Acessibilidade / Reportar erro

Microwave-Assisted Rearrangement of Costunolide Catalyzed by Palladium(II)

Abstract

The structure of costunolide was modified before conducting the Cope rearrangement under thermal conditions. This modification was undertaken to block the highly reactive Michael acceptor α-methylene-γ-lactone, thus preventing side reactions at high temperatures. In this work, the reaction was performed under heating or microwave irradiation using costunolide, not its modified version. Rates of Cope reactions catalyzed by palladium(II) assisted by microwave were substantially enhanced. The rearrangements of costunolide to elemanolide, eudesmanolides, and germacranolide were catalyzed by palladium acetate, bis(benzonitrile)palladium dichloride, and a mixture of both organometallics. Rates of microwave promoted rearrangements of costunolide were six times faster than the reactions assisted by heating. The best success rate for elemanolide (7) was obtained using a mixture of Pd(OAc)2 and (NCPh)2PdCl2. In this case, compound 7 was obtained in a yield of 34%, while the other sesquiterpene lactones were formed only in trace amounts. The reaction products were isolated using semi-preparative high performance liquid chromatography and further purified through sequential analytical high performance liquid chromatography. Bioactivity profiles that used etiolated wheat coleoptiles were conducted for compounds 6, 7, and 9: The tested compounds presented very high phytotoxicity, with inhibition up to 97%.

Keywords:
Cope reaction; sesquiterpene lactone; wheat coleoptile; rearrangement reaction


Introduction

The traditional heating techniques used in organic preparations, such as oil and sand baths, are relatively slow, and localized overheating can result in undesired by-products and substrate decomposition. In contrast, microwaves directly supply energy to the reactants and solvent, rather than to the reaction vessel itself. As a result, the temperature increase induced by microwave heating is uniform throughout the sample, resulting in fewer by-products. Microwave heating is faster than conventional heat sources, and superheating can be rapidly achieved in pressurized reaction vessels.11 Lidström, P.; Tierney, J.; Wathey, B.; Westman, J.; Tetrahedron 2001, 57, 9225. [Crossref]
Crossref...

2 Kuhnert, N.; Angew. Chem., Int. Ed. 2002, 41, 1863. [Crossref]
Crossref...
-33 Castro, G. A. D.; Fernandes, S. A.; Sousa, R. C. S. S.; Pereira, M. M.; React. Chem. Eng. 2023, 8, 1324. [Crossref]
Crossref...

Sesquiterpene lactones are secondary metabolites of plant origin whose chemical structure is based on a 15-carbon skeleton (thus the prefix sesqui) resulting from biosynthesis involving three isoprene units with a cyclic structure containing an α,β-unsaturated-γ-lactone moiety.44 Gou, J.; Hao, F.; Huang, C.; Kwon, M.; Chen, F.; Li, C.; Liu, C.; Ro, D.-K.; Tang, H.; Zhang, Y.; Plant J. 2018, 93, 92. [Crossref]
Crossref...
According to their carbon skeletons, sesquiterpene lactones are classified into germacranolides (1), eudesmanolides (2), xanthanolides (3), guaianolides (4), and pseudoguaianolides (5) (Figure 1).55 Moujir, L.; Callies, O.; Sousa, P. M. C.; Sharopov, F.; Seca, A. M. L.; Appl. Sci. 2020, 10, 3001. [Crossref]
Crossref...
,66 Sülsen, V. P.; Elso, O. G.; Borgo, J.; Laurella, L. C.; Catalán, C. A. N. In Studies in Natural Products Chemistry; Atta ur Rahman, ed.; Elsevier: London, UK, 2021, ch. 4, p. 129. [Crossref]
Crossref...

Figure 1
Basic skeleton of sesquiterpene lactones subclass: eudesmanolide, guaianolide, pseudoguaianolide, germacranolide, and xanthanolide.

