Acessibilidade / Reportar erro

Identifying cotton genotypes resistant to Meloidogyne incognita race 3 using Blup

Identificação de genótipos de algodoeiro resistentes a Meloidogyne incognita raça 3 usando Blup

ABSTRACT

Few genetic resistance sources to root-knot nematodes are known for cotton, and there are no cultivars combining both resistance and good agronomic attributes in Brazil. Techniques that allow an efficient selection of promising sources of genetic resistance are needed. This study aimed to identify cotton genotypes resistant to Meloidogyne incognita race 3 via REML/Blup. The experiment was completely randomized, with 32 genotypes and seven replicates, in a protected environment. The statistical model 83 was used. The root weight, final population, reproduction factor and reproduction index were estimated. The final population and reproduction index presented the highest values for genotypic variance and genetic variation coefficients, indicating a favorable situation for the selection of cotton genotypes resistant to the nematode. The mean heritability (h2mg) of the genotype was higher than 85 % for the final population, reproduction factor and reproduction index, opening a possibility of selection success based on genotype means. The genotypes CS8601, SA2572, Coodetec 404 and BJ 3128 are promising for crosses aiming the selection of genotypes resistant to the nematode.

KEYWORDS:
Gossypium spp; genetic resistance; root-knot nematode

RESUMO

Há poucas fontes de resistência genética a nematoides-de-galha relatadas em algodoeiro, e não há cultivares no Brasil que combinem simultaneamente resistência e bons atributos agronômicos. Técnicas que possibilitem selecionar eficientemente fontes de resistência genética promissoras são necessárias. Objetivou-se identificar genótipos de algodoeiro resistentes a Meloidogyne incognita raça 3, por meio de REML/Blup. O experimento foi inteiramente casualizado, com 32 genótipos e sete repetições, em ambiente protegido. Foi utilizado o modelo estatístico 83. Foram estimados a massa de raízes, população final, fator de reprodução e índice de reprodução. A população final e o índice de reprodução apresentaram os maiores valores de variância genotípica e coeficientes de variação genética, sinalizando situação favorável à seleção de genótipos de algodão resistentes ao nematoide. A herdabilidade média do genótipo (h2mg) foi superior a 85 % para população final, fator de reprodução e índice de reprodução, abrindo a possibilidade de sucesso de seleção com base nas médias dos genótipos. Os genótipos CS8601, SA2572, Coodetec 404 e BJ 3128 são promissores para cruzamentos visando à seleção de genótipos resistentes ao nematoide.

PALAVRAS-CHAVE:
Gossypium spp; resistência genética; nematoide-de-galha

INTRODUCTION

The nematodes Meloidogyne incognita race 3 (Kofoid and White) Chitwood and Rotylenchus reniformis represent important phytosanitary challenges for cotton cropping worldwide. However, the root-knot nematode (RKN) is the most important phytoparasite of this crop, because it causes considerable losses in yield and profitability and increases damages caused by other soilborne diseases such as Fusarium wilt (Katsantonis et al. 2003KATSANTONIS, D.; HILLOCKS, R. J.; GOWEN, S. Comparative effect of root-knot nematode on severity of verticillium and fusarium wilt in cotton. Phytoparasitica, v. 31, n. 2, p. 154-162, 2003., Starr et al. 2007STARR, J. L.; KOENNING, S. R.; KIRKPATRICK, T. L.; ROBINSON, A. F.; ROBERTS, P. A.; NICHOLS, R. L. The future of nematode management in cotton. Journal of Nematology, v. 39, n. 4, p. 283-294, 2007., Mota et al. 2013MOTA, F. C.; ALVES, G. C. S.; GIBAND, M.; GOMES, A. C. M. M.; SOUSA, F. R.; MATTOS, V. S.; BARBOSA, V. H. S.; BARROSO, P. A. V.; NICOLE, M.; PEIXOTO, J. R.; ROCHA, M. R.; CARNEIRO, R. M. D. G. New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathology, v. 62, n. 5, p. 1173-1183, 2013., Kumar et al. 2016KUMAR, P.; HE, Y.; SINGH, R.; DAVIS, R. F.; GUO, H.; PATERSON, A. H.; PETERSON, D. G.; SHEN, X.; NICHOLS, R. L.; CHEE, P. W. Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in upland cotton. BMC Genomics, v. 17, n. 1, e567, 2016.). The RKN causes several damages to cotton, either in the root system or in shoots, and may influence physiological processes and plant morphology (Lu et al. 2014LU, P.; DAVIS, R. F.; KEMERAIT, R. C.; VAN IERSEL, M. W.; SCHERM, H. Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse. Journal of Nematology, v. 46, n. 4, p. 352-359, 2014., Ma et al. 2014MA, J.; JARABA, J.; KIRKPATRICK, T. L.; ROTHROCK, C. S. Effects of Meloidogyne incognita and Thielaviopsis basicola on cotton growth and root morphology. Phytopathology, v. 104, n. 5, p. 507-512, 2014.).

