyond anterior prothoracic margin, but not reaching posterior prothoracic margin, 11-segmented and subfiliform, with thin setae; antennomere 3 slightly longer than 4. Labrum transverse. Mandible tridentate with vertically aligned teeth. Maxillary palps four-segmented, moderately long, extending well beyond apex of mandible when anteriorly directed; apical palpomere slender, not expanded, with small cavity near apex. Prementum with deep posteromedian pit. Separate mentum present, transverse. Labial palps three-segmented; apical palpomere slightly expanded, securiform. Gular sutures indistinct.

Pronotal disc longer than wide, without protuberances or ridges. Propleura probably not reaching anterior prothoracic margin, i.e., notopleural suture joined by pleurosternal suture anteriorly (Fig. 3B). Prosternum in front of coxae moderately long. Procoxal cavities contiguous, broadly open externally. Mesoventrite at middle with acute anterior projection separating paired procoxal rests. Mesocoxal cavities contiguous. Metacoxae strongly transverse, contiguous, extending laterally to meet elytra. Elytra 1.7 times as long as wide combined, each with ten rows of maculated window punctures; longitudinal ridges (primary veins) indistinct; lateral edge of elytra with double rows of teeth. Femora stout. Tibiae thinner; tibial spurs well-developed. Tarsi five-segmented; tarsomeres simple, not bilobed; pretarsal claws simple.

Abdomen with five coplanar ventrites, separated by wide grooves; first and fifth ventrites longer than others.

DISCUSSION

Bukhkalius lindae was originally placed in the extant genus Tetraphalerus by Jarzembowski et al. (2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
). In fact, it has many characters different from extant Tetraphalerus based on our examination. The most important feature defining the extant Tetraphalerus is the presence of distinct antennal grooves on the ventrolateral side of the head, which extend up to the posterior margin (Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
). Although Jarzembowski et al. (2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
) mentioned that the lateral notch between protuberance P1 and P2 may indicate a presence of antennal grooves for B. lindae, our observation clearly shows that it lacks complete antennal grooves (Fig. 3A). Extant species of Tetraphalerus have mushroom-shaped micro-tubercles, each inserted with a short and stout seta (Hörnschemeyer, 2009Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
http://doi.org/10.1111/j.1365-3113.2009....
). It is clear that B. lindae does not possess this special form of micro-tubercles. Indeed, to our knowledge, such a peculiar structure is not known in any other extant or fossil archostematan beetles. Extant species of Tetraphalerus have a strongly elongated head, i.e., more than 1.3× longer than wide (Hörnschemeyer, 2009Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
http://doi.org/10.1111/j.1365-3113.2009....
), whereas the head of B. lindae (excluding neck) is approximately as long as wide (Fig. 3A). Besides, we were unable to detect the well-developed protuberance above eye (P2) in B. lindae as illustrated in fig. 2 in Jarzembowski et al. (2017Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
http://doi.org/10.1016/j.cretres.2017.05...
). Based on these morphological differences, we suggest that it is plausible to place B. lindae into a separate genus.