Sesquiterpene lactones display a broad spectrum of biological activities, including antiviral, trypanocide,77 Borgo, J.; Elso, O. G.; Gomez, J.; Coll, M.; Catalán, C. A. N.; Mucci, J.; Alvarez, G.; Randall, L. M.; Barrera, P.; Malchiodi, E. L.; Bivona, A. E.; Martini, M. F.; Sülsen, V. P.; Pharmaceutics 2023, 15, 647. [Crossref]
Crossref...
antiparasitic,66 Sülsen, V. P.; Elso, O. G.; Borgo, J.; Laurella, L. C.; Catalán, C. A. N. In Studies in Natural Products Chemistry; Atta ur Rahman, ed.; Elsevier: London, UK, 2021, ch. 4, p. 129. [Crossref]
Crossref...
antiprotozoal,88 Laurella, L. C.; Elso, O. G.; Rodriguez, R. N.; Viecenz, J. M.; Alonso. M. R.; Bontempi, E. J.; Malchiodi, E.; Catalán, C. A. N.; Cazorla, S. I.; Sülsen, V. P.; Fitoterapia 2023, 167, 105499. [Crossref]
Crossref...
anticancer,66 Sülsen, V. P.; Elso, O. G.; Borgo, J.; Laurella, L. C.; Catalán, C. A. N. In Studies in Natural Products Chemistry; Atta ur Rahman, ed.; Elsevier: London, UK, 2021, ch. 4, p. 129. [Crossref]
Crossref...
,99 Li, Q.; Wang, Z.; Xie, Y.; Hu, H.; Biomed. Pharmacother. 2020, 125, 109955. [Crossref]
Crossref...
,1010 Verma, A.; Ahuja, D.; Thakur, S.; J. Drug Delivery Ther. 2023, 13, 13. [Crossref]
Crossref...
anti-inflammatory,66 Sülsen, V. P.; Elso, O. G.; Borgo, J.; Laurella, L. C.; Catalán, C. A. N. In Studies in Natural Products Chemistry; Atta ur Rahman, ed.; Elsevier: London, UK, 2021, ch. 4, p. 129. [Crossref]
Crossref...
,1010 Verma, A.; Ahuja, D.; Thakur, S.; J. Drug Delivery Ther. 2023, 13, 13. [Crossref]
Crossref...
,1111 Paço, A.; Brás, T.; Santos, J. O.; Sampaio, P.; Gomes, A. C.; Duarte, M.; Molecules 2022, 27, 1142. [Crossref]
Crossref...
antimalarial,1212 Pathak, A.; Arora, S.; Tiwari, A.; Krishna, K. D.; Singh, S. P.; Taj, G.; Lett. Org. Chem. 2023, 20, 61. [Crossref]
Crossref...
antimicrobial,1313 Mazur, M.; Masłowiec, D.; Antibiotics 2022, 11, 1327. [Crossref]
Crossref...
antioxidant,1010 Verma, A.; Ahuja, D.; Thakur, S.; J. Drug Delivery Ther. 2023, 13, 13. [Crossref]
Crossref...
,1414 Wang, P.; Zhao, Y.-n.; Xu, R.-z.; Zhang, X.-w.; Sun, Y.-r.; Feng, Q.-m.; Li, Z.-h.; Xu, J.-y.; Xie, Z.-s.; Zhang, Z.-q.; E, H.-C.; Front Nutr. 2023, 9, 865257. [Crossref]
Crossref...
neuroprotective,1515 Huo, Y.; Huang, X.; Wang, Y.; Zhao, C.; Zheng, T.; Du, W.; Biochimie 2023, 211, 131. [Crossref]
Crossref...
hepatoprotective,1010 Verma, A.; Ahuja, D.; Thakur, S.; J. Drug Delivery Ther. 2023, 13, 13. [Crossref]
Crossref...
immunoregulatory,1111 Paço, A.; Brás, T.; Santos, J. O.; Sampaio, P.; Gomes, A. C.; Duarte, M.; Molecules 2022, 27, 1142. [Crossref]
Crossref...
immunosuppresant,1616 Reinhardt, J. K.; Klemd, A. M.; Danton, O.; Mieri, M. D.; Smieško, M.; Huber, R.; Bürgi, T.; Gründemann, C.; Hamburger, M.; Planta Med. 2019, 85, 1469. [Crossref]
Crossref...
and other properties.

The literature describes the use of conventional heating under reflux for performing Cope rearrangement of germacranolides, but microwave-assisted reactions have not been reported.1717 Barrero, A. F.; Oltra, J. E.; Álvarez, M.; Tetrahedron Lett. 1998, 39, 1401. [Crossref]
Crossref...
,1818 Jain, T. C.; Banks, C. M.; Mccloskey, J. E.; Tetrahedron Lett. 1970, 11, 841. [Crossref]
Crossref...

Enhancement of the Cope reaction rate was achieved with the use of palladium dichloride1919 Overman, L. E.; Renaldo, A. E.; J. Am. Chem. Soc. 1990, 112, 3945. [Crossref]
Crossref...
and bis(benzonitrile)palladium(II) catalysis. This study aims to evaluate the effects of both heat and microwave irradiation in the Cope rearrangement of costunolide, catalyzed by Pd(OAc)2, [(PhCN)2PdCl2], and a mixture of both organometallic catalysts.

The germacrane sesquiterpenes are characterized by the trans,trans-cyclodeca-1(10),4(5)-diene ring system. Due to their sensitivity to acid and high temperatures, isolating and purifying them from natural sources is challenging.2020 Faraldos, J. A.; Wu, S.; Chappell, J.; Coates, R. M.; Tetrahedron 2007, 63, 7733. [Crossref]
Crossref...
,2121 de Kraker, J.-W.; Franssen, M. C. R.; de Groot, A.; Koning, W. A.; Bouwmeester, H. J.; Plant Physiol. 1998, 117, 1381. [Crossref]
Crossref...
With modern agricultural techniques heavily reliant on agrochemicals,2222 Macías, F. A.; Galindo, J. C. G.; Castellano, D.; Velasco, F.; J. Agric. Food Chem. 1999, 47, 4407. [Crossref]
Crossref...
we continue our systematic study of sesquiterpene lactones as natural herbicide models. In this context, we present the results of bioassays conducted on etiolated wheat coleoptiles2323 Chinchilla, N.; Guerrero-Vásquez, G. A.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; Res. Chem. Intermed. 2017, 43, 4387. [Crossref]
Crossref...
,2424 García, B. F.; Torres, A.; Macías, F. A.; Molecules 2015, 20, 20079. [Crossref]
Crossref...
using costunolide (6), elemanolide (7), ß-cyclocostunolide (8), eudesmanolide (9), γ-cyclocostunolide (10), and melampolide (11) (Figure 2).

