Acessibilidade / Reportar erro

Enhancement of Visible Light-Responsive Photocatalytic Efficiency by Using a Laccaic Acid-Modified Titanium Dioxide Photocatalyst

Abstract

In this study, a laccaic acid-modified TiO2 photocatalyst (Lac-TiO2) was prepared via an impregnation method with 0.50, 1.00, 2.50, and 5.00 wt.% laccaic acid. The products’ physical properties were examined through X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoemission spectroscopy (XPS), UV-Vis diffused reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption, and photoluminescence (PL) spectroscopy. A possible photocatalytic mechanism was also proposed. XRD patterns revealed the anatase phase of TiO2 and Lac-TiO2 samples. High-magnification FE-SEM images showed that the TiO2 and Lac-TiO2 samples exhibited spherical-like structures. XPS results complementarily confirmed the presence of Ti, O, and C as the main elements of the Lac-TiO2 samples. Interestingly, the DRS spectra of the Lac-TiO2 samples extended into the visible region. FTIR spectra presented the characteristic bands of TiO2 and hydroxyl groups on the TiO2 surface. Instead of hydroxyl groups, the characteristic bands of laccaic acid were observed on the surface of the Lac-TiO2 samples. The photocatalytic properties of the Lac-TiO2 samples were evaluated in terms of methyl orange degradation under visible light irradiation. The Lac-TiO2 samples showed higher photocatalytic performance than the TiO2 sample.

Keywords:
TiO2; laccaic acid-modified TiO2; impregnation method; visible photocatalyst; degradation of methyl orange


Introduction

Photocatalytic oxidation has been widely explored in terms of the removal of contaminants, including toxic organic pollutants.11 Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.; Chem. Rev. 1995, 95, 69.

2 Herrmann, J. M.; Top. Catal. 2005, 34, 49.
-33 Ye, S.; Chen, Y.; Yao, X.; Zhang, J.; Chemosphere 2021, 273, 128503. In this process, various substances, including semiconductor photocatalysts, are used.44 Parul; Kaur, K.; Badru, R.; Singh, P. P.; Kaushal, S.; J. Environ. Chem. Eng. 2020, 8, 103666. Among all kinds of semiconductor photocatalysts, titanium dioxide (TiO2) is widely applied in heterogeneous photocatalysis because of its low price, nontoxicity, chemical stability, and high photocatalytic activity.55 Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.; Ramamurthi, K.; Chem. Eng. Commun. 2014, 16, 8756.

6 Fujishima, A.; Rao, T. N.; Tryk, D. A.; J. Photochem. Photobiol., C 2000, 1, 1.
-77 Ijaz, M.; Zafar, M.; Int. J. Energy Res. 2021, 45, 3569. However, the application of pure TiO2 in photocatalysis is limited due to its wide band gap (3.2 eV) and fast recombination of photogenerated electron-hole pairs. Therefore, its activity under visible and solar light is restricted.88 Hashim, N.; Thakur, S.; Patang, M.; Crapulli, F.; Ray, A. K.; Environ. Technol. 2017, 38, 933. To overcome these limitations, researchers developed several strategies, such as metal deposition,99 Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V.; Water Res. 2004, 38, 3001.,1010 Suwanchawalit, C.; Wongnawa, S.; Sriprang, P.; Meanha, P.; Ceram. Int. 2012, 38, 5201. transition metal doping,1111 Hussain, S. T.; Siddiqa, A.; Int. J. Environ. Sci. Technol. 2011, 8, 351.

12 Hussain, S. T.; Siddiqa, A.; Siddiq, M.; Ali, S.; J. Nanoparticle Res. 2011, 13, 6517.

13 Malengreaux, C.; Pirard, S. L.; Léonard, G.; Mahy, L. G.; Herlitschke, M.; Klobes, B.; Hermann, R.; Heinrichs, B.; Bartlett, J. R.; J. Alloys Compd. 2016, 691, 726.
-1414 El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M.; J. Hazard. Mater. 2009, 166, 138. nonmetal doping,1515 Gorska, P.; Zaleska, A.; Hupka; Sep. Purif. Technol. 2009, 68, 90.

16 Kosowska, B.; Mozia, S.; Moraws, A. W.; Grzmil, B.; Jamus, M.; Kalucki, K.; Sol. Cells 2005, 88, 269.

17 Zhou, P.; Yu, J.; Wang, Y.; Appl. Catal., B 2013, 142, 45.
-1818 Szkoda, M.; Siuzdak, K.; Lisowska-Oleksiak, A.; Phys. E 2016, 84, 141. dye-sensitized TiO2,1919 Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A. K.; Ind. Eng. Chem. Res. 2012, 51, 4523.