Interestingly, B. lindae displays some similarities with the extant Tetraphalerus. In extant Ommatinae (Omma Newman and BeuteliusEscalona et al., 2020Escalona, H.E.; Lawrence, J.F. & Ślipiński, A. 2020. The extant species of the genus Omma Newman and description of Beutelius gen. nov. (Coleoptera: Archostemata: Ommatidae: Ommatinae). Zootaxa, 4728: 547-574.), if the propleuron is not fused with the prosternum, the notopleural suture is complete and never joined by the pleurosternal suture, i.e., propleuron reaches anterior prothoracic margin (Escalona et al., 2020Escalona, H.E.; Lawrence, J.F. & Ślipiński, A. 2020. The extant species of the genus Omma Newman and description of Beutelius gen. nov. (Coleoptera: Archostemata: Ommatidae: Ommatinae). Zootaxa, 4728: 547-574.; incorrectly coded in Lawrence et al., 2011Lawrence, J.F.; Ślipiński, A.; Seago, A.E.; Thayer, M.K.; Newton, A.F. & Marvaldi, A.E. 2011. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annales Zoologici, 61: 1-217. http://doi.org/10.3161/000345411X576725
http://doi.org/10.3161/000345411X576725...
). In contrast, the propleuron of the extant Tetraphalerus does not reach the anterior prothoracic margin, even though it is very close (Friedrich et al., 2009Friedrich, F.; Farrell, B.D. & Beutel, R.G. 2009. The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda). Cladistics, 25(1): 1-37. http://doi.org/10.1111/j.1096-0031.2008.00233.x
http://doi.org/10.1111/j.1096-0031.2008....
; R.G. Beutel, pers. comm.; incorrectly coded in Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
). Similarly, the propleuron of B. lindae also seems not to reach the anterior prothoracic margin (Fig. 3B). The mouthparts of B. lindae and extant Tetraphalerus (fig. 3C in Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
) are very alike, though the maxillary palps of B. lindae is longer. In extant Ommatidae there is a sensorial cavity on the apical maxillary palpomere. The apical maxillary palpomere is expanded in Omma and Beutelius, so the cavity tends to be relatively small compared to the palpomere (figs. 4-7 in Lawrence, 1999Lawrence, J.F. 1999. The Australian Ommatidae (Coleoptera: Archostemata): new species, larva and discussion of relationships. Invertebrate Taxonomy, 13(3): 369-390. http://doi.org/10.1071/IT99008
http://doi.org/10.1071/IT99008...
). In contrast, the apical maxillary palpomere is slender in Tetraphalerus, so the cavity is relatively large (fig. 3D in Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
). The shape and relative size of the cavity on the apical maxillary palpomere of B. lindae match well with that of Tetraphalerus (Fig. 3A). In most archostematans a separate mentum is absent (although Escalona et al., 2020Escalona, H.E.; Lawrence, J.F. & Ślipiński, A. 2020. The extant species of the genus Omma Newman and description of Beutelius gen. nov. (Coleoptera: Archostemata: Ommatidae: Ommatinae). Zootaxa, 4728: 547-574. described a mentum in Omma and Beutelius, the mentum actually corresponds to the prementum as defined by Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
and Hörnschemeyer, 2009Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
http://doi.org/10.1111/j.1365-3113.2009....
), whereas the mentum of Tetraphalerus is recognizable as a transverse sclerite between submentum and prementum (Beutel et al., 2008Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
http://doi.org/10.1111/j.1096-0031.2007....
; incorrectly coded in Hörnschemeyer, 2009Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
http://doi.org/10.1111/j.1365-3113.2009....
). A distinct transverse mentum is also present in B. lindae (Fig. 3A). Besides, in B. lindae there is a pair of possibly short antennal grooves, extending merely to the anterior edge of the compound eyes (Fig. 3A). Here we tentatively suggest that this structure may represent an early evolutionary stage of the well-developed antennal grooves in extant Tetraphalerus. Given the above discussions, we suggest that the enigmatic Bukhkalius is probably an early lineage closely related to the South America endemic Tetraphalerus and should be included in Tetraphalerinae.