Figure 2
The products 7-11 were formed from the rearrangement of costunolide (6).

One of the advantages of the wheat coleoptile bioassay is its speed (24 h) and high sensitivity to a variety of bioactive substances, such as plant growth regulators, herbicides, antimicrobials, mycotoxins, and various pharmaceuticals.2424 García, B. F.; Torres, A.; Macías, F. A.; Molecules 2015, 20, 20079. [Crossref]
Crossref...

Experimental

All reagents and solvents were purchased from Sigma-Aldrich (Milwaukee, WI, USA).

Synthetic procedures

Costunolide (6) was obtained from costus resin oil (Saussurea lappa) through column chromatography separation using hexane/ethyl acetate eluent (95:5). Derivatives 7, 8, 9, 10, and 11 were prepared by microwave-assisted rearrangement of costunolide catalyzed by bis(benzonitrile)palladium(II) chloride [(PhCN)2PdCl2] and palladium(II) acetate (Pd(OAc)2). The structures of all compounds were confirmed by comparing their spectroscopic data with the literature.2525 Robinson, A.; Kumar, T. V.; Sreedhar, E.; Naidu, V. G. M.; Krishna, S. R.; Babu, K. S.; Srinivas, P. V.; Rao, J. M.; Bioorg. Med. Chem. Lett. 2008, 18, 4015. [Crossref]
Crossref...

26 Li, A.; Sun, A.; Liu, R.; J. Chromatogr. A 2005, 1076, 193. [Crossref]
Crossref...

27 Jain, T. C.; McCloskey, J. E.; Tetrahedron 1975, 31, 2211. [Crossref]
Crossref...

28 Karamenderes, C.; Bedir, E.; Pawar, R.; Baykan, S.; Khan, I. A.; Phytochemistry 2007, 68, 609. [Crossref]
Crossref...

29 Sevĭl, Ö.; Gülaçti, T.; Phytochemistry 1992, 31, 195. [Crossref]
Crossref...
-3030 Rustaiyan, A.; Zare, K.; Ganj, M. T.; Sadri, H. A.; Phytochemistry 1989, 28, 1535. [Crossref]
Crossref...
Compounds 6, 7, 8, and 9 were separated by high performance liquid chromatography (HPLC, Shimadzu LC, model Workstation CLASS LC 10, Kyoto, Japan) using semipreparative LiChrospher® 100 RP 18 LiChroCART® 250-4 column (5 μm particle size, length × inside diameter 25 cm × 4 mm, Figure 3) and analytic column LC 18 SUPELCOSIL™, (5 μm particle size, length × inside diameter 25 cm × 4.6 mm) and refractive index detector, and characterized by 1H, 13C, HSQC (heteronuclear single quantum correlation), and HMBC (heteronuclear multiple bond coherence) nuclear magnetic resonance (NMR) spectra. Compounds 10 and 11 were isolated in minimal quantities and identified using 1H NMR (Varian Inova 400 MHz spectrometer equipped with a 5 mm 1H-13C dual probe head ASW-PFG, Palo Alto, CA, USA).

Figure 3
Representative chromatogram of the products from the microwave-assisted costunolide reaction obtained on a semi-preparative column using 20% hexane-acetate eluent. Compounds 6 (15.11 min), 7 (11.74 min), 8 (4.97 min), and 9 (9.50 min).

Rearrangement of costunolide (6)

Microwave assisted

Compound (6, 10 mg) was dissolved in 1 mL of benzene (or toluene) and added to a transparent glass bottle (16 × 42 mm, 5 mL) containing 1 mg of either Pd(OAc)2 or [(PhCN)2PdCl2], or a mixture of Pd(OAc)2 and [(PhCN)2PdCl2]. The bottle was capped with a screw-on polypropylene cap and the mixture was irradiated at 20 s intervals until reaching a total of 5 or 10 min in a household microwave (Samsung, model MC32J7055CT) operating at 300 W. The reaction was conducted using the rotating plate of the household microwave. At the end, the reaction mixture was filtered through a celite pad in a Pasteur pipette to remove the catalyzer, and the solvent was evaporated by a flow of air. The residue was dissolved in deuterated benzene, transferred to an NMR tube, and the spectra were obtained.