20 Aiempanakit, M.; Tabtimsri, T.; Triamnak, N.; Suwanchawalit, C.; Int. J. Electrochem. Sci. 2019, 14, 1954.

21 Huang, C.; Lv, Y.; Zhou, Q.; Kang, S. Z.; Li, X. Q.; Mu, J.; Ceram. Int. 2014, 40, 7093.

22 Goulart, S.; Nieves, L. J. J.; Dal Bo’, A. J.; Bernardin, A. M.; Dyes Pigm. 2020, 182, 108654.
-2323 Hug, H.; Bader, M.; Mair, P.; Glatzel, T.; Appl. Energy 2014, 115, 216. and coupling with other narrow-band gap semiconductors.2424 Senevirathna, M. K. I.; Pitigala, P.; Tennakone, K.; J. Photochem. Photobiol., A 2005, 171, 257.

25 Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.; J. Am. Chem. Soc. 2008, 130, 1124.
-2626 Mohini, R.; Lakshminarasimhan, N.; Mater. Res. Bull. 2016, 76, 370.

Sensitization of TiO2 particles with dye molecules is considered an efficient method to extend their photocatalytic property into the visible region.2727 Mustafa, M. N.; Sulaiman, Y.; Sol. Energy 2021, 215, 26. Some common dye sensitizers include porphyrin,1919 Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A. K.; Ind. Eng. Chem. Res. 2012, 51, 4523. phthalocyanine,2121 Huang, C.; Lv, Y.; Zhou, Q.; Kang, S. Z.; Li, X. Q.; Mu, J.; Ceram. Int. 2014, 40, 7093. and natural dyes.2222 Goulart, S.; Nieves, L. J. J.; Dal Bo’, A. J.; Bernardin, A. M.; Dyes Pigm. 2020, 182, 108654.,2323 Hug, H.; Bader, M.; Mair, P.; Glatzel, T.; Appl. Energy 2014, 115, 216. In general, the mechanism for the TiO2 photocatalyzed reaction involves the generation of electron-hole pairs through light illumination. The introduction of a dye-sensitizer allows visible light absorption due to the narrower band gap of the dye molecules. The photoexcited electrons of adsorbed dyes are then injected into the conduction band (CB) of the TiO2 photocatalyst.1919 Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A. K.; Ind. Eng. Chem. Res. 2012, 51, 4523.

20 Aiempanakit, M.; Tabtimsri, T.; Triamnak, N.; Suwanchawalit, C.; Int. J. Electrochem. Sci. 2019, 14, 1954.
-2121 Huang, C.; Lv, Y.; Zhou, Q.; Kang, S. Z.; Li, X. Q.; Mu, J.; Ceram. Int. 2014, 40, 7093. Hydroxyl radical (•OH) and superoxide radical species (O2•-) are generated on the surface of the photocatalyst and then react with organic substances, hence the degradation.2828 Muscetta, M.; Russo, D.; Catalysts 2021, 11, 834. In addition to light adsorption, the size, shape, surface area, morphological characteristics, and dimensionality of catalysts significantly affect their photocatalytic activity.2929 Youssef, Z.; Arnoux, P.; Colombeau, L.; Toufaily, J.; Hamieh, T.; Frochot, C.; Roques-Carmes, T.; J. Photochem. Photobiol., A 2018, 356, 177.,3030 Jiang, G.; Geng, K.; Wu, Y.; Han, Y.; Shen, X.; Appl. Catal., B 2018, 227, 366. The small size of TiO2 nanoparticles provides a large surface area and facilitates the charge transfer process that prevents the recombination of the electron-hole pairs.3131 Hsiao, Y. C.; Wu, T. F.; Wang, Y. S.; Hu, C. C.; Huang, C.; Appl. Catal., B 2014, 148-149, 250.

32 Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S.; Dyes Pigm. 2018, 159, 49.
-3333 Wang, H.; Wu, Y.; Xu, B. Q.; Appl. Catal., B 2005, 59, 139.

In the present work, laccaic acid-modified TiO2 (Lac TiO2) was prepared via an impregnation method. The effects of the amount of laccaic acid loaded on the TiO2 surface on the microstructure, optical properties, and photocatalytic activity of Lac-TiO2 were investigated. The synthesized Lac-TiO2 samples were characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffused reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption, and photoluminescence (PL) spectroscopy. The photocatalytic activity of the as-prepared Lac-TiO2 samples was tested and compared with a pure TiO2 sample using methyl orange (MO) as a model pollutant. The hydroxyl radical (•OH) generated during the photocatalytic reaction was examined, and a possible mechanism was proposed.

Experimental

Materials

Titanium(IV) isopropoxide was obtained from Sigma-Aldrich (St. Louis, Missouri, USA). Ethanol (C2H5OH) was purchased from Merck (Darmstadt, Germany). Methyl orange and terephthalic acid were obtained from Sigma-Aldrich (Saint Louis, USA). Laccaic acid solutions were prepared from the insect nest (Laccifer lacca) received from a local market in Nakhon Pathom Province, Thailand. All chemicals were of analytical grade and used as received.

