Acessibilidade / Reportar erro

Biostimulants in initial Growth of DiscoveryTM Bermudagrass

Uso de bioestimulantes no crescimento inicial da grama DiscoveryTM

Abstract

The use of bacteria and seaweed extracts as biostimulants to enhance plant growth holds promise for sustainable turfgrass management. This study aimed to investigate the effects of soil application of Azospirillum brasilense (bacterium) and Ascophyllum nodosum (seaweed) extract on the initial growth of DiscoveryTM bermudagrass. The study was conducted using a completely randomized design with plots measuring 0.25 m², each with a 0.5 m border. Two separate experiments were conducted, each involving four doses of biostimulants and five repetitions. The biostimulant treatments consisted of 0, 2, 4, and 6 mL L¹ A. brasilense inoculant and 0, 5, 10, and 15 mL L¹ A. nodosum seaweed extract. These treatments were uniformly applied to the soil at a rate of 100 mL m², with applications at 0, 30, and 60 days after the start of the experiment. After 90 days, the parameters green color index, green cover rate, turfgrass height, and vegetation index (normalized difference), were evaluated. The results indicated that both biostimulants significantly promoted the initial growth of DiscoveryTM bermudagrass. As the doses of the biostimulants increased, there was a corresponding increase in biomass and improved development of the turfgrass. The most pronounced responses were observed with a dose of 6 mL L¹ of the bacteria inoculant and 15 mL L¹ of the seaweed extract. These biostimulants fostered better turf coverage, making it challenging for weeds to establish, and potentially accelerating the production of sod grass.

Keywords:
Azospirillum brasilense; Ascophyllum nodosum; Cynodon dactylon; growth-promoting bacteria; seaweed extract

Resumo

O uso de extratos de bactérias e algas marinhas como bioestimulantes para promover o crescimento das plantas apresenta potencial para o manejo sustentável em áreas de produção de grama. Este estudo teve como objetivo investigar os efeitos da aplicação no solo do Azospirillum brasilense (bactéria) e do extrato de Ascophyllum nodosum (alga marinha) no crescimento inicial do capim bermuda DiscoveryTM. O estudo foi conduzido usando um desenho completamente aleatório com parcelas de 0,25 m², com bordas de 0,5 m. Foram realizados dois experimentos separados, cada um envolvendo quatro doses de bioestimulantes e cinco repetições. Os tratamentos com bioestimulantes consistiram em 0, 2, 4 e 6 mL L¹ de inoculante de A. brasilense e 0, 5, 10 e 15 mL L¹ de extrato de alga marinha A. nodosum. Os tratamentos foram aplicados uniformemente no solo (100 mL m²), com aplicações feitas 0, 30 e 60 dias após o início do experimento. Após 90 dias, foram avaliados os parâmetros índice de cor verde, taxa de cobertura verde, altura do gramado e índice de vegetação (diferença normalizada). Os resultados mostraram que os bioestimulantes promoveram o crescimento inicial da grama DiscoveryTM. Houve aumento da biomassa e melhor desenvolvimento do gramado, à medida que aumentavam as doses dos bioestimulantes. As respostas mais significativas foram observadas com a dose de 6 mL L-1 do inoculante bacteriano e 15 mL L-1 do extrato de algas marinhas. Os bioestimulantes promoveram melhor fechamento do gramado, dificultando o aparecimento de ervas daninhas e possivelmente acelerando a produção de grama.

Palavras-chave:
Azospirillum brasilense; Ascophyllum nodosum; Cynodon dactylon; bactérias promotoras de crescimento; extrato de algas marinhas

Introduction

The studies on ornamental turfgrass management have gained significant recognition due to their functionality and aesthetic value (Santos and Castilho, 2018SANTOS, P.L.F.; CASTILHO, R.M.M. Substrates in the development of a sports turfgrass “Tifton 419”. Ornamental Horticulture, v.24, n.4, p.138-144, 2018. https://doi.org/10.14295/oh.v24i2.1155
https://doi.org/10.14295/oh.v24i2.1155...
). Within this field, the production of turfgrass for landscape and sporting purposes holds particular importance, especially in regions like United States and Europe (Beard and Gibbs, 2017BEARD, J.B.; GIBBS, R. History of the International Turfgrass Society and International Turfgrass Research Conference. Turfgrass Society Research Journal, v.13, p.738-750, 2017. http://dx.doi.org/10.2134/itsrj2017.06.0001
http://dx.doi.org/10.2134/itsrj2017.06.0...
). In Brazil, the estimated area dedicated to sod grass production is 32,500 hectares, with the southeast region accounting for approximately 49.7% of the national production (Associação Nacional Grama Legal, 2023ASSOCIAÇÃO BRASILEIRA GRAMA LEGAL, 2023. Available at: < Available at: https://gramalegal.com/produtores-de-grama-no-brasil >. Accessed on: Oct 10th 2023.
https://gramalegal.com/produtores-de-gra...
). The DiscoveryTM turfgrass (Cynodon dactylon) is a bermudagrass variety developed in Australia and the USA. It is highly regarded for its applications in residential and commercial areas, mainly due to its desirable characteristics such as soft leaves, uniform growth pattern, and slow growth rate (Nascimento et al., 2020NASCIMENTO, M.V.L.; SANTOS, P.L.F.; COSTA, J.V.; MARTINS, J.T.; VILLAS BOAS, R.L.; GODOY, L.J.G. Durability and doses of organic colorant in the visual quality of bermudagrass DiscoveryTM. Ornamental Horticulture, v.26, n.4, p.621-632, 2020. https://doi.org/10.1590/2447-536X.v26i4.2211
https://doi.org/10.1590/2447-536X.v26i4....
; Prates et al., 2020PRATES, A.R.; SANTOS, P.L.F.; NASCIMENTO, M.V.L.; COSTA, J.V.; SILVA, P.S.T.; VILLAS BOAS, R.L. Nitrogen doses in the development of DiscoveryTM Bermudagrass during winter. Ornamental Horticulture, v.26, n.4, p.468-474, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2207
http://dx.doi.org/10.1590/2447-536X.v26i...
; Silvério et al., 2020SILVÉRIO, J.O.; SANTOS, P.L.F.; NASCIMENTO, M.V.L.; SOUZA, C.A.N.; COSTA, J.V.; VILLAS BOAS, R.L. Foliar fertilization in Bermuda grass DiscoveryTM. Ornamental Horticulture, v.26, p.448-457, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2219
http://dx.doi.org/10.1590/2447-536X.v26i...
).