The RKN management is mainly performed by crop rotation and chemical nematicides (Van Biljon et al. 2015VAN BILJON, E. R.; MCDONALD, A. H.; FOURIE, H. Population responses of plant-parasitic nematodes in selected crop rotations over five seasons in organic cotton production. Nematropica, v. 45, n. 1, p. 102-112, 2015.). Crop rotation is becoming increasingly difficult to carry out, because the RKN is largely distributed in producing areas and counts a great number of hosts. The use of nematicides has been discouraged due to their short-lasting effect and the potential restrictions on the use of chemical pesticides.

Adopting RKN-resistant cultivars is the most sustainable way to manage this disease, as there are no negative socio-environmental effects, and it is an efficient, durable and easy to implement technology (Starr et al. 2007STARR, J. L.; KOENNING, S. R.; KIRKPATRICK, T. L.; ROBINSON, A. F.; ROBERTS, P. A.; NICHOLS, R. L. The future of nematode management in cotton. Journal of Nematology, v. 39, n. 4, p. 283-294, 2007.). Wheeler et al. (2014)WHEELER, T. A.; SIDERS, K. T.; ANDERSON, M. G.; RUSSELL, S. A.; WOODWARD, J. E.; MULLINIX JUNIOR, B. G. Management of Meloidogyne incognita with chemicals and cultivars in cotton in a semi-arid environment. Journal of Nematology, v. 46, n. 2, p. 101-107, 2014. reported that partially resistant cultivars might both decrease the RKN population density and yield better in RKN-infested areas, when compared to susceptible genotypes. In Brazil, no cotton cultivars showing both resistance to RKN and good agronomic characteristics are available. Therefore, identifying and characterizing sources of resistance that can be incorporated into improved materials are the key to a future sustainable cotton production (Alves et al. 2017ALVES, G. C. S.; BARBOSA, V. H. S.; GIBAND, M.; BARROSO, P. A. V.; RODRIGUES, F.; ROCHA, M. R. Inheritance of resistance to Meloidogyne incognita race 3 in cotton accession TX 25. Acta Scientiarum Agronomy, v. 39, n. 3, p. 331-337, 2017.).

In general, the process of screening for RKN-resistant genotypes presents a high variation, due to the intrinsic characteristics of the host-nematode interaction. Anava has been widely used in plant breeding, but there are several limitations to this approach, such as the assumption of independence from errors and analyses of unbalanced data resulting from loss of plots or non-orthogonal experimental designs (Freitas et al. 2013FREITAS, E. G.; PASTINA, M. M.; GAZAFFI, R.; PINTO, L. R.; XAVIER, M. A.; LANDELL, M. G. A.; GARCIA, A. A. F. Modelos mistos para seleção de genótipos superiores e de futuros genitores de cana-de-açúcar. In: REUNIãO ANUAL DA REGIãO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA, 58., Campina Grande, 2013. Anais... Campina Grande: RBSIB, 2013. p. 1-24.). Thus, efficient selection tools are necessary to accurately identify potential genetic resistant sources. In this sense, the REML/Blup methodology is promising, because it estimates genotypic values, ensuring a greater accuracy in the selection process (Resende 2007RESENDE, M. D. V. Software Selegen-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo: Embrapa Florestas, 2007.). However, mixed models have not yet been used for the screening of RKN-resistant cotton genotypes. Thus, this study aimed to select cotton genotypes resistant to Meloidogyne incognita race 3, using REML/Blup.