Preparation of TiO2

TiO2 was prepared by the sol-gel method. First, 10.00 mL of titanium(IV) isopropoxide were mixed with 90.00 mL of ethanol. The mixture was stirred at room temperature for 24 h and a white TiO2 precipitate was obtained. The TiO2 precipitate was filtered and washed with deionized water. The as-prepared TiO2 powder was dried at 60 °C for 24 h.

Preparation of Lac-TiO2 photocatalyst

In brief, Lac-TiO2 was synthesized via an impregnation method. The as-prepared TiO2 powder (0.50 g) was suspended in laccaic acid solution (50.00 mL) with different concentrations (0.50, 1.00, 2.50, and 5.00 wt.%) for 2 h. After impregnation, the Lac-TiO2 precipitate was filtered, washed with ethanol, and dried at 80 °C for 12 h. The catalysts synthesized from 0.5, 1.0, 2.5, and 5.0 wt.% laccaic acid solutions were denoted as 0.5Lac-TiO2, 1.0Lac TiO2, 2.5Lac-TiO2, and 5.0Lac-TiO2, respectively. The synthesis route of Lac-TiO2 is shown in Figure 1.

Figure 1
Synthesis route of Lac-TiO2 via an impregnation method.

Characterizations

The crystal structures of the as-prepared pure TiO2 and Lac-TiO2 samples were determined through XRD recorded in a Rigaku MiniFlex II X-ray diffractometer (Singapore) with Cu Kα radiation (1.5406 Å) from 20° to 80° (2θ). Morphological characteristics were investigated via FE SEM (TESCAN model MIRA3) (Brno, Kohoutovice, Czech Republic). Chemical compositions were collected with XPS (a voltage of 15 kV, and an emission current of 10 mA) by using a Kratos Axis Ultra spectrometer (Manchester, UK) with a monochromic Al Kα source at 1486.7 eV. The optical absorption property and band gap energy were determined using a Shimadzu UV-2401 spectrophotometer (Tokyo, Japan). FTIR spectra were obtained with a PerkinElmer Spectrum Bx spectrophotometer (Waltham, Massachusetts, USA) in the range of 400-4000 cm-1 via attenuated total reflectance (ATR). The surface area and pore diameter were measured by nitrogen adsorption/desorption using a Micromeritics ASAP 2460 surface area and porosity analyzer (Norcross, GA, USA). The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) and the pore volume and pore size were calculated by the Barrett-Joyner-Halenda (BJH) method.

Photocatalytic experiment

The photocatalytic activity of the as-prepared pure TiO2 and Lac-TiO2 was evaluated in the degradation of methyl orange (MO) under visible light. For each experiment, 0.05 g of the photocatalyst was suspended in 50 mL of MO (1.0 × 10-5 M) in the dark for 1 h to allow the adsorption/desorption equilibrium between the photocatalyst and MO. The suspension was irradiated under 18 W fluorescence lamps (TL-D 18 W/865 Philips tube light).1010 Suwanchawalit, C.; Wongnawa, S.; Sriprang, P.; Meanha, P.; Ceram. Int. 2012, 38, 5201.,3434 Suwanchawalit, C.; Buddee, S.; Wongnawa, S.; J. Environ. Sci. 2017, 55, 257.,3535 Buddee, S.; Suwanchawalit, C.; Wongnawa, S.; Dig. J. Nanomater. Biostructures 2018, 12, 829. With stirring and irradiation, 5 mL of the suspension was collected every 60 min. The samples were centrifuged and the concentration of the remaining MO was analyzed using a UV-Vis spectrophotometer (Agilent HP model 8453, Victoria, Australia).

The photocatalytic efficiencies of the as-prepared pure TiO2 and Lac-TiO2 were measured by the following equation:

(1)Photocatalytic efficiency(%)=Ai-AtAi
where Ai is the initial concentration of MO, and At is the concentration of MO at pre-determined time intervals.

The amount of the hydroxyl radical generated during the photocatalysis was determined using terephthalic acid as anOH scavenger following previously described methods.2020 Aiempanakit, M.; Tabtimsri, T.; Triamnak, N.; Suwanchawalit, C.; Int. J. Electrochem. Sci. 2019, 14, 1954.,3636 Mehraj, O.; Mir, N. A.; Pirzada, B. M.; Sabir, S.; Muneer, M.; J. Mol. Catal., A 2014, 395, 16. The fluorescence emission spectra (excitation wavelength 315 nm) were measured on a PerkinElmer LS-50B luminescence spectrometer (Beaconsfield, UK).

Results and Discussion

Microstructure and optical property

The crystal structures of pure TiO2 and Lac-TiO2 were investigated by XRD. In Figure 2, all the samples showed a broad peak at 25.3° indicating the low amount of the anatase phase (JCPDS No. 21-1272) mixed with an amorphous phase.3737 Pookmaneea, P.; Phanichphant, S.; J. Ceram. Process. Res. 2009, 10, 167. After modification with different amounts of laccaic acid, no apparent change was observed in the XRD patterns. The XRD results suggested that the combination of TiO2 and laccaic acid did not modify the crystal structure and the size of TiO2.