For the proper development of turfgrass, it is essential to implement effective nutritional management that aligns with its specific uses and requirements (Oliveira et al., 2018OLIVEIRA, N.B.; OLIVEIRA, J.F.V.; SANTOS, P.L.F.; GAZOLA, R.P.D. Avaliação do estado nutricional de três gramados ornamentais em Ilha Solteira-SP: Um estudo de caso. LABVERDE, v.9, n.1, p.96-119, 2018. https://doi.org/10.11606/issn.2179-2275.v9i1p96-119
https://doi.org/10.11606/issn.2179-2275....
; Santos et al., 2022SANTOS, P.L.F.; NASCIMENTO, M.V.L.; GODOY, L.J.G.; ZABOTTO, A.R.; TAVARES, A.R.; VILLAS BOAS, R.L. Influence of irrigation frequency and nitrogen concentration on Tifway 419 bermudagrass in Brazil. Revista Ceres, v.69, n.5, p.578-585, 2022. https://doi.org/10.1590/0034-737X202269050011
https://doi.org/10.1590/0034-737X2022690...
). Nitrogen (N) plays a crucial role as the primary nutrient involved in promoting quality, growth, and aesthetics of grass. It contributes to enhancing the green color of turfgrass and reducing recovery time from mechanical injuries, particularly those caused by trampling (Gazola et al., 2016GAZOLA, R.P.D.; BUZETTI, S.; GAZOLA, R.N.; CASTILHO, R.M.M.; TEIXEIRA FILHO, M.C.M.; CELESTRINO, T.S.; DUPA, E. Nitrogen dose and type of herbicide used for growth regulation on the green coloration intensity of Emerald grass. Ciência Rural, v.46, n.6, p.984-990, 2016. http://dx.doi.org/10.1590/0103-8478cr20150276
http://dx.doi.org/10.1590/0103-8478cr201...
; Santos et al., 2019). Higher doses of nitrogen enhance the lawn’s visual appearance. However, from an economic perspective, it is more advisable to apply 30 to 40 g N m-² only once during the winter for the growth of DiscoveryTM bermudagrass (Prates et al., 2020PRATES, A.R.; SANTOS, P.L.F.; NASCIMENTO, M.V.L.; COSTA, J.V.; SILVA, P.S.T.; VILLAS BOAS, R.L. Nitrogen doses in the development of DiscoveryTM Bermudagrass during winter. Ornamental Horticulture, v.26, n.4, p.468-474, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2207
http://dx.doi.org/10.1590/2447-536X.v26i...
). Nitrogen can also be used in combination with low doses of glyphosate as a plant growth regulator to control turfgrass growth (Begueline et al., 2021BEGUELINE, M.C.L.M.; ALFONSI, L.G.; DE CREDO ASSIS, K.C.; DE GODOY, L.J.G.; COSTA, J.V. Fitotoxidez e taxa de cobertura verde de gramado bermuda submetido a dosagens de nitrogênio e glifosato. Revista Brasileira de Engenharia de Biossistemas, v.15, n.1, p.27-41, 2021.). This, combined with the maintenance costs involved, highlights the need to explore alternative approaches that can achieve a balance between production and sustainability.