Numerous Mesozoic “Tetraphalerus” species have been reported from Russia (e.g.,Ponomarenko, 1966Ponomarenko, A.G. 1966. [New beetles of the family Cupedidae (Coleoptera) from Mesozoic deposits of Transbaikalia]. Entomologicheskoe Obozrenie, 45(1): 138-143. [in Russian]), Mongolia (e.g.,Ponomarenko, 1997Ponomarenko, A.G. 1997. [New beetles of the family Cupedidae from the Mesozoic of Mongolia. Ommatini, Mesocupedini, Priacmini]. Paleontologicheskii Zhurnal, 31: 45-55. [in Russian; translation in Paleontological Journal, 31: 389-399.]), Kazakhstan (e.g.,Ponomarenko, 1964Ponomarenko, A.G. 1964. [New beetles of the family Cupedidae from the Jurassic of Karatau]. Paleontologicheskii Zhurnal, 2: 49-61. [in Russian]), Kyrgyzstan (Ponomarenko, 1969Ponomarenko, A.G. 1969. [Historical development of archostomatan beetles]. Trudy Paleontologicheskogo Instituta, 125: 1-240. [in Russian]), Spain (e.g.,Soriano & Delclòs, 2006Soriano, C. & Delclòs, X. 2006. New cupedid beetles from the Lower Cretaceous of Spain and the palaeogeography of the family. Acta Palaeontologica Polonica, 51: 185-200.), and China (e.g.,Tan et al., 2007Tan, J.; Ren, D. & Shi, C. 2007. New beetles (Insecta: Coleoptera: Archostemata) from the Late Mesozoic of North China. Annales Zoologici, Varsovia, 57(2): 231-247., 2012Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
http://doi.org/10.1186/1471-2148-12-113...
). Ponomarenko (1969Ponomarenko, A.G. 1969. [Historical development of archostomatan beetles]. Trudy Paleontologicheskogo Instituta, 125: 1-240. [in Russian]) even proposed two series, each including one of the only two extant Tetraphalerus species (T. bruchi and T. wagneri), to accommodate the Mesozoic “Tetraphalerus” species. His practice of placing Mesozoic “Tetraphalerus” into series was followed by other researchers (e.g.,Soriano & Delclòs, 2006Soriano, C. & Delclòs, X. 2006. New cupedid beetles from the Lower Cretaceous of Spain and the palaeogeography of the family. Acta Palaeontologica Polonica, 51: 185-200.; Tan et al., 2007Tan, J.; Ren, D. & Shi, C. 2007. New beetles (Insecta: Coleoptera: Archostemata) from the Late Mesozoic of North China. Annales Zoologici, Varsovia, 57(2): 231-247.). In the cladistic analysis of Tan et al. (2012Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
http://doi.org/10.1186/1471-2148-12-113...
), the fossil “Tetraphalerus” species (including Tetraphalerites Crowson) form a monophyletic group together with extant species of Tetraphalerus. This Tetraphalerini clade was united by a single non-homoplasious change, i.e., the presence of ventrolateral antennal grooves on head. However, the character coding of their analysis was problematic. In Tan et al. (2012Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
http://doi.org/10.1186/1471-2148-12-113...
), all three Mesozoic “Tetraphalerus” fossils were coded as having antennal grooves. No antennal grooves, however, were mentioned in the original descriptions of “T.” brevicapits Ponomarenko & Martínez-Delclòs or “T.” glabratus Ponomarenko (Ponomarenko, 1997Ponomarenko, A.G. 1997. [New beetles of the family Cupedidae from the Mesozoic of Mongolia. Ommatini, Mesocupedini, Priacmini]. Paleontologicheskii Zhurnal, 31: 45-55. [in Russian; translation in Paleontological Journal, 31: 389-399.]; Ponomarenko & Martínez-Delclòs, 2000Ponomarenko, A. & Martínez-Delclòs, X. 2000. New beetles (Insecta: Coleoptera) from the Lower Cretaceous of Spain. Acta Geologica Hispanica, 35: 47-52.), and we failed to detect the antennal grooves in the original figures either. Contradictorily, Tan et al. (2012Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
http://doi.org/10.1186/1471-2148-12-113...
) even clearly stated that no antennal grooves were visible in “T. decorosus” (name actually unavailable due to failure to comply with the requirements of ICZN, see Dubois et al., 2013Dubois, A.; Crochet, P.-A.; Dickinson, E.C.; Nemésio, A.; Aescht, E.; Bauer, A.M.; Blagoderov, V.; Bour, R.; Carvalho, M.R. de; Desutter-Grandcolas, L.; Frétey, T.; Jäger, P.; Koyamba, V.; Lavilla, E.O.; Löbl, I.; Louchart, A.; Malécot, V.; Schatz, H. & Ohler, A. 2013. Nomenclatural and taxonomic problems related to the electronic publication of new nomina and nomenclatural acts in zoology, with brief comments on optical discs and on the situation in botany. Zootaxa, 3735: 1-94.) in the description part of their own paper. To our knowledge, the most critical character of Tetraphalerus, ventrolateral antennal grooves, was not discernible in any Mesozoic specimens belonging to “Tetraphalerus”. Although Tan & Ren (2009Tan, J. & Ren, D. 2009. Mesozoic archostematan fauna from China. Beijing, Science Press. [in Chinese with English summary]) claimed that the presence of antennal grooves is clearly evident in “T.” curtinervisTan et al., 2012Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
http://doi.org/10.1186/1471-2148-12-113...
, we cannot identify this structure based on the photos provided in the paper. Other vital diagnostic features, including the relatively large mushroom-shaped micro-tubercles and a separate mentum, were also not reported in these Mesozoic “Tetraphalerus”. Therefore, we agree with Kirejtshuk (2020Kirejtshuk, A.G. 2020. Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10: 73. http://doi.org/10.3390/geosciences10020073
http://doi.org/10.3390/geosciences100200...
) that probably none of the Mesozoic species of “Tetraphalerus” should be placed in Tetraphalerus. The divergence between Ommatidae and Micromalthidae has been dated to Early Cretaceous, approximately 130 Ma (McKenna et al., 2019McKenna, D.D.; Shin, S.; Ahrens, D.; Balke, M.; Beza-Beza, C.; Clarke, D.J.; Donath, A.; Escalona, H.E.; Friedrich, F.; Letsch, H.; Liu, S.; Maddison, D.; Mayer, C.; Misof, B.; Murin, P.J.; Niehuis, O.; Peters, R.S.; Podsiadlowski, L.; Pohl, H.; Scully, E.D.; Yan, E.V.; Zhou, X.; Ślipiński, A. & Beutel, R.G. 2019. The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, USA, 116(49): 24729-24737. http://doi.org/10.1073/pnas.1909655116
http://doi.org/10.1073/pnas.1909655116...
). It is reasonable to expect the divergence between two extant species of Tetraphalerus to happen much later than that. As such, it makes no sense to place the Early Cretaceous, or even Jurassic fossils into the T. bruchi and T. wagneri series.

