Acessibilidade / Reportar erro

Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement

ABSTRACT:

Mullite is an excellent structural material due to its high temperature stability, high electrical insulation capabilities and creep resistance. This material has a number of technological applications, such as rocket nozzles used in the aerospace industry. In this work, mullite was obtained by sol-gel process, using silicic sol, aluminum nitrate and ethylene glycol, besides the following volume ratios of silica sol dispersion to ethylene glycol: 1/0; 1/1; 1/2; and 1/3. After drying, the samples were thermal treated at temperatures of 1,000; 1,100; 1,200 and 1,250°C. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (Bruner-Emmett-Teller - BET). SEM showed that mullite particles are fine and nearly equiaxed. The sample without ethylene glycol showed 3/2 mullite after heat treatment at 1,250°C. The sample with intermediate ethylene glycol concentration presented two crystallization processes: the first at 1,000°C forming mullite and spinel phases, and the second at 1,250°C forming only 3/2 mullite. However, the sample with the highest ethylene glycol concentration crystallized directly to mullite at 1,000°C with the highest yield. There is a strong dependence on the specific surface area with temperature. The Rietveld refinement showed that the a cell lattice of mullite and the Al/Si molar ratio in the mullite formula depend on the ethylene glycol presence and on the calcination temperature. The lattice parameters b and c are not dependent on the alumina content, but the parameter a increases with the increase in the alumina content. Samples prepared with higher ethylene glycol concentrations reached higher mullite yields at lower temperatures.

KEYWORDS:
Mullite; Sol-gel; Ethylene glycol; Rietveld refinement

Full text is available only in PDF.