Biostimulants derived from seaweed and microorganisms, such as Azospirillum spp. bacteria, are recognized as highly effective promoters of plant growth, by production of growth phytohormones like auxins, gibberellins, and cytokinins (Numan et al., 2018NUMAN, M.; BASHIR, S.; KHAN, Y.; MUMTAZ, R. AL-HARRASI. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research , v.209, p.21-32, 2018. http://dx.doi.org/10.1016/j.micres.2018.02.003
http://dx.doi.org/10.1016/j.micres.2018....
). The primary reported advantage attributed to Azospirillum is its ability to fix atmospheric nitrogen (N2), leading to enhanced plant growth (Fukami et al., 2018FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb Express, v.8, n.1, p.73, 2018. https://doi.org/10.1186/s13568-018-0608-1
https://doi.org/10.1186/s13568-018-0608-...
). Seaweed extracts, such as from Ascophyllum nodosum, are also valuable biostimulants as they enhance various physiological processes in plants, including nutrient absorption and photosynthesis, and having on their composition macro and micronutrients (Santos et al., 2019SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
https://doi.org/10.1590/2447-536X.v25i3....
). A seaweed-based fertilizer is produced using marine resources and is rich in nitrogen (N), phosphorus (P), potassium (K), as well as a variety of essential medium and trace elements. The active constituents are converted into small-molecule compounds, enabling quick absorption and utilization by crops (Qiqin et al., 2023QIQIN, L.; HUAGUANG, Z.; MINXIU, S.; QIAN, L.; HAIJUN, F.; HAIMIN, C.; RUI, Y. Improvement of soil structure and bacterial composition by long-term application of seaweed fertilizer. Journal of Soil Science and Plant Nutrition, p.1-11, 2023. https://doi.org/10.1007/s42729-023-01341-0
https://doi.org/10.1007/s42729-023-01341...
).

The use of Ascophyllum nodosum extract has gained considerable attention in recent years, particularly in agricultural crop studies (Galindo et al., 2019GALINDO, F.S.; TEIXEIRA FILHO, M.C.M.; BUZETTI, S.; ALVES, C.J.; GARCIA, C.M.P.; NOGUEIRA, L.M. Extrato de algas como bioestimulante na nutrição e produtividade do trigo irrigado na região de Cerrado. Colloquium Agrariae, v.15, n.1, p.130-140, 2019. https://doi.org/10.5747/ca.2019.v15.n1.a277
https://doi.org/10.5747/ca.2019.v15.n1.a...
; Santos et al., 2019SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
https://doi.org/10.1590/2447-536X.v25i3....
). Photosynthetic organisms, such as eukaryotic microseaweed and certain cyanobacteria, present a sustainable alternative for turfgrass production areas (Li et al., 2017LI, R.; TAO, R.; LING, N.; CHU, G. Chemical, organic and bio-fertilizer management practices affect on soil physicochemical prosperty and atagonistic bateria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research, v.167, p.30-38, 2017. https://doi.org/10.1016/j.still.2016.11.001
https://doi.org/10.1016/j.still.2016.11....
). Therefore, this study aims to investigate the effects of soil application of Azospirillum brasilense (bacterium) and Ascophyllum nodosum (seaweed) extract on the initial growth of DiscoveryTM bermudagrass, promoting greener and more sustainable agriculture.

Material and Methods

The study was conducted in experimental area covered with bermudagrass DiscoveryTM, during the winter of 2019, with an average temperature of 18.9 ºC, relative humidity of 62.59%, and accumulated precipitation of 161 mm. The climate in the region is classified as Cfa, which corresponds to a humid subtropical climate with abundant and evenly distributed precipitation throughout the year, according to the Köppen climate classification. The soil type is characterized as a Red Dystrophic Latosol-LVd (Table 1).

Table 1
Result of chemical analysis of the soil in the experimental area.

The soil was corrected to achieve a target base saturation of 70% (Godoy et al., 2012GODOY, L.J.G.; VILLAS BÔAS, R.L.; BACKES, C.; SANTOS, A.J.M. Nutrição, Adubação e Calagem para produção de gramas. 1 ed. São Paulo: FEPAF, 2012. 146p.) based on the BS (base saturation) (%) of the 10-20 cm soil layer, using a 72% TNRP (Total Neutralization Relative Power) dolomitic limestone. This amendment was evenly distributed across the entire lawn 20 days before the experiment was installed. The experiment was irrigated every two days, with the amount of water provided calculated to replace the evapotranspiration that occurred over the preceding two days. The sprinklers used were of the rotor type (5000 Plus model from Rain Bird®), connected to an electronic controller.

The experiment was initiated on July 3rd, 2019. Turfgrass mats were removed using a specific harvester, allowing for new regrowth and growth of the turfgrass. Ten days later, the experimental plots were marked and the treatments were applied. Two experiments were conducted simultaneously, evaluating different doses of A. brasilense growth-promoting bacteria and A. nodosum extract (seaweed). Each experimental plot had a size of 0.25 m2 (0.50 x 0.50 m) and was arranged in a completely randomized design. Each experiment consisted of 5 repetitions. The doses used were 0, 2, 4, and 6 mL L-1 of A. brasilense inoculant and 0, 5, 10, and 15 mL L-1 of A. nodosum extract. The treatments were uniformly sprayed on the soil at a rate of 100 mL m-2, applied at 0, 30, and 60 days after the start of the experiment.

The evaluations were conducted 90 days after the experiment was initiated and included the following parameters:

- Green Color Index (GCI): Measured using the FieldScout CM 1000 Chlorophyll Meter, which utilizes light reflectance. Samples were obtained parallel to the turfgrass surface at a height of 1.0 m.