Figure 2
XRD patterns of TiO2 and Lac-TiO2 samples.

The morphological characteristics of the as-prepared TiO2 and Lac-TiO2 were observed through FE-SEM (Figure 3). Titania crystals are highly agglomerated, becoming nearly spherical with size of approximately 100-200 nm for TiO2-supporting materials. Lac-TiO2 showed the same morphology as that of pure TiO2 with the TiO2 surface covered with laccaic acid molecules. The effect was more obvious when a high content of laccaic acid was present.

Figure 3
FE-SEM images of TiO2 and Lac-TiO2 samples.

The surface chemical composition and bonding configuration of TiO2 and laccaic acid molecules in Lac-TiO2 samples were investigated. The full-scale XPS analysis (Figure 4a) showed a Ti2p peak at 458.5 eV, an O1s peak at 532 eV, and a C1s peak at 284.8 eV for Lac TiO2. This result indicated the existence of laccaic acid in Lac TiO2. In Figure 4b, two individual peaks of Ti2p appeared at binding energies near 458.4 and 464.1 eV corresponding to Ti2p3/2 and Ti2p1/2, respectively. This result implied a Ti4+ oxidation state of the TiO2 structure. For Figure 4c, four peaks of O1s were observed at the binding energies of 530.34, 531.54, 532.42, and 533.39 eV. These peaks corresponded to four different types of O species, which were possibly Ti-O bonds (the lattice oxygen of TiO2), hydroxyl (OH) species, Ti-O-C bonds, and -COOH, respectively.3838 Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Y.; Zhao, X.; Ceram. Int. 2017, 43, 8648.

39 Kruse, N.; Chenakin, S.; Appl. Catal., A 2011, 391, 367.
-4040 Yu, X.; Liu, J.; Yu, Y.; Zuo, S.; Li, B.; Carbon 2014, 68, 718. For C1s spectra (Figure 4d), three main separated peaks were observed at 284.9, 286.5, and 289.2 eV and assigned to C-C/C=C bond (285.0 eV), C-O bond (286.6 eV), and C=O (288.8 eV), respectively.3838 Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Y.; Zhao, X.; Ceram. Int. 2017, 43, 8648. Consistent with the data obtained from FE-SEM, the XPS results confirmed the existence of laccaic acid molecules in the Lac-TiO2 samples.

Figure 4
(a) XPS survey spectra of Lac-TiO2 samples and high-resolution spectra of the sample for (b) Ti2p; (c) O1s; and (d) C1s.

The optical properties of the as-prepared pure TiO2 and Lac-TiO2 samples were examined through DRS (Figure 5). The absorption band of Lac-TiO2 samples showed an evident redshift to the visible light region.1010 Suwanchawalit, C.; Wongnawa, S.; Sriprang, P.; Meanha, P.; Ceram. Int. 2012, 38, 5201.,2020 Aiempanakit, M.; Tabtimsri, T.; Triamnak, N.; Suwanchawalit, C.; Int. J. Electrochem. Sci. 2019, 14, 1954.

Figure 5
DRS spectra of the prepared TiO2 and Lac-TiO2 samples.

The band gap (Eg) of the pure TiO2 and Lac-TiO2 samples were determined using equation 2:

(2)Eg=hcλ=1240λ
where h is Plank’s constant (6.626 × 10-34 J s), c is the velocity of light (3 × 108 m s-1), and λ is the wavelength (nm). The calculated band gap of all samples are shown in Table 1.

Table 1
Calculated band gap of the prepared TiO2 and Lac-TiO2 samples

The energy gap decreased from 3.26 to 2.67 eV with increasing laccaic acid concentration. The presence of laccaic acid dye in the Lac-TiO2 effectively increased the absorption in the visible light region suitable for applications employing solar light.

FTIR spectra of the pure TiO2 and Lac-TiO2 samples are shown in Figure 6. The broad bands at around 400 1000 cm-1 were attributed to Ti-O-Ti bond vibrations.1010 Suwanchawalit, C.; Wongnawa, S.; Sriprang, P.; Meanha, P.; Ceram. Int. 2012, 38, 5201.,4141 Choi, S. K.; Yang, H. S.; Kim, J. H.; Park, H.; Appl. Catal., B 2012, 121-122, 206. The peaks at 3000-3600 and 1640 cm-1 suggested the presence of the surface-adsorbed H2O.4141 Choi, S. K.; Yang, H. S.; Kim, J. H.; Park, H.; Appl. Catal., B 2012, 121-122, 206.,4242 Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T.; Beilstein J. Nanotechnol. 2018, 9, 530. Moreover, the vibration bands of Ti-O-C bond observed at 1405 and 1439 cm-1 in the Lac-TiO2 samples indicated that laccaic acid molecules were adsorbed on TiO2 surface.4141 Choi, S. K.; Yang, H. S.; Kim, J. H.; Park, H.; Appl. Catal., B 2012, 121-122, 206.,4242 Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T.; Beilstein J. Nanotechnol. 2018, 9, 530.