MATERIAL AND METHODS

The experiment was carried out in a greenhouse (21º14’05’’S, 48º17’09’’W and altitude of 614 m), from October 2015 to January 2016. The climate is Aw, with transition to Cwa. The experiment was completely randomized, with 32 cotton genotypes (Table 1) and seven replications. One plant inoculated with M. incognita race 3 per pot was considered as one replicate. The cotton cultivars ‘FM 966’ and ‘M315-RNR’ were used as susceptibility and resistance controls, respectively.

Table 1
List of cotton accessions (origin: Embrapa Algodão) inoculated with 5,000 eggs and second-stage juveniles of Meloidogyne incognita race 3.

The confirmation of the inoculum identity was carried out using a photonic microscope, perineal pattern morphology (Taylor & Netscher 1974TAYLOR, A. L.; NETSCHER, C. An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica, v. 20, n. 2, p. 268-269, 1974.), male lips morphology (Eisenback & Hirschmann 1980EISENBACK, J. D.; HIRSCHMANN, H. Morphological comparison of Meloidogyne males by scanning electron microscopy. Journal of Nematology, v. 12, n. 1, p. 23-32, 1980.) and esterase pattern (Esbenshade & Triantaphyllou 1990ESBENSHADE, P. R.; TRIANTAPHYLLOU, A. C. Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology, v. 22, n. 1, p. 10-15, 1990.). To evaluate the isoenzymatic phenotype for esterase, the BIO-RAD Mini Protean II vertical electrophoresis system was used. The subpopulations of M. incognita race 3 were multiplied in ‘Santa Cruz Kada’ tomatoes. Plastic pots were filled with a mixture of soil, sand and tanned bovine manure at a 3:1:1 ratio. This mixture was pre-autoclaved at 120 ºC and 1 atm for one hour. After 90 days of inoculation, the inoculum used in the experiment was prepared according to Hussey & Barker (1973)HUSSEY, R. S.; BARKER, K. R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, v. 57, n. 12, p. 1025-1028, 1973.. The populations of eggs and second-stage juveniles (J2) were estimated using a photonic microscope and a Peters chamber.

The seedlings were produced in 128-cell expanded polystyrene trays filled with commercial coconut-based substrate. After sowing, the trays were conditioned in a greenhouse equipped with a sprinkler irrigation system. The seedlings were transplanted at 15 days after sowing to 5-L plastic pots. The pots were filled with the autoclaved mixture previously described and placed in a greenhouse. The inoculation of 5,000 eggs and J2 was performed at transplanting, this being the initial population (Ip).

The nematodes were extracted according to Hussey & Barker (1973)HUSSEY, R. S.; BARKER, K. R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, v. 57, n. 12, p. 1025-1028, 1973., at 90 days after the inoculation. Before the extraction, the roots were weighed using a digital scale. The final population (Fp) of eggs and J2 was estimated using a photonic microscope and a Peters chamber. Based on the Ip and Fp, the reproduction factor (RF) (RF = Fp/Ip) was estimated. The genotypes were classified according to Oostenbrink (1966)OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen van de Landbouwhogeschool te Wageningen, v. 66, n. 4, p. 1-46, 1966., who stated that materials with RF < 1 are resistant and RF ≥ 1 are susceptible. The reproduction index (RI), based on the Fp of the susceptible control ‘FM 966’ (IR = Fp of a given genotype/Fp ‘FM 966’ * 100), was also estimated. The genotypes were classified according to Taylor (1967)TAYLOR, A. L. Introduction to research on plant nematology: an FAO guide to the study and control of the plant parasitic nematodes. Rome: FAO, 1967., with RI > 51 % being susceptible, between 26 and 50 % slightly resistant, between 11 and 25 % moderately resistant, between 1 and 10 % very resistant, and RI < 1 % highly resistant or immune.