- Green Coverage Rate (GCR): Assessed through digital image analysis using a 12 Mp camera fixed in a “light box” structure, similar to Peterson et al. (2011PETERSON, K.; ARNOLD, K.S.; BREMER, D. Custom Light Box for digital image turfgrass analysis. K- State Turfgrass Research, v.1035, p.89-91, 2011.). The structure is a fully sealed box with lamps, ensured to standardized brightness and area images across all treatments. The Canopeo® software was used to analyze the images and determine the turfgrass coverage rate.

- Turfgrass Height: Measured using the “Grass Height Prism Gauge,” a dedicated instrument for turfgrass height measurement.

- Normalized Difference Vegetation Index (NDVI): Determined using the portable GreenSeeker device, which estimates turfgrass vigor and density.

The collected data were subjected to analysis of variance (ANOVA), and regression analysys was performed at a significance level of 5%. The statistical analysis was carried out using the “Statistix 10” software.

Results and Discussion

The results from the experiment with A. brasilense inoculation (Fig.1) demonstrated statistically significant differences for all the parameters, indicating that higher doses resulted in greater turfgrass development. Specifically, the concentration 6 mL L-1 showed the best results across all variables and significantly differed from the other treatments.

Fig. 1
Regression analysis of: a) Green cover rate (GCR); b) Green Color Index (GCI); c) Height and d) Normalized Difference Vegetation Index (NDVI) after 90 days of application of A. brasilense.

The rise in values for CGR, GCI, height, and NDVI can be attributed to the qualities of A. brasilense bacteria as a symbiotic biofertilizer, playing a role in biological nitrogen fixation (BNF) (Peng et al., 2020PENG, H.; DE-BASHAN, L.E.; BASHAN, Y.; HIGGINS, B.T. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green seaweed at the expense of energy storage products. Algal Research, v.47, p.101845, 2020. http://doi.org/10.1016/j.algal.2020.101845
http://doi.org/10.1016/j.algal.2020.1018...
). This, in turn, results in a substantial nitrogen supply in the soil, which is vital for the growth of turfgrass (Gazola et al., 2019GAZOLA, R.P.D.; BUZETTI, S.; GAZOLA, R.N.; CASTILHO, R.M.M.; TEIXEIRA FILHO, M.C.M.; CELESTRINO, T.S. Nitrogen fertilization and glyphosate doses as growth regulators in Esmeralda grass. Revista Brasileira de Engenharia Agrícola e Ambiental, v.23, n.12, p.930-936, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p930-936
https://doi.org/10.1590/1807-1929/agriam...
). Our experiment suggests that, when applying a dosage of 6 mL L-¹ every 30 days, there may be no need for additional nitrogen supplementation for a duration of up to 90 days. Therefore, the use of bacteria from the genus Azospirillum spp. presents an alternative for turfgrass nutrition and has shown promising results in other agronomically important grasses (Afzal et al., 2019AFZAL, I.; SHINWARI, Z.K.; SIKANDAR, S.; SHAHZAD, S. Plant beneficial endophytic bactéria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, v.221, p.36-49, 2019. https://doi.org/10.1016/j.micres.2019.02.001
https://doi.org/10.1016/j.micres.2019.02...
).

There is a well-established correlation between nitrogen fertilization and turfgrass leaf color (Oliveira et al., 2018OLIVEIRA, N.B.; OLIVEIRA, J.F.V.; SANTOS, P.L.F.; GAZOLA, R.P.D. Avaliação do estado nutricional de três gramados ornamentais em Ilha Solteira-SP: Um estudo de caso. LABVERDE, v.9, n.1, p.96-119, 2018. https://doi.org/10.11606/issn.2179-2275.v9i1p96-119
https://doi.org/10.11606/issn.2179-2275....
; Gazola et al., 2016GAZOLA, R.P.D.; BUZETTI, S.; GAZOLA, R.N.; CASTILHO, R.M.M.; TEIXEIRA FILHO, M.C.M.; CELESTRINO, T.S.; DUPA, E. Nitrogen dose and type of herbicide used for growth regulation on the green coloration intensity of Emerald grass. Ciência Rural, v.46, n.6, p.984-990, 2016. http://dx.doi.org/10.1590/0103-8478cr20150276
http://dx.doi.org/10.1590/0103-8478cr201...
). Consequently, GCI indirectly reflects the chlorophyll content and turfgrass nutrition since higher GCI values are associated with increased concentrations of nitrogen and magnesium in plants (Oliveira et al., 2018; Santos et al., 2019SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
https://doi.org/10.1590/2447-536X.v25i3....
). Higher values of CGR indicate a shorter period required for turfgrass coverage, which is crucial for preventing weed invasion. A shorter coverage period would lead to an earlier sod harvest, as observed in DiscoveryTM bermudagrass treated with and composted sewage sludge (Rezende et al., 2020REZENDE, B.T.; SANTOS, P.L.F.; BEZERRA, J.C.M.; PAGLIARINI, M.K.; CASTILHO, R.M.M. Sewage sludge composted in the coloring and development of Bermuda grass. Ornamental Horticulture, v.26, n.4, p.440-447, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2204
http://dx.doi.org/10.1590/2447-536X.v26i...
).