Figure 6
FTIR spectra (ATR) of TiO2 and Lac-TiO2 samples.

Photocatalytic activity

Typically, photocatalytic degradation involved two processes: adsorption of pollutant molecules on the catalyst and the photocatalytic process. The adsorption of MO measured in the dark of the as-prepared pure TiO2 and Lac-TiO2 samples were approximately 20 and 8-10%, respectively. All Lac-TiO2 samples showed a lower adsorption percentage than pure TiO2 possibly due to the electrostatic repulsion between the negatively charged laccaic acid and MO under the condition studied (pH = 7). Once the adsorption/desorption equilibrium of MO had been established, the photocatalytic degradation of MO using the as-prepared pure TiO2 and Lac-TiO2 samples was examined under visible light irradiation. The results revealed the higher photocatalytic activity of the Lac-TiO2 (0.5-2.5 wt.%) than that of the pure TiO2 (except 5.0Lac TiO2) (Figure 7). An optimum amount of laccaic acid on the TiO2 surface should be considered. Although more laccaic acid loading might provide a better visible-light-harvesting ability, the amount of laccaic acid present on the surface of the photocatalyst can affect its number of active sites. In a photocatalytic process, the oxidant species (O2•- andOH) generated by the photo-excited electrons at the surface of the catalysts reacted with the adsorbed dyes, hence the active sites lied on the surface and microstructure of the catalyst. The 1.0Lac-TiO2 sample showed the highest photocatalytic activity. The higher loading of laccaic acid (2.5 and 5.0 wt.%) did not yield a better photocatalytic activity. The lower photocatalytic discoloration percentage of the higher-loading Lac-TiO2 was attributable to high laccaic acid adsorbed on the surface leading to loss of active sites for generating oxidants species (O2•- andOH).2929 Youssef, Z.; Arnoux, P.; Colombeau, L.; Toufaily, J.; Hamieh, T.; Frochot, C.; Roques-Carmes, T.; J. Photochem. Photobiol., A 2018, 356, 177.

30 Jiang, G.; Geng, K.; Wu, Y.; Han, Y.; Shen, X.; Appl. Catal., B 2018, 227, 366.

31 Hsiao, Y. C.; Wu, T. F.; Wang, Y. S.; Hu, C. C.; Huang, C.; Appl. Catal., B 2014, 148-149, 250.
-3232 Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S.; Dyes Pigm. 2018, 159, 49. The specific surface area of the as-prepared pure TiO2 and 1.0Lac-TiO2 samples were measured by nitrogen adsorption-desorption isotherms. The 1.0Lac-TiO2 contained a greater surface area (386 m2 g-1, with pore size diameter around 26 nm) than that of pure TiO2 (340 m2 g-1, with pore size diameter around 30 nm)(Figure 8). The greater surface area of 1.0Lac-TiO2 supported the greater photocatalytic activity over pure TiO2 due to more active sites available.

Figure 7
Comparison of the photodegradation efficiencies of MO by using TiO2 and Lac-TiO2 samples under visible light irradiation.

Figure 8
Nitrogen adsorption-desorption isotherms of pure TiO2 and 1.0Lac-TiO2 samples.

The hydroxyl radicals (OH) generated by the TiO2 photocatalyst are very powerful oxidants and play a role in the degradation of organic pollutants.2424 Senevirathna, M. K. I.; Pitigala, P.; Tennakone, K.; J. Photochem. Photobiol., A 2005, 171, 257. The fluorescence technique was used to monitor theOH generated during the photooxidation process. Terephthalic acid, anOH scavenger, was transformed into 2-hydroxyterephthalic acid observed by the presence of a fluorescence emission peak at 424 nm. The results showed that the amount of 2-hydroxyterephthalic acid was proportional to the irradiation time suggesting thatOH was generated during the reaction. The amount ofOH detected from the reaction samples photocatalyzed by 1.0Lac-TiO2 was greater than that of the as-prepared pure TiO2 (Figure 9), consistent with the greater photocatalytic activity of 1.0Lac-TiO2.

Figure 9
Comparison of the amount ofOH radicals produced during photocatalysis using (a) pure TiO2 sample and (b) 1.0Lac-TiO2 sample under visible light irradiation.

