Acessibilidade / Reportar erro

Thermal Protection System and Trajectory Optimization for Orbital Plane Change Aeroassisted Maneuver

ABSTRACT:

The aim of this paper was to identify, for a specific maneuver, the optimal combination between the trajectory and the associated heat shield configuration, namely the locations and thicknesses of the ablative and reusable zones, that maximize the allowable payload mass for a spacecraft. The analysis is conducted by considering the coupling between the trajectory's dynamics and the heat shield's thermal behavior while using a highly representative model of the heat shield. A global optimization procedure and original software were developed and implemented. The analyzed mission considers an aeroassisted transfer from two low Earth orbits with an assigned orbital plane change maneuver for a given delta wing vehicle equipped with a heat shield consisting of both ablative and reusable materials. The results indicate that the aeroassisted maneuver is more convenient than a "full propulsive" maneuver in the analyzed case, even considering the increased vehicle mass due to the presence of the heat shield.

KEYWORDS:
Aeroassisted maneuver; Heat shield; Optimization; Orbital plane change; Thermal protection system

Full text is available only in PDF.

REFERENCES

  • Charbonneau, P., 2002a, "An introduction to genetic algorithms for numerical optimization", Boulder, Colorado.
  • Charbonneau, P., 2002b, "Release notes for Pikaia 1.2", Boulder, Colorado.
  • Charbonneau, P. and Knap, B., 1995, "A user's guide to Pikaia 1.0", Boulder, Colorado.
  • Gath, P.F. and Calise, A.J., 2001, "Optimization of launch vehicle ascent trajectories with path constraints and coast arcs", Journal of Guidance, Control and Dynamics, Vol. 24, No. 2, pp. 296-304. doi: 10.2514/2.4712.
    » https://doi.org/10.2514/2.4712
  • Gogu, C., Matsumura, T., Haftka, R.T. and Rao, A.V., 2009, "Aeroassisted orbital transfer trajectory optimization considering thermal protection system mass", Journal of Guidance, Control and Dynamics, Vol. 32, No. 3, pp. 927-938. doi: 10.2514/1.37684.
    » https://doi.org/10.2514/1.37684
  • Havey, K.A. Jr., 1982, "Entry vehicle performance in low-heat-load trajectories", Journal of Spacecraft and Rockets, Vol. 19, No. 6, pp. 506-512. doi: 10.2514/3.62293.
    » https://doi.org/10.2514/3.62293
  • Holland, J.H., 1975, "Adaptation in natural and artificial systems", University of Michigan Press, Ann Arbor, MI.
  • Igarashi, J. and Spencer, D.B., 2005, "Optimal continuous thrust orbit transfer using evolutionary algorithms", Journal of Guidance, Control and Dynamics, Vol. 28, No. 3, pp. 547-549. doi: 10.2514/1.11135.
    » https://doi.org/10.2514/1.11135
  • Joshua, E.J., Lewis, M.J. and Starkey, R.P., 2008, "Analysis of optimal Earth entry heat shield/trajectory configurations", 15th AIAA International Space Planes and Hypersonics Systems and Technologies Conference, Dayton, Ohio, paper no. AIAA-2008-2594.
  • Mazzaracchio, A. and Marchetti, M., 2010, "A probabilistic sizing tool and Monte Carlo analysis for entry vehicle ablative thermal protection systems", Acta Astronautica, Vol. 66, issues 5-6, pp. 821-835. doi: 10.1016/j.actaastro.2009.08.033.
    » https://doi.org/10.1016/j.actaastro.2009.08.033
  • McGuire, M.K., Gage, P., Galloway, E.T., Huyhn, L., Nguyen, J., Bowles, J.V. and Windhorst, R., 2004, "Trajectory and thermal protection system design for reusable launch vehicles", AIAA Paper 2004-4490.
  • Menees, G.P., 1983, "Thermal protection requirements for near-Earth aeroassisted orbital transfer vehicle missions", AIAA Paper 83-1513.
  • NASA Marshall Space Flight Center, 2003, "X-37 demonstrator to test future launch technologies in orbit and reentry environments", NASA Facts, FS-2003-05-65-MSFC.
  • Rajesh, K.A., 2002, "Reentry trajectory optimization: evolutionary approach", AIAA Paper 2002-5466.
  • Reuther, J.J., Brown, J.L., Prabhu, D.K., McDaniel, R., Saunders, D. and Palmer, G., 2004, "External computational aerothermodynamic analysis of the Space Shuttle orbiter at STS-107 flight conditions", 37th AIAA Thermophysics Conference, Portland, Oregon, Paper no. AIAA- 2004-2281.
  • Tauber, M.E. and Sutton, K., 1991, "Stagnation-point radiative heating relations for Earth and Mars entries", Journal of Spacecraft, Vol. 28, No. 1, pp. 40-42. doi: 10.2514/3.26206.
    » https://doi.org/10.2514/3.26206
  • Tran, H.K., Johnson, C.E., Rasky, D.J., Hui, F.C.L., Hsu, M.T., Chen, T., Chen, Y.K., Paragas, D. and Kobayashi, L., 1997, "Phenolic impregnated carbon ablators (PICA) as thermal protection systems for discovery missions", NASA TM-110440.
  • Vinh, N.X., Busemann, A. and Culp, R.D., 1980, "Hypersonic and planetary entry flight mechanics", University of Michigan Press, Ann Arbor, MI.
  • Walberg, G.D., 1985, "A survey of aero-assisted orbit transfer", Journal of Spacecraft and Rockets, Vol. 22, No. 1, pp. 3-18. doi: 10.2514/3.25704.
    » https://doi.org/10.2514/3.25704
  • Williams, S.D. and Curry, D.M., 1992, "Thermal protection materials thermophysical property data", NASA RP 1289.
  • Windhorst, R., Galloway, E., Lau, E., Saunders, D. and Gage, P., 2004, "Aerospace vehicle trajectory design and optimization within a multidisciplinary environment", AIAA Paper 2004-704.
  • Yeniay, Ö., 2005, "Penalty function methods for constrained optimization with genetic algorithms", Mathematical and Computational Applications, Vol. 10, No. 1, pp. 45-56.

Publication Dates

  • Publication in this collection
    Jan-Mar 2013

History

  • Received
    06 Dec 2012
  • Accepted
    12 Feb 2013
Departamento de Ciência e Tecnologia Aeroespacial Instituto de Aeronáutica e Espaço. Praça Marechal do Ar Eduardo Gomes, 50. Vila das Acácias, CEP: 12 228-901, tel (55) 12 99162 5609 - São José dos Campos - SP - Brazil
E-mail: submission.jatm@gmail.com