The increase in plant biomass, promoted by A. brasilense, was clearly observed in the NDVI, which serves as an excellent indicator for evaluating turfgrass conditions (values around 1 indicate greater biomass and denser turfgrass). Notably, the dose of 6 mL L-¹ yielded the best result with an NDVI value of 0.53. Moreover, there exists a positive correlation between green color and nitrogen levels in turfgrass leaves, as estimated by NDVI in bermudagrass hybrids (Caturegli et al., 2019CATUREGLI, L.; GAETANI, M.; VOLTERRANI, M.; MAGNI, S.; MINELLI, A.; BALDI, A.; BRANDANI, G.; MANCINI, M.; LENZI, A.; ORLANDINI, S.; LULLI, F.; BERTOLDI, C.; DUBBINI, M.; GROSSI, N. Normalized difference vegetation index versus dark green colour index to estimate nitrogen status on bermudagrass hybrid and tall fescue. International Journal of Remote Sensing, v.41, p.455-470, 2019. https://doi.org/10.1080/01431161.2019.1641762
https://doi.org/10.1080/01431161.2019.16...
). Marín et al. (2020MARÍN, J.; YOUSFI, S.; MAURI, P.V.; PARRA, L.; LLORET, J.; MASAGUER, A. RGB Vegetation Indices, NDVI, and biomass as indicators to evaluate C3 and C4 turfgrass under different water conditions. Sustainability, v.12, n.6, p.1-2, 2020. https://doi.org/10.3390/su12062160
https://doi.org/10.3390/su12062160...
) also recommend the use of NDVI to assess turfgrass quality. The visual aspect of the turfgrass (Fig.2) aligns with our data (Fig.1), with higher doses corresponding to increased Crop Growth Rate (CGR) and plant biomass. Turfgrass height is also influenced by higher nitrogen levels and the GCI, as increased chlorophyll concentrations contribute to more efficient photosynthetic processes, resulting in enhanced growth and adaptability (Santos et al., 2019SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
https://doi.org/10.1590/2447-536X.v25i3....
). Even though, nitrogen is a primary nutrient required by turfgrass and is commonly used extensively in production areas, the results of our study suggest that A. brasilense has the potential to partially replace the nitrogen required by turfgrass, thereby reducing production costs.

Fig. 2
Visual aspect of DiscoveryTM bermudagrass 90 days after the application of A. brasilense. T1 - 0 mL L-1, T2 - 5 mL L-1, T3 - 10 mL L-1, T4 - 15 mL L-1.

The application of 15 mL L-¹ of A. nodosum extract at 90 days produced the most favorable responses for CGR, GCI, height, and NDVI. The seaweed extract contains bioactive compounds and essential enzymes involved in nutrient assimilation, especially nitrogen (Van Oosten et al., 2017)VAN OOSTEN, M.J.; PEPE, O.; DE PASCALE, S.; SILLETTI, S.; MAGGIO, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical Biology Technology in Agriculture, v.4, n.5, 2017. https://doi.org/10.1186/s40538-017-0089-5
https://doi.org/10.1186/s40538-017-0089-...
, which likely contributed to the enhanced development of the turfgrass, resulting in increased CGR and, consequently, GCI. Previous studies have demonstrated that the application of seaweed extract leads to an increase in chlorophyll concentration (Zhang et al., 2010ZHANG, X.; WANG, K.; ERVIN, E.H. Optimizing dosages of seaweed extract based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science, v.50, p.316-320, 2010. https://doi.org/10.2135/cropsci2009.02.0090
https://doi.org/10.2135/cropsci2009.02.0...
) and enhances photosynthetic rates and growth in Paspalum vaginatum turfgrass (Elansary et al., 2017ELANSARY, H.O.; YESSOUFOU, K.; ABDEL-HAMID, A.M.E.; EL-ESAWI, M.A.; ALI, H.M.; ALI, H.M.; ELSHIKH, M.S. Seaweed extracts enhance salam turfgrass perfomance during prolonged irrigation intervals and saline shock. Frontiers in Plant Science, v.8, p.1-14, 2017. https://doi.org/10.3389/fpls.2017.00830
https://doi.org/10.3389/fpls.2017.00830...
). Seaweed extracts also contain phytohormones, including cytokinins (Ali et al., 2021ALI, O.; RAMSUBHAG, A.; JAYARAMAN, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, v.10, n.3, p.531, 2021. https://doi.org/10.3390/plants10030531
https://doi.org/10.3390/plants10030531...
). Foliar application of seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins has been shown to elevate leaf cytokinin content and delay senescence in bentgrass (Zhang et al., 2010). Therefore, they directly contribute to plant development and growth, while also providing protection against abiotic stresses in turfgrass (Bonomelli et al., 2018BONOMELLI, C.; CELIS, V.; LOMBARDI, G.; MÁRTIZ, J. Salt stress effects on Avocado (Persea americana Mill). plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy, v.8, n.64, p.2-13, 2018. https://doi.org/10.3390/%20agronomy8050064
https://doi.org/10.3390/%20agronomy80500...
; Di Stasio et al., 2018DI STASIO, E.; VAN OOSTEN, M.J.; SILLETTI, S.; RAIMONDI, G.; DELL’AVERSANA, E.; CARILLO, P.; MAGGIO, A. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. Journal of Applied Phycology, v.30, p.2675-2686, 2018. http://dx.doi.org/10.1007/s10811-018-1439-9
http://dx.doi.org/10.1007/s10811-018-143...
).