A comparison of the photoluminescence emission spectra of the pure TiO2 sample and the 1.0Lac-TiO2 sample was shown in Figure 10. Both samples showed a low emission peak around 650-665 nm (excitation wavelength 550 nm). The 1.0Lac-TiO2 sample exhibited a lower emission intensity than that of the pure TiO2 sample. This result was consistent with the above-mentioned result on the amount of hydroxyl radical generated since the emission arose from the electron-hole recombination. The more intense emission of the pure TiO2 sample indicated more recombination, hence lessOH generated. The modification of the catalyst with laccaic acid led to more efficient separation of the photogenerated electron-hole pairs, hence moreOH generated and higher photocatalytic efficiency.

Figure 10
Photoluminescence emission spectra of pure TiO2 and 1.0Lac-TiO2 samples.

Photocatalytic activity is influenced by light adsorption, adsorption of oxygen and pollutants on the surface of the catalysts, charge separation, and electron-hole pairs recombination. A possible photocatalytic mechanism of Lac-TiO2 samples is shown in Figure 11. When illuminated with visible light, the laccaic acid electrons are excited and laccaic acid can act as an effective electron donor. The photo-excited electrons are injected into the CB of TiO2. These electrons (eCB•- (TiO2)) subsequently reduce the O2 adsorbed on the TiO2 surface to generate superoxide anion, O2•- which further transformed into H2O2 and thenOH.4343 Chatterjee, D.; Dasgupta, S.; Rao, N. N.; Sol. Energy Mater. Sol. Cells 2006, 90, 1013.,4444 Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y.; Appl. Surf. Sci. 2017, 391, 476. AsOH is a very strong and highly reactive oxidant, it reacts with organic substances such as MO and degrades it. The positively charged laccaic acid (laccaic acid+) may interact with surrounding solvent molecules (S) and return to the neutral stage that will be ready for the next round of excitation under visible light irradiation.4545 Ganesh, T.; Kim, J. H.; Yoon, S. J.; Kil, B. H.; Maldar, N. N.; Han, J. W.; Han, S. H.; Mater. Chem. Phys. 2010, 123, 62.

46 Buddee, S.; Wongnawa, S.; Sriprang, P.; Sriwong, C.; J. Nanopart. Res. 2014, 16, 2336.
-4747 Dil, M. A.; Haghighatzadeh, A.; Mazinani, B.; Bull. Mater. Sci. 2019, 42, 248. The following equations represent the proposed mechanism:

(3)laccaic acid+hvlaccaic acid
(4)laccaic acid+TiO2laccaic acid+eCB-(TiO2)
(5)O2(ads)+eCB-(TiO2)O2-
(6)O2-+H+HO2
(7)2HO2+H2O2H2O2+OH
(8)MO+OHdegradation products
(9)laccaic acid++Slaccaic acid+S+

Figure 11
Schematic of the photocatalytic activity of Lac-TiO2 under visible light irradiation.

TiO2 photocatalysts for the degradation of dyes in wastewater treatment

The developed photocatalyst with laccaic acid can be subjected to the discussion in comparison with other photocatalytic systems. Among various metal oxide semiconductors, TiO2 is the most frequently employed photocatalyst. Although TiO2 has good photocatalytic properties, its photocatalytic activity is limited by the tendency to have low absorption in the visible-light region and electron-hole recombination. To overcome these limitations, many methods have been developed. Table 2 shows information in association with different modifications of TiO2 such as metal doping (Co-doped TiO2),4848 Mostaghni, F.; Abed, Y.; Mater. Res. 2016, 19, 741. non-metal doping (P-doped TiO2),4949 Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y.; Appl. Surf. Sci. 2014, 289, 306. and organic dye sensitization of TiO2.5050 Zhou, X.-T.; Ji, H.-B.; Huang, X.-J.; Molecules 2012, 17, 1149.

51 Zhang, J.; Zhang, L.; Li, X.; Kang, S.-Z.; Mu, J.; J. Dispersion Sci. Technol. 2011, 32, 943.

52 Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z.; Desalin. Water Treat. 2016, 57, 16196.
-5353 Yang, L.; Zhang, B.; Li, Z.; Wang, C.; Jiao, L.; Wang, B.; Wang, Y.; Ma, H.; Ma, X.; Appl. Organomet. Chem. 2021, 35, e6270. Among these methods, dye-sensitized TiO2 has gained interest owing to its stability and improved photocatalytic efficiency. Previous studies include the usage of metalloporphyrins,5050 Zhou, X.-T.; Ji, H.-B.; Huang, X.-J.; Molecules 2012, 17, 1149. tin(IV) porphyrin,5151 Zhang, J.; Zhang, L.; Li, X.; Kang, S.-Z.; Mu, J.; J. Dispersion Sci. Technol. 2011, 32, 943. zinc phthalocyanine,5252 Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z.; Desalin. Water Treat. 2016, 57, 16196. and subphthalocyanine-sensitized TiO2,5353 Yang, L.; Zhang, B.; Li, Z.; Wang, C.; Jiao, L.; Wang, B.; Wang, Y.; Ma, H.; Ma, X.; Appl. Organomet. Chem. 2021, 35, e6270. which exhibited an enhanced visible-light photocatalytic activity as compared to the unsensitized TiO2. Despite such interesting phenomena, the high cost and environmental toxicity of metal used in these metal-doped TiO2 and dye-sensitizers hinder their widespread use in water treatment applications. Therefore, we developed a new laccaic acid-modified TiO2 photocatalyst prepared by a simple, rapid and environmentally friendly approach. Our catalyst not only facilitates visible light absorption, providing a possibility for irradiation under solar light but also shows good photocatalytic properties. Due to those characteristics, the laccaic acid-modified TiO2 could be a good candidate as a new dye-sensitized TiO2 photocatalyst for the degradation of organic dyes in wastewater treatment.