The SELEGEN-REML/Blup software was used for statistical analysis (Resende 2016RESENDE, M. D. V. Software Selegen-REML/Blup: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, v. 16, n. 4, p. 330-339, 2016.). The statistical model 83 (completely randomized) was used: y = Xu + Zg + e, where y is the vector of data; u the scalar for the general mean (assumed as fixed); g the vector of genotypic effects (assumed as random); e the vector of errors or residuals (random); and X and Z the incidence matrices for u and g, respectively.

RESULTS AND DISCUSSION

The cotton genotypes were submitted to infection by M. incognita race 3 in order to identify potential resistant accessions using REML/Blup. The nematode identity was confirmed using the perineal pattern morphology, male lips morphology and esterase pattern. The final population was measured and the reproduction factor and index estimated. The final population and reproduction index presented the highest values for genotypic variance (Vg) and genetic variation coefficient (CVg) (Table 2), indicating a favorable situation for a breeding program aiming to develop RKN-resistant cotton genotypes. However, crosses between resistant and good-yielding genotypes could likely broaden the genetic variability and increase the likelihood of selection success, as genetic variability is a basic condition for obtaining gains from selection (Falconer 1987FALCONER, D. S. Introdução à genética quantitativa. Viçosa: Ed. UFV, 1987., Cruz & Regazzi 2006CRUZ, C. D.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético. Viçosa: Ed. UFV, 2006.).

Table 2
Estimates of genetic parameters for the final population (FP) of root-knot nematodes, reproduction factor (RF) and reproduction index (RI) obtained in evaluations of cotton accessions inoculated with 5,000 eggs and second-stage juveniles of Meloidogyne incognita race 3.

For all sources of variation, the coefficient of individual heritability (h2g) was below 50 % (Table 2). Resende (2002)RESENDE, M. D. V. Genética biométrica e estatística no melhoramento de plantas perenes. Colombo: Embrapa Floresta, 2002. reported that low h2g values are common for quantitative traits and indicate moderate to high heritability indices at the progeny level. The genotype mean heritability (h2mg) was higher than 85 % for final population, reproduction factor and reproduction index (Table 2). We argue that selection based on individuals would be difficult, as there is a significant influence of the environment on nematode genotype and reproduction. However, genotype mean-based selection would be efficient. Alves et al. (2017)ALVES, G. C. S.; BARBOSA, V. H. S.; GIBAND, M.; BARROSO, P. A. V.; RODRIGUES, F.; ROCHA, M. R. Inheritance of resistance to Meloidogyne incognita race 3 in cotton accession TX 25. Acta Scientiarum Agronomy, v. 39, n. 3, p. 331-337, 2017. reported that the genetic control of cotton resistance to Meloidogyne incognita race 3 is explained as an oligogenic inheritance. The resistance may suffer a greater influence from the environment, if compared to monogenic inheritance. The authors also claim that polygenic and oligogenic resistances are interesting and necessary tools for managing plant diseases. Although oligogenic inheritance results in different resistance levels, from a high susceptibility to a high resistance, they are more stable than monogenic resistance.

CVe is an unsuitable parameter to evaluate the quality of experiments, as it does not take into account the level of genotypic variation and the number of replicates. Accuracy of selection is more appropriate for measuring experimental accuracy (Resende & Duarte 2007RESENDE, M. D. V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v. 37, n. 3, p. 182-194, 2007.), as it includes CVe, CVg and the number of replicates. The accuracy of selection was very high for final population, reproduction factor and reproduction index according to Resende & Duarte (2007)RESENDE, M. D. V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v. 37, n. 3, p. 182-194, 2007., who established that values above 70 % are considered high. High accuracy values indicate a high correlation between predicted and real genotypic values (Torres Filho et al. 2017TORRES FILHO, J.; OLIVEIRA, C. N. G. S.; SILVEIRA, L. M.; NUNES, G. H. S.; SILVA, A. J. R.; SILVA, M. F. N. Genotype by environment interaction in green cowpea analyzed via mixed models. Revista Caatinga, v. 30, n. 3, p. 687-697, 2017.). Therefore, the accuracies obtained ranged from high to very high and indicate the possibility of an effective selection.