The increase in biomass with the application of seaweed extract can be attributed to the nutritive substances present in the seaweed, which promote cell division and elongation. The higher doses of seaweed extract resulted in increased turfgrass biomass (Fig.3), which in turn influenced the reflectance area in the spectrum evaluated by NDVI. Consequently, seaweed extract can enhance turfgrass production and accelerate sod harvest (Neumann et al., 2017NEUMANN, E.R.; RESENDE, J.T.; CAMARGO, L.K.P.; CHAGAS, R.R.; LIMA FILHO, R.B.L. Produção de mudas de batata doce em ambiente protegido com aplicação de extrato de Ascophyllum nodosum. Horticultura Brasileira, v.35, n.4, 2017. http://dx.doi.org/10.1590/s0102-053620170404
http://dx.doi.org/10.1590/s0102-05362017...
). Our results suggest that the dose of 15 mL L-1 of seaweed extract favored turfgrass development, potentially leading to an earlier harvest. While there are no specific reports on the effects of A. nodosum on DiscoveryTM bermudagrass, the use of seaweed-based biostimulants has proven to be an important tool in promoting the initial growth and closure of turfgrass (Fig. 4). However, it should be noted that many biostimulants also contain macro and micronutrients, raising the question of whether the positive effects observed are solely due to improved nutrition (Santos et al., 2019SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
https://doi.org/10.1590/2447-536X.v25i3....
).

Fig. 3
Regression analysis of: a) Green cover rate (GCR); b) Green Color Index (GCI); c) Height and d) Normalized Difference Vegetation Index (NDVI) after 90 days of application of A. nodosum.

Fig. 4
Visual aspect of DiscoveryTM bermudagrass 90 days after the application of A. nodosum extract. T1 - 0 mL L-1, T2 - 2 mL L-1, T3 - 4 mL L-1, T4 - 6 mL L-1.

Conclusions

The application of 6 mL L-1 of A. brasilense and 15 mL L-1 of A. nodosum enhance the initial growth of DiscoveryTM bermudagrass. These doses resulted in a reduced closing period of the turfgrass, which is crucial for preventing the growth of invasive plants and potentially shortening the time to sod harvest.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement

Data will be made available on request.

Acknowledgements

We acknowledge the São Paulo Research Foundation (FAPESP) for supporting this research with financial resources (14/05237-1).