DATA AVAILABILITY

The original series of confocal slices are available on Zenodo repository (http://doi.org/10.5281/zenodo.4362699).

ACKNOWLEDGMENTS

We are grateful to Prof. Rolf G. Beutel for helpful discussion, Mr. Yan Fang for technical help in confocal imaging, and Mr. Dao-Jun Yuan for help in inspecting the holotype of Bukhkalius lindae deposited at NIGP. Financial support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26000000 and XDB18000000), the National Natural Science Foundation of China (41688103), and the Second Tibetan Plateau Scientific Expedition and Research project (2019QZKK0706).

REFERENCES

  • Beutel, R.G.; Ge, S.-Q. & Hörnschemeyer, T. 2008. On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera. Cladistics, 24(3): 270-298. http://doi.org/10.1111/j.1096-0031.2007.00186.x
    » http://doi.org/10.1111/j.1096-0031.2007.00186.x
  • Bouchard, P.; Bousquet, Y.; Davies, A.E.; Alonso-Zarazaga, M.A.; Lawrence, J.F.; Chris, H.C.; Lyal, C.H.C.; Newton, A.F.; Reid, C.A.M.; Schmitt, M.; Ślipiński, S.A. & Smith, A.B.T. 2011. Family-group names in Coleoptera (Insecta). ZooKeys, 88: 1-972. http://doi.org/10.3897/zookeys.88.807
    » http://doi.org/10.3897/zookeys.88.807
  • Dubois, A.; Crochet, P.-A.; Dickinson, E.C.; Nemésio, A.; Aescht, E.; Bauer, A.M.; Blagoderov, V.; Bour, R.; Carvalho, M.R. de; Desutter-Grandcolas, L.; Frétey, T.; Jäger, P.; Koyamba, V.; Lavilla, E.O.; Löbl, I.; Louchart, A.; Malécot, V.; Schatz, H. & Ohler, A. 2013. Nomenclatural and taxonomic problems related to the electronic publication of new nomina and nomenclatural acts in zoology, with brief comments on optical discs and on the situation in botany. Zootaxa, 3735: 1-94.
  • Escalona, H.E.; Lawrence, J.F. & Ślipiński, A. 2020. The extant species of the genus Omma Newman and description of Beutelius gen. nov. (Coleoptera: Archostemata: Ommatidae: Ommatinae). Zootaxa, 4728: 547-574.
  • Friedrich, F.; Farrell, B.D. & Beutel, R.G. 2009. The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda). Cladistics, 25(1): 1-37. http://doi.org/10.1111/j.1096-0031.2008.00233.x
    » http://doi.org/10.1111/j.1096-0031.2008.00233.x
  • Hörnschemeyer, T. 2009. The species-level phylogeny of archostematan beetles-where do Micromalthus debilis and Crowsoniella relicta belong? Systematic Entomology, 34(3): 533-558. http://doi.org/10.1111/j.1365-3113.2009.00476.x
    » http://doi.org/10.1111/j.1365-3113.2009.00476.x
  • Hörnschemeyer, T. & Beutel, R.G. 2016. Ommatidae Sharp & Muir, 1912. In: Beutel, R.G. & Leschen, R.A.B. (Eds.). Handbook of Zoology, Arthropoda: Insecta, Coleoptera, beetles, Vol. 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). 2. ed. Berlin, Walter de Gruyter. p. 52-56. http://doi.org/10.1515/9783110373929-008
    » http://doi.org/10.1515/9783110373929-008
  • Jarzembowski, E.A.; Wang, B. & Zheng, D. 2017. Another amber first: A tiny tetraphalerin beetle (Coleoptera: Archostemata) in Myanmar birmite. Cretaceous Research, 78: 84-88. http://doi.org/10.1016/j.cretres.2017.05.023
    » http://doi.org/10.1016/j.cretres.2017.05.023
  • Kirejtshuk, A.G. 2020. Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10: 73. http://doi.org/10.3390/geosciences10020073