Celite heating bath

Alternatively, the reaction mixture was heated at 80 ºC for 30 min in a celite heating bath. After this period, the mixture was filtered through a pad of celite in a Pasteur pipette and the solvent evaporated by a flow of air. The residue was dissolved in deuterated benzene and 1H NMR was obtained to calculate the yield of each product in the reaction mixture. The yield was calculated using the integration of the signals in the regions of d 4.27-3.2 and d 5.10-6.40 in the 1H NMR.

Bioassay methodology

The wheat coleoptile straight growth test was used for the bioassay. Wheat seeds (Triticum aestivum) were sown on 15 cm diameter Petri dishes fitted with moist filter paper and grown at 25 ºC in the dark for 3 days. Coleoptiles 25 to 35 mm long were selected under a green safelight. A 3 mm section from the tip was cut off and discarded and the next 4 mm was selected for the bioassay. After cutting, the coleoptiles were kept in distilled water for 1 h, then selected at random and placed in vials containing the test solutions. Cutting was done with a Van der Weij coleoptile guillotine.

Fractions were tested at 1000, 500, 250, 125, 75 and 25 µmol L-1 in a buffered nutritive aqueous solution (citric acid-sodium hydrogenphosphate buffer, pH 5.6; 2% sucrose). Mother solutions were prepared in dimethyl sulfoxide (DMSO) and diluted to the proper concentration with the buffer to a 0.5% v/v DMSO final maximum concentration. Following dilutions were prepared maintaining the same buffer and DMSO concentrations. Bioassays were performed in 10 mL test tubes as follows: five coleoptiles were placed in each tube containing 2 mL of test solution; three replicates were prepared for each test solution and the experiments were run in duplicate. Test tubes were placed in a roller tube apparatus and rotated at 6 rpm for 24 h at 22 °C in the dark. Increments of coleoptile elongation were measured by digitalization of their photographic images and data were statistically analyzed.

Results and Discussion

Synthesis

Costunolide was partially hydrogenated before performing Cope rearrangement in a sealed tube at 205 ºC. The hydrogenation of the α-methylene-γ-lactone was done to prevent side reactions on this reactive Michael acceptor at high temperatures. Under thermal Cope rearrangement conditions, an equilibrium mixture of the dihydrocostunolide and the dihydroelemanolide was formed (Scheme 1).3131 Barrero, A. F.; Oltra, J. E.; Álvarez, M.; Tetrahedron Lett. 2000, 41, 7639. [Crossref]
Crossref...

Scheme 1
Synthesis of dihydroelemanolide (12) from costunolide (6).

The issue of the α,β-unsaturated methylene γ-lactone unit in the costunolide was addressed by blocking it with dimethylamine, followed by thermal Cope reaction by heating at 205-210 ºC. The elemanolide was subsequently regenerated by base treatment of the quaternary ammonium salt formed (Scheme 2).3232 Jain, T. C.; Banks, C. M.; McCloskey, J. E.; Tetrahedron 1976, 32, 765. [Crossref]
Crossref...

Scheme 2
Synthesis of elemanolide (7) from costunolide (6).

Cope rearrangements of costunolide carried out at high temperatures for long periods are described in the literature,1717 Barrero, A. F.; Oltra, J. E.; Álvarez, M.; Tetrahedron Lett. 1998, 39, 1401. [Crossref]
Crossref...
,1818 Jain, T. C.; Banks, C. M.; Mccloskey, J. E.; Tetrahedron Lett. 1970, 11, 841. [Crossref]
Crossref...
,3333 Custódio, A. C.; Santos, J. A. M.; Silva, J. F.; Freitas, J. J. R.; Freitas, J. C. R.; Freitas Filho, J. R.; Rev. Virtual Quim. 2019, 11, 642. [Crossref]
Crossref...
but there are no previous data available about this reaction assisted by microwave. A problem we have observed in this reaction under reflux for long periods was the decomposition of costunolide and an overestimated yield for the elemanolide. Hence, we have evaluated the efficacy of Pd(OAc)2, [(PhCN)2PdCl2], and a mixture of both organometallics under microwave and heating conditions for the rearrangement of costunolide. The influence of the solvent was also assessed when employing both heating sources, along with varying heating times using microwaves, in the formation of the obtained products. The relative proportions of compounds 6-11 were determined by integrating the signals in the regions of d 4.27-3.2 and d 5.10-6.40 in the 1H NMR spectra (400 MHz, C6D6) of the products obtained in the rearrangement of costunolide under the various evaluated conditions (Figure 4). The results are detailed in Table 1.

Table 1
Conditions and yields of costunolide rearrangements

Figure 4
Representative 1H NMR spectrum (400 MHz, C6D6) of costunolide (6) and the products elemanolide (7), ß-cyclocostunolide (8), and eudesmanolide (9) resulting from the reaction of costunolide using toluene as solvent, [(PhCN)2PdCl2] as the catalyst, and microwave irradiation for 5 min. The numbers below each signal represent the integral values used to determine the relative proportions of compounds (6), (7), (8), and (9) in the d 4.27-3.2 region.

The best result obtained by Pd(OAc)2 catalysis was a conversion of only 18% of costunolide. However, the reaction was clean and cyclization products (as compound 9) were barely detected by 1H NMR.