REFERENCES

  • Aksaf, İ.A. and Pask, J.A., 1975, “Stable and Metastable Equilibria in the System SiO 2 -Al 2 O 3”, Journal of the American Ceramic Society, Vol. 58, No. 11-12, pp. 507-512. doi: 10.1111/j.1151-2916.1975.tb18770.x
    » https://doi.org/10.1111/j.1151-2916.1975.tb18770.x
  • Ban, T., Hayashi, S., Yasumori, A., and Okada, K., 1996, “Characterization of Low Temperature Mullitization”, Journal of the European Ceramic Society, Vol. 16, No. 2, pp. 127-132. doi: 10.1016/0955-2219(95)00131-X
    » https://doi.org/10.1016/0955-2219(95)00131-X
  • Brandhuber, D., Torma, V., Raab, C., Peterlik, H., Kulak, A., and Hu, N., 2005, “Glycol-Modified Silanes in the Synthesis of Mesoscopically Organized Silica Monoliths with Hierarchical Porosity”, Chemistry of Materials, Vol. 17, No. 16, pp. 4262-4271. doi: 10.1021/cm048483j
    » https://doi.org/10.1021/cm048483j
  • Campos, T.M.B., Cividanes, L.S., Brunelli, D.D., Sakane, K.K., and Thim, G.P., 2012, “Effect of ethylene glycol on the mullite crystallization”, Journal of the European Ceramic Society, Vol. 32, No. 4, pp. 835-842. doi: 10.1016/j.jeurceramsoc.2011.09.028
    » https://doi.org/10.1016/j.jeurceramsoc.2011.09.028
  • Chakraborty, A.K., 2008, “Si-incorporated alumina phases formed out of diphasic mullite gels”, Journal of Materials Science, Vol. 43, No. 15, pp. 5313-5324. doi: 10.1007/s10853-008-2775-y
    » https://doi.org/10.1007/s10853-008-2775-y
  • Cividanes, L.S, Brunelli, D.D., Bertran, C.A., Campos, T.M.B., and Thim, G.P., 2011, “Urea effect on the mechanism of mullite crystallization”, Journal of Materials Science, Vol. 46, No. 23, pp. 7384-7392. doi: 10.1007/s10853-011-5699-x
    » https://doi.org/10.1007/s10853-011-5699-x
  • Cividanes, L.S, Campos, T.M.B., Rodrigues, L.A., Brunelli, D.D., and Thim, G.P., 2010a, “Review of mullite synthesis routes by sol-gel method”, Journal of Sol-Gel Science and Technology, Vol. 55, No. 1, pp. 111-125. doi: 10.1007/s10971-010-2222-9
    » https://doi.org/10.1007/s10971-010-2222-9
  • Cividanes, L.S, Campos, T.M.B., Bertran, C.A., Brunelli, D.D., and Thim, G.P., 2010b, “Effect of urea on the mullite crystallization”, Journal of Non-Crystalline Solids, Vol. 356, No. 52-54, pp. 30133018. doi: 10.1016/j.jnoncrysol.2010.05.076
    » https://doi.org/10.1016/j.jnoncrysol.2010.05.076
  • Fischer, R.X., Schneider, H. and Voll, D., 1996, “Formation of Aluminum Rich 9:1 Mullite and its Transformation to Low Alumina Mullite upon Heating”, Journal of the European Ceramic Society, Vol. 16, No.2, pp. 109-113.
  • Gerardin, C., Sundaresan, S., Benziger, J., and Navrotsky, A., 1994, “Structural Investigation and Energetics of Mullite Formation from Sol-Gel Precursors”, Chemistry of Materials, Vol. 6, No. 2, pp 160-170. doi: 10.1021/cm00038a011
    » https://doi.org/10.1021/cm00038a011
  • Hong, S.H. and Messing, G.L., 1998, “Anisotropic Grain Growth in Diphasic-Gel-Derived Titania-Doped Mullite”, Journal of the American Ceramic Society, Vol. 81, No. 5, pp. 1269-1277. doi: 10.1111/j.1151-2916.1998.tb02478.x
    » https://doi.org/10.1111/j.1151-2916.1998.tb02478.x
  • Inoue, M., 2004, “Glycothermal synthesis of metal oxides”, Journal of Physics: Condensed Matter, Vol. 16, No. 14, pp. S1291-S1303. doi:10.1088/0953-8984/16/14/042
    » https://doi.org/10.1088/0953-8984/16/14/042
  • Langford, J., Louër, D. and Scardi, P., 2000, “Effect of a Crystallite Size Distribution on X-ray Diffraction Line Profiles and Whole-powderpattern Fitting”, Journal of Applied Crystallography, Vol. 33, No. 2, pp. 964-974. doi: 10.1107/S002188980000460X
    » https://doi.org/10.1107/S002188980000460X
  • Le Bail, A., 2004, “Monte Carlo Indexing with McMaille”, Powder Diffraction, Vol. 19, No. 3, pp. 249-254. doi: 10.1154/1.1763152
    » https://doi.org/10.1154/1.1763152
  • Mazza, D., Ronchetti, S., and Costanzo, A., 2008, “Atomistic simulations on mullite Al 2 (AlSi)O in a variable range of 2+2x2−2x10−x composition”, Journal of the European Ceramic Society, Vol. 28, No. 2, pp. 367-370. doi: 10.1016/j.jeurceramsoc.2007.03.003
    » https://doi.org/10.1016/j.jeurceramsoc.2007.03.003
  • McMahon, C.N., Alemany, L., Callender, R.L., Bott, S.G. and Barron, A.R., 1999, “Reaction of Al( t Bu) 3 with Ethylene Glycol: Intermediates to Aluminum Alkoxide (Alucone) Preceramic Polymers”, Chemistry of Materials, Vol. 11, No. 11, pp. 3181-3188. doi: 10.1021/cm990284q
    » https://doi.org/10.1021/cm990284q
  • Okada, K., 2008, “Activation Energy of Mullitization from Various Starting Materials”, Journal of the European Ceramic Society, Vol. 28, No. 2, pp. 377-382. doi: 10.1016/j.jeurceramsoc.2007.03.015
    » https://doi.org/10.1016/j.jeurceramsoc.2007.03.015
  • Oliveira, T.C., Ribeiro, C.A., Brunelli, D.D., Rodrigues, L.A. and Thim, G.P., 2010, “The Kinetic of Mullite Crystallization: Effect of Water Content”, Journal of Non-Crystalline Solids, Vol. 356, No. 52-54, pp. 2980-2985. doi: 10.1016/j.jnoncrysol.2010.05.078
    » https://doi.org/10.1016/j.jnoncrysol.2010.05.078
  • Richardson, J.W., Pluth, J.J., Smith, J.V. and Dytrych, W.J., 1988, “Conformation of Ethylene Glycol and Phase Change in Silica Sodalite”, The Journal of Physical Chemistry, Vol. 92, No. 1, pp. 243-247. doi: 10.1021/j100312a052
    » https://doi.org/10.1021/j100312a052
  • Rietveld, H.M., 1969, “A Profile Refinement Method for Nuclear and Magnetic Structures”, Journal of Applied Crystallography, Vol. 2, pp. 65-71. doi:10.1107/S0021889869006558
    » https://doi.org/10.1107/S0021889869006558
  • Shackelford, J.F. and Doremus, R.H., 2008, “Ceramic and Glass Materials”, Springer, New York, USA.
  • Schneider, H., Voll, D., Saruhan, B. and Schmücker, M., 1994, “Constitution of the γ-alumina Phase in Chemically Produced Mullite Precursors”, Journal of the European Ceramic Society, Vol. 13, No. 5, pp. 441-448. doi: 10.1016/0955-2219(94)90022-1
    » https://doi.org/10.1016/0955-2219(94)90022-1
  • Schneider, H. and Komarneni, S., 2005, “Mullite”, Wiley-VCH, Weinheim, Germany.
  • Schneider, H., Schreuer, J. and Hildmann, B., 2008, “Structure and Properties of Mullite - A Review”, Journal of the European Ceramic Society, Vol. 28, No. 2, pp. 329-344. doi: 10.1016/j.jeurceramsoc.2007.03.017
    » https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  • Yabuki, M., Takahashi, R., Sato, S., Sodesawa, T., and Ogura, K., 2002, “Silica-Alumina Catalysts Prepared in Sol-Gel Process of TEOS with Organic Additives”, Physical Chemistry Chemical Physics, Vol. 4, No. 19, pp. 4830-4837. doi: 10.1039/B205645C
    » https://doi.org/10.1039/B205645C

Publication Dates

  • Publication in this collection
    Oct-Dec 2013

History

  • Received
    27 Aug 2013
  • Accepted
    27 Oct 2013
Departamento de Ciência e Tecnologia Aeroespacial Instituto de Aeronáutica e Espaço. Praça Marechal do Ar Eduardo Gomes, 50. Vila das Acácias, CEP: 12 228-901, tel (55) 12 99162 5609 - São José dos Campos - SP - Brazil
E-mail: submission.jatm@gmail.com