    » http://doi.org/10.3390/geosciences10020073
  • Lawrence, J.F. 1999. The Australian Ommatidae (Coleoptera: Archostemata): new species, larva and discussion of relationships. Invertebrate Taxonomy, 13(3): 369-390. http://doi.org/10.1071/IT99008
    » http://doi.org/10.1071/IT99008
  • Lawrence, J.F.; Ślipiński, A.; Seago, A.E.; Thayer, M.K.; Newton, A.F. & Marvaldi, A.E. 2011. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annales Zoologici, 61: 1-217. http://doi.org/10.3161/000345411X576725
    » http://doi.org/10.3161/000345411X576725
  • McKenna, D.D.; Shin, S.; Ahrens, D.; Balke, M.; Beza-Beza, C.; Clarke, D.J.; Donath, A.; Escalona, H.E.; Friedrich, F.; Letsch, H.; Liu, S.; Maddison, D.; Mayer, C.; Misof, B.; Murin, P.J.; Niehuis, O.; Peters, R.S.; Podsiadlowski, L.; Pohl, H.; Scully, E.D.; Yan, E.V.; Zhou, X.; Ślipiński, A. & Beutel, R.G. 2019. The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, USA, 116(49): 24729-24737. http://doi.org/10.1073/pnas.1909655116
    » http://doi.org/10.1073/pnas.1909655116
  • Ponomarenko, A.G. 1964. [New beetles of the family Cupedidae from the Jurassic of Karatau]. Paleontologicheskii Zhurnal, 2: 49-61. [in Russian]
  • Ponomarenko, A.G. 1966. [New beetles of the family Cupedidae (Coleoptera) from Mesozoic deposits of Transbaikalia]. Entomologicheskoe Obozrenie, 45(1): 138-143. [in Russian]
  • Ponomarenko, A.G. 1969. [Historical development of archostomatan beetles]. Trudy Paleontologicheskogo Instituta, 125: 1-240. [in Russian]
  • Ponomarenko, A.G. 1997. [New beetles of the family Cupedidae from the Mesozoic of Mongolia. Ommatini, Mesocupedini, Priacmini]. Paleontologicheskii Zhurnal, 31: 45-55. [in Russian; translation in Paleontological Journal, 31: 389-399.]
  • Ponomarenko, A. & Martínez-Delclòs, X. 2000. New beetles (Insecta: Coleoptera) from the Lower Cretaceous of Spain. Acta Geologica Hispanica, 35: 47-52.
  • Soriano, C. & Delclòs, X. 2006. New cupedid beetles from the Lower Cretaceous of Spain and the palaeogeography of the family. Acta Palaeontologica Polonica, 51: 185-200.
  • Tan, J. & Ren, D. 2009. Mesozoic archostematan fauna from China. Beijing, Science Press. [in Chinese with English summary]
  • Tan, J.; Ren, D. & Shi, C. 2007. New beetles (Insecta: Coleoptera: Archostemata) from the Late Mesozoic of North China. Annales Zoologici, Varsovia, 57(2): 231-247.
  • Tan, J.; Wang, Y.; Ren, D. & Yang, X. 2012. New fossil species of ommatids (Coleoptera: Archostemata) from the Middle Mesozoic of China illuminating the phylogeny of Ommatidae. BMC Evolutionary Biology, 12 (113):1-19. http://doi.org/10.1186/1471-2148-12-113
    » http://doi.org/10.1186/1471-2148-12-113
  • Published with the financial support of the "Programa de Apoio às Publicações Científicas Periódicas da USP"

Edited by

Edited by: Simone Policena Rosa

Publication Dates

  • Publication in this collection
    16 Apr 2021
  • Date of issue
    2021

History

  • Received
    29 Sept 2020
  • Accepted
    22 Dec 2020
  • Accepted
    18 Feb 2021
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br