[(PhCN)2PdCl2] catalysis afforded 35% yield of compound 7, 32% of compounds 8 and 9 plus unreacted starting material (33%). Thus, we have decided to evaluate the outcome of a mixture of Pd(OAc)2 and [(PhCN)2PdCl2]. Whereas palladium acetate presented low rearrangement conversion but improved selectivity and [(PhCN)2PdCl2] afforded higher catalytic power but poor selectivity.

The catalytic mixture afforded the cyclization products 8, 9, and 10 in trace amounts and the germacranolide 11 in yields which varied from 5-17%. Compounds 10 and 11 were not observed in the reactions catalyzed by either Pd(OAc)2 or [(PhCN)2PdCl2]. This fact prompted us to suggest that compounds 10 and 11 are not formed by either Pd(OAc)2 or [(PhCN)2PdCl2] alone but by a somehow new entity emerged from the two.

Several chemical transformations were performed on costunolide (6) to prepare cyclic derivatives (7-11). The mechanism for obtaining elemanolide (7) is the Cope type rearrangement, which occurs at high temperatures during conventional heating over several hours.2121 de Kraker, J.-W.; Franssen, M. C. R.; de Groot, A.; Koning, W. A.; Bouwmeester, H. J.; Plant Physiol. 1998, 117, 1381. [Crossref]
Crossref...
,3434 Tomiczek, B. M.; Grenning, A. J.; Org. Biomol. Chem. 2021, 19, 2385. [Crossref]
Crossref...

35 Allin, S. M.; Baird, R. D.; Curr. Org. Chem. 2021, 5, 395. [Crossref]
Crossref...
-3636 Nubbemeyer, U.; Synthesis 2003, 961. [>Crossref]
>Crossref...
In this study, the reaction was catalyzed by PdII complex and carried out in a microwave for 5 or 10 min. Melampolide (11) is formed through the isomerization of one double bond. The literature describes the acid-catalyzed cyclization mechanism for the preparation of compounds (8) and (9).3737 Khasenov, B. B.; Turdybekov, K. M.; Chem. Nat. Compd. 2001, 37, 385. [Crossref]
Crossref...
The mechanism for the formation of compounds (8-10) catalyzed by PdII is proposed in Scheme 3.

Scheme 3
The proposed mechanism for obtaining compounds 8-10 from 6 in the PdII-catalyzed rearrangement reactions performed in a microwave for 10 min.

The catalytic process was conceptualized as a sequential mechanism, wherein the electrophilic nature of Pd2+ plays a facilitating role in bond formation. Alkenes react with PdII to give complexes that are subject to nucleophilic attack. Initially, the palladium catalyst coordinates with one double bond forming a reactive PdII π complex (intermediate I). This complex then undergoes nucleophilic attack by the double bond α to the lactone to form a new Pd+ complex containing the carbon-carbon bond (intermediate II). Finally, reductive elimination occurs, leading to the formation of the naphthalene skeletons (compounds 8, 9, and 10) and regeneration of the palladium catalyst.1919 Overman, L. E.; Renaldo, A. E.; J. Am. Chem. Soc. 1990, 112, 3945. [Crossref]
Crossref...

The lower-energy compound 10 is formed in trace amounts, possibly due to steric hindrance of the hydrogen located at the junction of the two rings. In contrast, the formation of compounds 8 and 9 is favored over compound 10, facilitated by the accessibility of methyl and methylene hydrogens. In the proposed mechanism, the proton was captured by the negative charge generated upon the departure of Pd2+.

The relative proportions of starting material, rearrangement, and cyclization products were not substantially altered by changing the solvent from benzene to toluene. The most pronounced changes were observed in reactions promoted by heat and microwave. While the reactions promoted by heat afforded 23% of the rearranged elemanolide (7) after 30 min, the microwaved reactions provided 35% of compound 7 after only 5 min. No substantial progress was observed in the reactions assisted by microwave after 5 min. After 5 min reaction, the formed products exhibit an optimal substitution pattern and relative stability.3838 Zora, M.; J. Mol. Struct.: THEOCHEM 2004, 681, 113. [Crossref]
Crossref...