References

  • AFZAL, I.; SHINWARI, Z.K.; SIKANDAR, S.; SHAHZAD, S. Plant beneficial endophytic bactéria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, v.221, p.36-49, 2019. https://doi.org/10.1016/j.micres.2019.02.001
    » https://doi.org/10.1016/j.micres.2019.02.001
  • ALI, O.; RAMSUBHAG, A.; JAYARAMAN, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, v.10, n.3, p.531, 2021. https://doi.org/10.3390/plants10030531
    » https://doi.org/10.3390/plants10030531
  • ASSOCIAÇÃO BRASILEIRA GRAMA LEGAL, 2023. Available at: < Available at: https://gramalegal.com/produtores-de-grama-no-brasil >. Accessed on: Oct 10th 2023.
    » https://gramalegal.com/produtores-de-grama-no-brasil
  • BEARD, J.B.; GIBBS, R. History of the International Turfgrass Society and International Turfgrass Research Conference. Turfgrass Society Research Journal, v.13, p.738-750, 2017. http://dx.doi.org/10.2134/itsrj2017.06.0001
    » http://dx.doi.org/10.2134/itsrj2017.06.0001
  • BEGUELINE, M.C.L.M.; ALFONSI, L.G.; DE CREDO ASSIS, K.C.; DE GODOY, L.J.G.; COSTA, J.V. Fitotoxidez e taxa de cobertura verde de gramado bermuda submetido a dosagens de nitrogênio e glifosato. Revista Brasileira de Engenharia de Biossistemas, v.15, n.1, p.27-41, 2021.
  • BONOMELLI, C.; CELIS, V.; LOMBARDI, G.; MÁRTIZ, J. Salt stress effects on Avocado (Persea americana Mill). plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy, v.8, n.64, p.2-13, 2018. https://doi.org/10.3390/%20agronomy8050064
    » https://doi.org/10.3390/%20agronomy8050064
  • CATUREGLI, L.; GAETANI, M.; VOLTERRANI, M.; MAGNI, S.; MINELLI, A.; BALDI, A.; BRANDANI, G.; MANCINI, M.; LENZI, A.; ORLANDINI, S.; LULLI, F.; BERTOLDI, C.; DUBBINI, M.; GROSSI, N. Normalized difference vegetation index versus dark green colour index to estimate nitrogen status on bermudagrass hybrid and tall fescue. International Journal of Remote Sensing, v.41, p.455-470, 2019. https://doi.org/10.1080/01431161.2019.1641762
    » https://doi.org/10.1080/01431161.2019.1641762
  • DI STASIO, E.; VAN OOSTEN, M.J.; SILLETTI, S.; RAIMONDI, G.; DELL’AVERSANA, E.; CARILLO, P.; MAGGIO, A. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. Journal of Applied Phycology, v.30, p.2675-2686, 2018. http://dx.doi.org/10.1007/s10811-018-1439-9
    » http://dx.doi.org/10.1007/s10811-018-1439-9
  • ELANSARY, H.O.; YESSOUFOU, K.; ABDEL-HAMID, A.M.E.; EL-ESAWI, M.A.; ALI, H.M.; ALI, H.M.; ELSHIKH, M.S. Seaweed extracts enhance salam turfgrass perfomance during prolonged irrigation intervals and saline shock. Frontiers in Plant Science, v.8, p.1-14, 2017. https://doi.org/10.3389/fpls.2017.00830
    » https://doi.org/10.3389/fpls.2017.00830
  • FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb Express, v.8, n.1, p.73, 2018. https://doi.org/10.1186/s13568-018-0608-1
    » https://doi.org/10.1186/s13568-018-0608-1
  • GALINDO, F.S.; TEIXEIRA FILHO, M.C.M.; BUZETTI, S.; ALVES, C.J.; GARCIA, C.M.P.; NOGUEIRA, L.M. Extrato de algas como bioestimulante na nutrição e produtividade do trigo irrigado na região de Cerrado. Colloquium Agrariae, v.15, n.1, p.130-140, 2019. https://doi.org/10.5747/ca.2019.v15.n1.a277
    » https://doi.org/10.5747/ca.2019.v15.n1.a277
  • GAZOLA, R.P.D.; BUZETTI, S.; GAZOLA, R.N.; CASTILHO, R.M.M.; TEIXEIRA FILHO, M.C.M.; CELESTRINO, T.S.; DUPA, E. Nitrogen dose and type of herbicide used for growth regulation on the green coloration intensity of Emerald grass. Ciência Rural, v.46, n.6, p.984-990, 2016. http://dx.doi.org/10.1590/0103-8478cr20150276
    » http://dx.doi.org/10.1590/0103-8478cr20150276
  • GAZOLA, R.P.D.; BUZETTI, S.; GAZOLA, R.N.; CASTILHO, R.M.M.; TEIXEIRA FILHO, M.C.M.; CELESTRINO, T.S. Nitrogen fertilization and glyphosate doses as growth regulators in Esmeralda grass. Revista Brasileira de Engenharia Agrícola e Ambiental, v.23, n.12, p.930-936, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p930-936
    » https://doi.org/10.1590/1807-1929/agriambi.v23n12p930-936
  • GODOY, L.J.G.; VILLAS BÔAS, R.L.; BACKES, C.; SANTOS, A.J.M. Nutrição, Adubação e Calagem para produção de gramas. 1 ed. São Paulo: FEPAF, 2012. 146p.
  • GÓRKA, B.; KORZENIOWSKA, K.; LIPOK, J.; WIECZOREK, P.P. The Biomass of algae and algal extracts in agricultural production. In: Algae Biomass: Characteristics and Applications. Cham: Springer, 2018. p.103-114.
  • LI, R.; TAO, R.; LING, N.; CHU, G. Chemical, organic and bio-fertilizer management practices affect on soil physicochemical prosperty and atagonistic bateria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research, v.167, p.30-38, 2017. https://doi.org/10.1016/j.still.2016.11.001
    » https://doi.org/10.1016/j.still.2016.11.001
  • MARÍN, J.; YOUSFI, S.; MAURI, P.V.; PARRA, L.; LLORET, J.; MASAGUER, A. RGB Vegetation Indices, NDVI, and biomass as indicators to evaluate C3 and C4 turfgrass under different water conditions. Sustainability, v.12, n.6, p.1-2, 2020. https://doi.org/10.3390/su12062160