Table 2
Preparation and photocatalytic properties of modified TiO2

Conclusions

Lac-TiO2 was successfully prepared via an impregnation method. Different laccaic acid concentrations were studied. The properties of Lac-TiO2 photocatalysts were examined through XRD, FE-SEM, XPS, DRS, FTIR, nitrogen adsorption/desorption, and PL spectroscopy. The TiO2 phases found in the as-prepared pure TiO2 and Lac-TiO2 samples were mixtures of anatase and amorphous phases. FE-SEM images revealed that the synthesized TiO2 samples were highly agglomerated into nearly spherical-like structure. XPS data showed the presence of Ti, O, C elements in the Lac-TiO2. DRS results revealed an increase in the visible light absorption in the Lac-TiO2 samples compared to that of the pure TiO2 sample. The characteristic vibrational bands of Lac-TiO2 were confirmed by FTIR technique. In addition, the 1.0Lac-TiO2 sample has a higher specific surface area than pure TiO2 providing more active sites. The photocatalytic performance of the Lac-TiO2 samples was higher than that of the pure TiO2 sample because it could generate a higher concentration of hydroxyl radicals under visible light irradiation. Our work showed that laccaic acid potentially enhanced the photocatalytic activity of TiO2 under visible light.

Acknowledgments

This research is financially supported by Silpakorn University (Fiscal Year 2018).