The genotypic variation coefficient (CVg) per se is not very representative; however, the CVg/CVe ratio indicates to a certain extent whether the phenotype selection of the characteristic will be efficient. Therefore, when the relation is greater than the unit, it is feasible to select a given character (Vencovsky & Barriga 1992VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992.). For all characters, the CVg/CVe values were lower than 1, indicating a greater environmental variation than the genotypic one (Table 2). Thus, only phenotype-based selection could not achieve the genotype desired by the breeder.

The 32 genotypes in the present study were evaluated based on the genotypic effects (g) and the general mean plus genotypic value (u + g). The values referring to the new mean are the predictions provided by Blup for commercial cropping; these cotton genotypes should result, on average, in such values.

If selection is to be performed based on the RKN reproduction features, the lowest values are the goal, as they mean less nematode development and reproduction. In this sense, the genotypes CS8601, SA2572, Coodetec 404 and BJ 3128 showed the lowest values for all characteristics, thus being good genetic resistance sources that can be used in cotton breeding programs (Table 3).

Table 3
Genotypic effects (g), general mean plus genotypic values (u + g) and raking (Rk) of cotton accessions inoculated with 5,000 eggs and second-stage juveniles of Meloidogyne incognita race 3.

The ability of the selected genotypes to perform satisfactorily in RKN-infested areas in various environments and their resistance predictably behavior resulting from their genetics and environmental improvements are goals to be achieved. This shows the relevance of studies on mixed models for cotton. Furthermore, mixed models are adequate to select resistant genotypes in RKN-infested open field trials considering that some specimens may be highly susceptible and may fail to sufficiently develop. In such cases, evaluations can be performed, but may cause an experimental misbalance (Salgado et al. 2014SALGADO, S. M. L.; REZENDE, J. C.; NUNES, J. A. R. Selection of coffee progenies for resistance to nematode Meloidogyne paranaensis in infested area. Crop Breeding and Applied Biotechnology, v. 14, n. 2, p. 94-101, 2014.).

CONCLUSION

The genotypes CS8601, SA2572, Coodetec 404 and BJ 3128 are promising for cotton breeding programs aiming the selection of cotton genotypes resistant to root-knot nematodes.

ACKNOWLEDGMENTS

The authors would like to thank the Embrapa Algodão and Instituto Agronômico de Campinas (IAC), for providing the seeds necessary to conduct this study; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for the scholarship granted to the first author.