Bioassays

Tests using etiolated wheat coleoptiles have been employed to assess the herbicidal potential of secondary metabolites from root exudates and extracts of Carthamus tinctorius affected by parasites and weeds,3939 Rial, C.; Tomé, S.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; J. Chem. Ecol. 2020, 46, 871. [Crossref]
Crossref...
root extracts of Urochloa humidicola,4040 Feitoza, R. B. B.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Lima, H. R. P.; Moraes, L. F. D.; da Cunha, M.; Macías, F. A.; J. Agric. Food Chem. 2020, 68, 4851. [Crossref]
Crossref...
extracts from the leaves of Origanum majorana L.,4141 Cala, A.; Salcedo, J. R.; Torres, A.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; Molecules 2021, 26, 3356. [Crossref]
Crossref...
furanocoumarins isolated from the aerial parts of Ducrosia anethifolia,4242 Rodríguez-Mejías, F. J.; Mottaghipisheh, J.; Schwaiger, S.; Kiss, T.; Csupor, D.; Varela, R. M.; Macías, F. A.; Phytochemistry 2023, 215, 113838. [Crossref]
Crossref...
aminophenoxazinones,4343 Díaz-Franco, C.; Rial, C.; Molinillo, J. M. G.; Varela, R. M.; Macías, F. A.; Agronomy 2023, 13, 568. [Crossref]
Crossref...
C17 sesquiterpenoids (a group of natural products that lack the α,β-methylene butyrolactone system),4444 Cárdenas, D. M.; Rial, C.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; J. Nat. Prod. 2021, 84, 2295. [Crossref]
Crossref...
agave saponins,4545 Durán, A. G.; Benito, J.; Macías, F. A.; Simonet, A. M.; Agronomy 2021, 11, 2404. [Crossref]
Crossref...
acyl and alkyl derivatives of juglone and lawonin,4646 Dur, A. G.; Chinchilla, N.; Simonet, A. M.; Gutiérrez, M. T.; Bolívar, J.; Valdivia, M. M.; Molinillo, J. M. G.; Macías, F. A.; Toxins 2023, 15, 348. [Crossref]
Crossref...
and many others.

Six compounds were obtained from the rearrangement of costunolide. Compounds 6, 7, and 9 were subjected to a bioassay of etiolated wheat coleoptiles. Six dilutions were used in the assay (1000, 500, 250, 125, 75, and 25 µmol L-1).

The etiolated wheat coleoptile bioassay was employed as a preliminary approach to evaluate the bioactivity of costunolide (6) and its derivatives (7 and 8) due to its sensitivity towards a broad spectrum of bioactive substances, including herbicides, antimicrobials, mycotoxins, pharmaceuticals, and plant growth regulators.2424 García, B. F.; Torres, A.; Macías, F. A.; Molecules 2015, 20, 20079. [Crossref]
Crossref...
,4747 Rial, C.; Varela, R. M.; Molinillo, J. M. G.; Bautistab, E.; Hernández, A. O.; Macías, F. A.; Phytochem. Lett. 2016, 18, 68. [Crossref]
Crossref...

The results obtained from the bioassay are depicted in Figure 5, where negative values indicate inhibition, zero represents the control, and activity levels correlate with the concentration expressed in µmol L-1. The tested compounds exhibited significant activity in the coleoptile bioassay, with inhibition reaching up to 97%. Compound 7 displayed the highest inhibitions at 1000 and 500 µmol L-1 (97 and 95%, respectively). Compound 6 demonstrated substantial activity even at 125 µmol L-1, showing inhibition exceeding 90%. Compound 9 exhibited comparatively lower activity but still displayed an inhibition of 87% at 250 µmol L-1.

Figure 5
Effects of compounds 6, 7, and 9 on the elongation of etiolated wheat coleoptiles. The values are expressed as a percentage relative to the control and were found to be not significantly different (P > 0.05) according to the Mann-Whitney test.

Conclusions

Catalysis performed by palladium acetate exhibited a low conversion rate of costunolide but high selectivity. Palladium acetate catalysis under heating did not result in the conversion of costunolide. However, under microwave irradiation for 10 min. using toluene as the solvent the elemanolide (7) was formed in 18% yield.

The catalyst bis(benzonitrile)palladium(II) chloride exhibited better conversion rate of costunolide but lower selectivity compared to palladium acetate. Using (NCPh)2PdCl2, the conversion rate reached 60% in toluene, while Pd(OAc)2 catalysis presented a maximum of 18% conversion of costunolide in the same solvent. Catalysis with (NCPh)2PdCl2 allowed us to obtain compounds 8 and 9 using either benzene or toluene as the solvent. The choice of solvent or time of irradiation using (NCPh)2PdCl2 as the catalyst did not significantly influence the yields of compounds 8 and 9. However, under heating, compounds 7, 8, and 9 were formed with yields of 23, 25, and 14%, respectively, while under microwave irradiation, the yields for the same compounds were 35, 13, and 12%.

The compounds that were tested showed noteworthy activity in the coleoptile bioassay, resulting in inhibition levels of up to 97%. Among them, compound 7 exhibited the most pronounced inhibitory effects, with percentages of 97 and 95% observed at concentrations of 1000 and 500 µmol L-1, respectively. Compound 6 demonstrated substantial activity even at a lower concentration of 125 µmol L-1, exhibiting an inhibition rate exceeding 90%. On the other hand, compound 9 displayed relatively lower activity but still managed to achieve an inhibition of 87% at a concentration of 250 µmol L-1.

Therefore, 6, 7, and 9 proved to be suitable compounds for further investigation in the development of novel herbicides and plant growth regulators.

Supplementary Information

Supplementary information is available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

We would like to thank the Brazilian Agencies CNPq, CAPES, RQ-MG, and FAPEMIG for financial support.