    » https://doi.org/10.3390/su12062160
  • NASCIMENTO, M.V.L.; SANTOS, P.L.F.; COSTA, J.V.; MARTINS, J.T.; VILLAS BOAS, R.L.; GODOY, L.J.G. Durability and doses of organic colorant in the visual quality of bermudagrass DiscoveryTM Ornamental Horticulture, v.26, n.4, p.621-632, 2020. https://doi.org/10.1590/2447-536X.v26i4.2211
    » https://doi.org/10.1590/2447-536X.v26i4.2211
  • NEUMANN, E.R.; RESENDE, J.T.; CAMARGO, L.K.P.; CHAGAS, R.R.; LIMA FILHO, R.B.L. Produção de mudas de batata doce em ambiente protegido com aplicação de extrato de Ascophyllum nodosum Horticultura Brasileira, v.35, n.4, 2017. http://dx.doi.org/10.1590/s0102-053620170404
    » http://dx.doi.org/10.1590/s0102-053620170404
  • NUMAN, M.; BASHIR, S.; KHAN, Y.; MUMTAZ, R. AL-HARRASI. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research , v.209, p.21-32, 2018. http://dx.doi.org/10.1016/j.micres.2018.02.003
    » http://dx.doi.org/10.1016/j.micres.2018.02.003
  • OLIVEIRA, N.B.; OLIVEIRA, J.F.V.; SANTOS, P.L.F.; GAZOLA, R.P.D. Avaliação do estado nutricional de três gramados ornamentais em Ilha Solteira-SP: Um estudo de caso. LABVERDE, v.9, n.1, p.96-119, 2018. https://doi.org/10.11606/issn.2179-2275.v9i1p96-119
    » https://doi.org/10.11606/issn.2179-2275.v9i1p96-119
  • PENG, H.; DE-BASHAN, L.E.; BASHAN, Y.; HIGGINS, B.T. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green seaweed at the expense of energy storage products. Algal Research, v.47, p.101845, 2020. http://doi.org/10.1016/j.algal.2020.101845
    » http://doi.org/10.1016/j.algal.2020.101845
  • PETERSON, K.; ARNOLD, K.S.; BREMER, D. Custom Light Box for digital image turfgrass analysis. K- State Turfgrass Research, v.1035, p.89-91, 2011.
  • PRATES, A.R.; SANTOS, P.L.F.; NASCIMENTO, M.V.L.; COSTA, J.V.; SILVA, P.S.T.; VILLAS BOAS, R.L. Nitrogen doses in the development of DiscoveryTM Bermudagrass during winter. Ornamental Horticulture, v.26, n.4, p.468-474, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2207
    » http://dx.doi.org/10.1590/2447-536X.v26i3.2207
  • QIQIN, L.; HUAGUANG, Z.; MINXIU, S.; QIAN, L.; HAIJUN, F.; HAIMIN, C.; RUI, Y. Improvement of soil structure and bacterial composition by long-term application of seaweed fertilizer. Journal of Soil Science and Plant Nutrition, p.1-11, 2023. https://doi.org/10.1007/s42729-023-01341-0
    » https://doi.org/10.1007/s42729-023-01341-0
  • REZENDE, B.T.; SANTOS, P.L.F.; BEZERRA, J.C.M.; PAGLIARINI, M.K.; CASTILHO, R.M.M. Sewage sludge composted in the coloring and development of Bermuda grass. Ornamental Horticulture, v.26, n.4, p.440-447, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2204
    » http://dx.doi.org/10.1590/2447-536X.v26i3.2204
  • SANTOS, P.L.F.; CASTILHO, R.M.M. Substrates in the development of a sports turfgrass “Tifton 419”. Ornamental Horticulture, v.24, n.4, p.138-144, 2018. https://doi.org/10.14295/oh.v24i2.1155
    » https://doi.org/10.14295/oh.v24i2.1155
  • SANTOS, P.L.F.; ZABOTTO, A.R.; JORDÃO, H.W.C.; BOAS, R.L.V.; BROETTO, F.; TAVARES, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Horticulture, v.25, n.3, p.231-237, 2019. https://doi.org/10.1590/2447-536X.v25i3.2044
    » https://doi.org/10.1590/2447-536X.v25i3.2044
  • SANTOS, P.L.F.; NASCIMENTO, M.V.L.; GODOY, L.J.G.; ZABOTTO, A.R.; TAVARES, A.R.; VILLAS BOAS, R.L. Influence of irrigation frequency and nitrogen concentration on Tifway 419 bermudagrass in Brazil. Revista Ceres, v.69, n.5, p.578-585, 2022. https://doi.org/10.1590/0034-737X202269050011
    » https://doi.org/10.1590/0034-737X202269050011
  • SILVÉRIO, J.O.; SANTOS, P.L.F.; NASCIMENTO, M.V.L.; SOUZA, C.A.N.; COSTA, J.V.; VILLAS BOAS, R.L. Foliar fertilization in Bermuda grass DiscoveryTM Ornamental Horticulture, v.26, p.448-457, 2020. http://dx.doi.org/10.1590/2447-536X.v26i3.2219
    » http://dx.doi.org/10.1590/2447-536X.v26i3.2219
  • VAN OOSTEN, M.J.; PEPE, O.; DE PASCALE, S.; SILLETTI, S.; MAGGIO, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical Biology Technology in Agriculture, v.4, n.5, 2017. https://doi.org/10.1186/s40538-017-0089-5
    » https://doi.org/10.1186/s40538-017-0089-5
  • ZHANG, X.; WANG, K.; ERVIN, E.H. Optimizing dosages of seaweed extract based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science, v.50, p.316-320, 2010. https://doi.org/10.2135/cropsci2009.02.0090
    » https://doi.org/10.2135/cropsci2009.02.0090
  • Editor: Petterson Baptista da Luz (Universidade do Estado do Mato Grosso, Brasil)

Publication Dates

  • Publication in this collection
    15 Mar 2024
  • Date of issue
    Jan-Mar 2024

History

  • Received
    24 July 2023
  • Accepted
    07 Nov 2023
  • Published
    22 Dec 2023
Sociedade Brasileira de Floricultura e Plantas Ornamentais Av. Av. Peter Henry Rolfs, s/n, 36570-000 - Viçosa, Minas Gerais - Brasil, (32) 3379-4983, Tel: (32) 3379-4983 - Viçosa - MG - Brazil
E-mail: editor.ornamentalhorticulture@gmail.com