REFERENCES

  • ALVES, G. C. S.; BARBOSA, V. H. S.; GIBAND, M.; BARROSO, P. A. V.; RODRIGUES, F.; ROCHA, M. R. Inheritance of resistance to Meloidogyne incognita race 3 in cotton accession TX 25. Acta Scientiarum Agronomy, v. 39, n. 3, p. 331-337, 2017.
  • CRUZ, C. D.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético Viçosa: Ed. UFV, 2006.
  • EISENBACK, J. D.; HIRSCHMANN, H. Morphological comparison of Meloidogyne males by scanning electron microscopy. Journal of Nematology, v. 12, n. 1, p. 23-32, 1980.
  • ESBENSHADE, P. R.; TRIANTAPHYLLOU, A. C. Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology, v. 22, n. 1, p. 10-15, 1990.
  • FALCONER, D. S. Introdução à genética quantitativa Viçosa: Ed. UFV, 1987.
  • FREITAS, E. G.; PASTINA, M. M.; GAZAFFI, R.; PINTO, L. R.; XAVIER, M. A.; LANDELL, M. G. A.; GARCIA, A. A. F. Modelos mistos para seleção de genótipos superiores e de futuros genitores de cana-de-açúcar. In: REUNIãO ANUAL DA REGIãO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA, 58., Campina Grande, 2013. Anais... Campina Grande: RBSIB, 2013. p. 1-24.
  • HUSSEY, R. S.; BARKER, K. R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, v. 57, n. 12, p. 1025-1028, 1973.
  • KATSANTONIS, D.; HILLOCKS, R. J.; GOWEN, S. Comparative effect of root-knot nematode on severity of verticillium and fusarium wilt in cotton. Phytoparasitica, v. 31, n. 2, p. 154-162, 2003.
  • KUMAR, P.; HE, Y.; SINGH, R.; DAVIS, R. F.; GUO, H.; PATERSON, A. H.; PETERSON, D. G.; SHEN, X.; NICHOLS, R. L.; CHEE, P. W. Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in upland cotton. BMC Genomics, v. 17, n. 1, e567, 2016.
  • LU, P.; DAVIS, R. F.; KEMERAIT, R. C.; VAN IERSEL, M. W.; SCHERM, H. Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse. Journal of Nematology, v. 46, n. 4, p. 352-359, 2014.
  • MA, J.; JARABA, J.; KIRKPATRICK, T. L.; ROTHROCK, C. S. Effects of Meloidogyne incognita and Thielaviopsis basicola on cotton growth and root morphology. Phytopathology, v. 104, n. 5, p. 507-512, 2014.
  • MOTA, F. C.; ALVES, G. C. S.; GIBAND, M.; GOMES, A. C. M. M.; SOUSA, F. R.; MATTOS, V. S.; BARBOSA, V. H. S.; BARROSO, P. A. V.; NICOLE, M.; PEIXOTO, J. R.; ROCHA, M. R.; CARNEIRO, R. M. D. G. New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathology, v. 62, n. 5, p. 1173-1183, 2013.
  • OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen van de Landbouwhogeschool te Wageningen, v. 66, n. 4, p. 1-46, 1966.
  • RESENDE, M. D. V. Genética biométrica e estatística no melhoramento de plantas perenes Colombo: Embrapa Floresta, 2002.
  • RESENDE, M. D. V. Software Selegen-REML/Blup: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, v. 16, n. 4, p. 330-339, 2016.
  • RESENDE, M. D. V. Software Selegen-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo: Embrapa Florestas, 2007.
  • RESENDE, M. D. V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v. 37, n. 3, p. 182-194, 2007.
  • SALGADO, S. M. L.; REZENDE, J. C.; NUNES, J. A. R. Selection of coffee progenies for resistance to nematode Meloidogyne paranaensis in infested area. Crop Breeding and Applied Biotechnology, v. 14, n. 2, p. 94-101, 2014.
  • STARR, J. L.; KOENNING, S. R.; KIRKPATRICK, T. L.; ROBINSON, A. F.; ROBERTS, P. A.; NICHOLS, R. L. The future of nematode management in cotton. Journal of Nematology, v. 39, n. 4, p. 283-294, 2007.
  • TAYLOR, A. L. Introduction to research on plant nematology: an FAO guide to the study and control of the plant parasitic nematodes. Rome: FAO, 1967.
  • TAYLOR, A. L.; NETSCHER, C. An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica, v. 20, n. 2, p. 268-269, 1974.
  • TORRES FILHO, J.; OLIVEIRA, C. N. G. S.; SILVEIRA, L. M.; NUNES, G. H. S.; SILVA, A. J. R.; SILVA, M. F. N. Genotype by environment interaction in green cowpea analyzed via mixed models. Revista Caatinga, v. 30, n. 3, p. 687-697, 2017.
  • VAN BILJON, E. R.; MCDONALD, A. H.; FOURIE, H. Population responses of plant-parasitic nematodes in selected crop rotations over five seasons in organic cotton production. Nematropica, v. 45, n. 1, p. 102-112, 2015.
  • VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992.
  • WHEELER, T. A.; SIDERS, K. T.; ANDERSON, M. G.; RUSSELL, S. A.; WOODWARD, J. E.; MULLINIX JUNIOR, B. G. Management of Meloidogyne incognita with chemicals and cultivars in cotton in a semi-arid environment. Journal of Nematology, v. 46, n. 2, p. 101-107, 2014.

Publication Dates

  • Publication in this collection
    02 May 2022
  • Date of issue
    2022

History

  • Received
    11 Oct 2021
  • Accepted
    22 Dec 2021
  • Published
    14 Feb 2022
Escola de Agronomia/UFG Caixa Postal 131 - Campus II, 74001-970 Goiânia-GO / Brasil, 55 62 3521-1552 - Goiânia - GO - Brazil
E-mail: revistapat.agro@ufg.br