References

  • 1
    Lidström, P.; Tierney, J.; Wathey, B.; Westman, J.; Tetrahedron 2001, 57, 9225. [Crossref]
    » Crossref
  • 2
    Kuhnert, N.; Angew. Chem., Int. Ed. 2002, 41, 1863. [Crossref]
    » Crossref
  • 3
    Castro, G. A. D.; Fernandes, S. A.; Sousa, R. C. S. S.; Pereira, M. M.; React. Chem. Eng. 2023, 8, 1324. [Crossref]
    » Crossref
  • 4
    Gou, J.; Hao, F.; Huang, C.; Kwon, M.; Chen, F.; Li, C.; Liu, C.; Ro, D.-K.; Tang, H.; Zhang, Y.; Plant J. 2018, 93, 92. [Crossref]
    » Crossref
  • 5
    Moujir, L.; Callies, O.; Sousa, P. M. C.; Sharopov, F.; Seca, A. M. L.; Appl. Sci 2020, 10, 3001. [Crossref]
    » Crossref
  • 6
    Sülsen, V. P.; Elso, O. G.; Borgo, J.; Laurella, L. C.; Catalán, C. A. N. In Studies in Natural Products Chemistry; Atta ur Rahman, ed.; Elsevier: London, UK, 2021, ch. 4, p. 129. [Crossref]
    » Crossref
  • 7
    Borgo, J.; Elso, O. G.; Gomez, J.; Coll, M.; Catalán, C. A. N.; Mucci, J.; Alvarez, G.; Randall, L. M.; Barrera, P.; Malchiodi, E. L.; Bivona, A. E.; Martini, M. F.; Sülsen, V. P.; Pharmaceutics 2023, 15, 647. [Crossref]
    » Crossref
  • 8
    Laurella, L. C.; Elso, O. G.; Rodriguez, R. N.; Viecenz, J. M.; Alonso. M. R.; Bontempi, E. J.; Malchiodi, E.; Catalán, C. A. N.; Cazorla, S. I.; Sülsen, V. P.; Fitoterapia 2023, 167, 105499. [Crossref]
    » Crossref
  • 9
    Li, Q.; Wang, Z.; Xie, Y.; Hu, H.; Biomed. Pharmacother. 2020, 125, 109955. [Crossref]
    » Crossref
  • 10
    Verma, A.; Ahuja, D.; Thakur, S.; J. Drug Delivery Ther. 2023, 13, 13. [Crossref]
    » Crossref
  • 11
    Paço, A.; Brás, T.; Santos, J. O.; Sampaio, P.; Gomes, A. C.; Duarte, M.; Molecules 2022, 27, 1142. [Crossref]
    » Crossref
  • 12
    Pathak, A.; Arora, S.; Tiwari, A.; Krishna, K. D.; Singh, S. P.; Taj, G.; Lett. Org. Chem. 2023, 20, 61. [Crossref]
    » Crossref
  • 13
    Mazur, M.; Masłowiec, D.; Antibiotics 2022, 11, 1327. [Crossref]
    » Crossref
  • 14
    Wang, P.; Zhao, Y.-n.; Xu, R.-z.; Zhang, X.-w.; Sun, Y.-r.; Feng, Q.-m.; Li, Z.-h.; Xu, J.-y.; Xie, Z.-s.; Zhang, Z.-q.; E, H.-C.; Front Nutr. 2023, 9, 865257. [Crossref]
    » Crossref
  • 15
    Huo, Y.; Huang, X.; Wang, Y.; Zhao, C.; Zheng, T.; Du, W.; Biochimie 2023, 211, 131. [Crossref]
    » Crossref
  • 16
    Reinhardt, J. K.; Klemd, A. M.; Danton, O.; Mieri, M. D.; Smieško, M.; Huber, R.; Bürgi, T.; Gründemann, C.; Hamburger, M.; Planta Med 2019, 85, 1469. [Crossref]
    » Crossref
  • 17
    Barrero, A. F.; Oltra, J. E.; Álvarez, M.; Tetrahedron Lett 1998, 39, 1401. [Crossref]
    » Crossref
  • 18
    Jain, T. C.; Banks, C. M.; Mccloskey, J. E.; Tetrahedron Lett 1970, 11, 841. [Crossref]
    » Crossref
  • 19
    Overman, L. E.; Renaldo, A. E.; J. Am. Chem. Soc 1990, 112, 3945. [Crossref]
    » Crossref
  • 20
    Faraldos, J. A.; Wu, S.; Chappell, J.; Coates, R. M.; Tetrahedron 2007, 63, 7733. [Crossref]
    » Crossref
  • 21
    de Kraker, J.-W.; Franssen, M. C. R.; de Groot, A.; Koning, W. A.; Bouwmeester, H. J.; Plant Physiol 1998, 117, 1381. [Crossref]
    » Crossref
  • 22
    Macías, F. A.; Galindo, J. C. G.; Castellano, D.; Velasco, F.; J. Agric. Food Chem 1999, 47, 4407. [Crossref]
    » Crossref
  • 23
    Chinchilla, N.; Guerrero-Vásquez, G. A.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; Res. Chem. Intermed 2017, 43, 4387. [Crossref]
    » Crossref
  • 24