References

  • 1
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.; Chem. Rev. 1995, 95, 69.
  • 2
    Herrmann, J. M.; Top. Catal. 2005, 34, 49.
  • 3
    Ye, S.; Chen, Y.; Yao, X.; Zhang, J.; Chemosphere 2021, 273, 128503.
  • 4
    Parul; Kaur, K.; Badru, R.; Singh, P. P.; Kaushal, S.; J. Environ. Chem. Eng. 2020, 8, 103666.
  • 5
    Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.; Ramamurthi, K.; Chem. Eng. Commun. 2014, 16, 8756.
  • 6
    Fujishima, A.; Rao, T. N.; Tryk, D. A.; J. Photochem. Photobiol., C 2000, 1, 1.
  • 7
    Ijaz, M.; Zafar, M.; Int. J. Energy Res. 2021, 45, 3569.
  • 8
    Hashim, N.; Thakur, S.; Patang, M.; Crapulli, F.; Ray, A. K.; Environ. Technol. 2017, 38, 933.
  • 9
    Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V.; Water Res. 2004, 38, 3001.
  • 10
    Suwanchawalit, C.; Wongnawa, S.; Sriprang, P.; Meanha, P.; Ceram. Int. 2012, 38, 5201.
  • 11
    Hussain, S. T.; Siddiqa, A.; Int. J. Environ. Sci. Technol. 2011, 8, 351.
  • 12
    Hussain, S. T.; Siddiqa, A.; Siddiq, M.; Ali, S.; J. Nanoparticle Res. 2011, 13, 6517.
  • 13
    Malengreaux, C.; Pirard, S. L.; Léonard, G.; Mahy, L. G.; Herlitschke, M.; Klobes, B.; Hermann, R.; Heinrichs, B.; Bartlett, J. R.; J. Alloys Compd. 2016, 691, 726.
  • 14
    El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M.; J. Hazard. Mater. 2009, 166, 138.
  • 15
    Gorska, P.; Zaleska, A.; Hupka; Sep. Purif. Technol. 2009, 68, 90.
  • 16
    Kosowska, B.; Mozia, S.; Moraws, A. W.; Grzmil, B.; Jamus, M.; Kalucki, K.; Sol. Cells 2005, 88, 269.
  • 17
    Zhou, P.; Yu, J.; Wang, Y.; Appl. Catal., B 2013, 142, 45.
  • 18
    Szkoda, M.; Siuzdak, K.; Lisowska-Oleksiak, A.; Phys. E 2016, 84, 141.
  • 19
    Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A. K.; Ind. Eng. Chem. Res. 2012, 51, 4523.
  • 20
    Aiempanakit, M.; Tabtimsri, T.; Triamnak, N.; Suwanchawalit, C.; Int. J. Electrochem. Sci. 2019, 14, 1954.
  • 21
    Huang, C.; Lv, Y.; Zhou, Q.; Kang, S. Z.; Li, X. Q.; Mu, J.; Ceram. Int 2014, 40, 7093.
  • 22
    Goulart, S.; Nieves, L. J. J.; Dal Bo’, A. J.; Bernardin, A. M.; Dyes Pigm. 2020, 182, 108654.
  • 23
    Hug, H.; Bader, M.; Mair, P.; Glatzel, T.; Appl. Energy 2014, 115, 216.
  • 24
    Senevirathna, M. K. I.; Pitigala, P.; Tennakone, K.; J. Photochem. Photobiol., A 2005, 171, 257.
  • 25
    Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.; J. Am. Chem. Soc. 2008, 130, 1124.
  • 26
    Mohini, R.; Lakshminarasimhan, N.; Mater. Res. Bull. 2016, 76, 370.
  • 27
    Mustafa, M. N.; Sulaiman, Y.; Sol. Energy 2021, 215, 26.
  • 28
    Muscetta, M.; Russo, D.; Catalysts 2021, 11, 834.
  • 29
    Youssef, Z.; Arnoux, P.; Colombeau, L.; Toufaily, J.; Hamieh, T.; Frochot, C.; Roques-Carmes, T.; J. Photochem. Photobiol., A 2018, 356, 177.
  • 30
    Jiang, G.; Geng, K.; Wu, Y.; Han, Y.; Shen, X.; Appl. Catal., B 2018, 227, 366.
  • 31
    Hsiao, Y. C.; Wu, T. F.; Wang, Y. S.; Hu, C. C.; Huang, C.; Appl. Catal., B 2014, 148-149, 250.
  • 32
    Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S.; Dyes Pigm. 2018, 159, 49.
  • 33
    Wang, H.; Wu, Y.; Xu, B. Q.; Appl. Catal., B 2005, 59, 139.
  • 34
    Suwanchawalit, C.; Buddee, S.; Wongnawa, S.; J. Environ. Sci. 2017, 55, 257.
  • 35
    Buddee, S.; Suwanchawalit, C.; Wongnawa, S.; Dig. J. Nanomater. Biostructures 2018, 12, 829.
  • 36
    Mehraj, O.; Mir, N. A.; Pirzada, B. M.; Sabir, S.; Muneer, M.; J. Mol. Catal., A 2014, 395, 16.
  • 37
    Pookmaneea, P.; Phanichphant, S.; J. Ceram. Process. Res. 2009, 10, 167.
  • 38
    Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Y.; Zhao, X.; Ceram. Int. 2017, 43, 8648.
  • 39
    Kruse, N.; Chenakin, S.; Appl. Catal., A 2011, 391, 367.
  • 40
    Yu, X.; Liu, J.; Yu, Y.; Zuo, S.; Li, B.; Carbon 2014, 68, 718.
  • 41
    Choi, S. K.; Yang, H. S.; Kim, J. H.; Park, H.; Appl. Catal., B 2012, 121-122, 206.
  • 42
    Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T.; Beilstein J. Nanotechnol. 2018, 9, 530.
  • 43
    Chatterjee, D.; Dasgupta, S.; Rao, N. N.; Sol. Energy Mater. Sol. Cells 2006, 90, 1013.
  • 44
    Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y.; Appl. Surf. Sci. 2017, 391, 476.
  • 45
    Ganesh, T.; Kim, J. H.; Yoon, S. J.; Kil, B. H.; Maldar, N. N.; Han, J. W.; Han, S. H.; Mater. Chem. Phys. 2010, 123, 62.
  • 46
    Buddee, S.; Wongnawa, S.; Sriprang, P.; Sriwong, C.; J. Nanopart. Res. 2014, 16, 2336.
  • 47
    Dil, M. A.; Haghighatzadeh, A.; Mazinani, B.; Bull. Mater. Sci. 2019, 42, 248.
  • 48
    Mostaghni, F.; Abed, Y.; Mater. Res. 2016, 19, 741.
  • 49
    Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y.; Appl. Surf. Sci. 2014, 289, 306.
  • 50
    Zhou, X.-T.; Ji, H.-B.; Huang, X.-J.; Molecules 2012, 17, 1149.
  • 51
    Zhang, J.; Zhang, L.; Li, X.; Kang, S.-Z.; Mu, J.; J. Dispersion Sci. Technol. 2011, 32, 943.
  • 52
    Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z.; Desalin. Water Treat. 2016, 57, 16196.
  • 53
    Yang, L.; Zhang, B.; Li, Z.; Wang, C.; Jiao, L.; Wang, B.; Wang, Y.; Ma, H.; Ma, X.; Appl. Organomet. Chem. 2021, 35, e6270.

Edited by

Editor handled this article: Jaísa Fernandes Soares

Publication Dates

  • Publication in this collection
    30 May 2022
  • Date of issue
    2022

History

  • Received
    12 Aug 2021
  • Published
    07 Jan 2022
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br