    García, B. F.; Torres, A.; Macías, F. A.; Molecules 2015, 20, 20079. [Crossref]
    » Crossref
  • 25
    Robinson, A.; Kumar, T. V.; Sreedhar, E.; Naidu, V. G. M.; Krishna, S. R.; Babu, K. S.; Srinivas, P. V.; Rao, J. M.; Bioorg. Med. Chem. Lett 2008, 18, 4015. [Crossref]
    » Crossref
  • 26
    Li, A.; Sun, A.; Liu, R.; J. Chromatogr. A 2005, 1076, 193. [Crossref]
    » Crossref
  • 27
    Jain, T. C.; McCloskey, J. E.; Tetrahedron 1975, 31, 2211. [Crossref]
    » Crossref
  • 28
    Karamenderes, C.; Bedir, E.; Pawar, R.; Baykan, S.; Khan, I. A.; Phytochemistry 2007, 68, 609. [Crossref]
    » Crossref
  • 29
    Sevĭl, Ö.; Gülaçti, T.; Phytochemistry 1992, 31, 195. [Crossref]
    » Crossref
  • 30
    Rustaiyan, A.; Zare, K.; Ganj, M. T.; Sadri, H. A.; Phytochemistry 1989, 28, 1535. [Crossref]
    » Crossref
  • 31
    Barrero, A. F.; Oltra, J. E.; Álvarez, M.; Tetrahedron Lett 2000, 41, 7639. [Crossref]
    » Crossref
  • 32
    Jain, T. C.; Banks, C. M.; McCloskey, J. E.; Tetrahedron 1976, 32, 765. [Crossref]
    » Crossref
  • 33
    Custódio, A. C.; Santos, J. A. M.; Silva, J. F.; Freitas, J. J. R.; Freitas, J. C. R.; Freitas Filho, J. R.; Rev. Virtual Quim 2019, 11, 642. [Crossref]
    » Crossref
  • 34
    Tomiczek, B. M.; Grenning, A. J.; Org. Biomol. Chem 2021, 19, 2385. [Crossref]
    » Crossref
  • 35
    Allin, S. M.; Baird, R. D.; Curr. Org. Chem. 2021, 5, 395. [Crossref]
    » Crossref
  • 36
    Nubbemeyer, U.; Synthesis 2003, 961. [>Crossref]
    » Crossref
  • 37
    Khasenov, B. B.; Turdybekov, K. M.; Chem. Nat. Compd 2001, 37, 385. [Crossref]
    » Crossref
  • 38
    Zora, M.; J. Mol. Struct.: THEOCHEM 2004, 681, 113. [Crossref]
    » Crossref
  • 39
    Rial, C.; Tomé, S.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; J. Chem. Ecol 2020, 46, 871. [Crossref]
    » Crossref
  • 40
    Feitoza, R. B. B.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Lima, H. R. P.; Moraes, L. F. D.; da Cunha, M.; Macías, F. A.; J. Agric. Food Chem. 2020, 68, 4851. [Crossref]
    » Crossref
  • 41
    Cala, A.; Salcedo, J. R.; Torres, A.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; Molecules 2021, 26, 3356. [Crossref]
    » Crossref
  • 42
    Rodríguez-Mejías, F. J.; Mottaghipisheh, J.; Schwaiger, S.; Kiss, T.; Csupor, D.; Varela, R. M.; Macías, F. A.; Phytochemistry 2023, 215, 113838. [Crossref]
    » Crossref
  • 43
    Díaz-Franco, C.; Rial, C.; Molinillo, J. M. G.; Varela, R. M.; Macías, F. A.; Agronomy 2023, 13, 568. [Crossref]
    » Crossref
  • 44
    Cárdenas, D. M.; Rial, C.; Varela, R. M.; Molinillo, J. M. G.; Macías, F. A.; J. Nat. Prod. 2021, 84, 2295. [Crossref]
    » Crossref
  • 45
    Durán, A. G.; Benito, J.; Macías, F. A.; Simonet, A. M.; Agronomy 2021, 11, 2404. [Crossref]
    » Crossref
  • 46
    Dur, A. G.; Chinchilla, N.; Simonet, A. M.; Gutiérrez, M. T.; Bolívar, J.; Valdivia, M. M.; Molinillo, J. M. G.; Macías, F. A.; Toxins 2023, 15, 348. [Crossref]
    » Crossref
  • 47
    Rial, C.; Varela, R. M.; Molinillo, J. M. G.; Bautistab, E.; Hernández, A. O.; Macías, F. A.; Phytochem. Lett. 2016, 18, 68. [Crossref]
    » Crossref

Edited by

Editor handled this article: Albertina Moglioni (Associate)

Publication Dates

  • Publication in this collection
    15 Apr 2024
  • Date of issue
    2024

History

  • Received
    25 Oct 2023
  • Accepted
    21 Mar 2024
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br