Acessibilidade / Reportar erro

Cerebrospinal fluid levels of hypothalamic-pituitary-adrenal axis hormones in MCI and dementia due to Alzheimer’s disease: a systematic review

Níveis dos hormônios do eixo hipotálamo-pituitária-adrenal no líquido cefalorraquidiano de pacientes com CCL e demência devido à doença de Alzheimer: uma revisão sistemática

ABSTRACT

Underlying the neuropsychological manifestations of Alzheimer’s disease (AD), hypothalamic-pituitary-adrenal (HPA) axis dysregulation and subsequent hypercortisolemia have been proposed as major mechanisms driving AD progression from mild cognitive impairment (MCI) to the onset of dementia. Nonetheless, changes in cerebrospinal fluid (CSF) levels of HPA axis hormones remain controversial despite their potential in AD diagnosis and prognosis testing.

Objective:

This study aimed to review the evidence of the variation in CSF levels of CRH, ACTH, and cortisol in subjects with mild cognitive impairment (MCI) and AD compared with subjects without cognitive disorders.

Methods:

A systematic review was conducted in MEDLINE, EMBASE, and Web of Science databases on July 5, 2022.

Results:

Seventeen observational studies were included. The results from the compiled investigations showed that individuals with AD exhibit a significant elevation of CSF cortisol levels which appear to correlate with the presence of the ApoE-ε4 allele, being higher in those homozygous for this allele. The variation of CSF CRH and ACTH levels in AD, on the other hand, is still inconclusive. Moreover, most studies found no significant difference in CSF cortisol levels in individuals with MCI compared to healthy subjects and patients with AD.

Conclusion:

The findings gathered in this review disclose a significant elevation of CSF cortisol levels in AD. Future investigations are warranted to elucidate the potential use of CSF cortisol as a biomarker in AD-associated dementia.

Keywords:
Alzheimer Disease; Cerebrospinal Fluid; Corticotropin-Releasing Hormone; Adrenocorticotropic Hormone; Hydrocortisone

RESUMO

Subjacentes às manifestações neuropsicológicas da doença de Alzheimer (DA), a desregulação do eixo hipotálamo-pituitária-adrenal (HPA) e a subsequente hipercortisolemia foram propostas como mecanismos principais que conduzem a progressão da DA desde o comprometimento cognitivo leve (CCL) até o início da demência. No entanto, as alterações nos níveis do líquido cefalorraquidiano (LCR) dos hormônios do eixo HPA permanecem controversas, apesar de seu potencial no diagnóstico da DA e nos testes de prognóstico.

Objetivo:

Este estudo teve como objetivo revisar as evidências da variação nos níveis de CRH, ACTH e cortisol em indivíduos com comprometimento cognitivo leve (CCL) e DA em comparação com indivíduos sem distúrbios cognitivos.

Métodos:

Uma revisão sistemática foi realizada nas bases de dados MEDLINE, EMBASE e Web of Science em 5 de julho de 2022.

Resultados:

Dezessete estudos observacionais foram incluídos. Os resultados compilados mostraram que os indivíduos com DA apresentam uma elevação significativa dos níveis de cortisol no LCR que parecem correlacionar-se com a presença do alelo ApoE-ε4, sendo maior nos homozigotos para este alelo. A variação dos níveis de CRH e ACTH no LCR na DA, por outro lado, ainda é inconclusiva. Além disso, a maioria dos estudos não encontrou diferença significativa nos níveis de cortisol no LCR em indivíduos com CCL em comparação com indivíduos saudáveis e pacientes com DA.

Conclusão:

Os resultados reunidos nesta revisão revelaram uma elevação significativa dos níveis de cortisol no LCR na DA. Investigações futuras são necessárias para elucidar o uso potencial do cortisol no LCR como biomarcador na demência associada à DA.

Palavras-chave:
Doença de Alzheimer; Líquido Cefalorraquidiano; Hormônio Liberador da Corticotropina; Hormônio Adrenocorticotrópico; Hidrocortisona

INTRODUCTION

The complex interplay between hypothalamic-pituitary-adrenal (HPA) axis dysregulation and the neurodegenerative course of Alzheimer’s disease (AD) suggests a neuroendocrine disturbance underlying the pathophysiology of AD-associated dementia. Psychological stress, common to both AD etiology and HPA axis hyperactivity11. Milligan-Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, et al. Chronic stress and Alzheimer’s disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc. 2021;96(5):2209-28. https://doi.org/10.1111/brv.12750
https://doi.org/10.1111/brv.12750...
, sustains the hypothesis of neurodegeneration as a disorder associated with the allostatic load resulting from chronic exposure to stressful stimuli22. Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, lifestyle stress, and neurodegeneration. Immunity. 2020;52(2):222-40. https://doi.org/10.1016/j.immuni.2019.12.003
https://doi.org/10.1016/j.immuni.2019.12...
,33. Lyons CE, Bartolomucci A. Stress and Alzheimer’s disease: asenescence link? Neurosci Biobehav Rev. 2020;115:285-98. https://doi.org/10.1016/j.neubiorev.2020.05.010
https://doi.org/10.1016/j.neubiorev.2020...
that converge in cortisol hypersecretion. Accordingly, HPA axis dysfunction in individuals with AD is evidenced by prolonged states of hypercortisolemia without disruption of adrenal circadian secretion44. Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm despite cortisol hypersecretion in Alzheimer’s disease: a meta-analysis. Psychoneuroendocrinology. 2021;132:105367. https://doi.org/10.1016/j.psyneuen.2021.105367
https://doi.org/10.1016/j.psyneuen.2021....
, which appear to contribute to the progression of cognitive impairment55. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry. 2006;163(12):2164-9. https://doi.org/10.1176/ajp.2006.163.12.2164
https://doi.org/10.1176/ajp.2006.163.12....
. As such, the intricate relationship between HPA axis activity and AD pathogenesis exhibits a bidirectional pattern66. Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci. 2019;11:43. https://doi.org/10.3389/fnagi.2019.00043
https://doi.org/10.3389/fnagi.2019.00043...
; hippocampal and cortical damage associated with the formation of β-amyloid (Aβ) plaques and tau protein neurofibrillary tangles compromises the regulatory circuits of hypothalamic neuroendocrine cells77. Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry. 1995;152(9):1372-6. https://doi.org/10.1176/ajp.152.9.1372
https://doi.org/10.1176/ajp.152.9.1372...
, and in turn, cortisol upregulation, and the consequent hyperactivation of glucocorticoid receptors promotes hippocampal neuronal degeneration and impairs synaptic plasticity88. Klyubin I, Ondrejcak T, Hu NW, Rowan MJ. Glucocorticoids, synaptic plasticity and Alzheimer’s disease. Curr Opin Endocr Metab Res. 2022;25:100365. https://doi.org/10.1016/j.coemr.2022.100365
https://doi.org/10.1016/j.coemr.2022.100...
.

In recent years, advances in diagnostic imaging and research into molecular hallmarks of the neurodegenerative pathways concomitant to the deposition of pathogenic Aβ and tau proteins have led to a shift from the purely syndromic approach to AD99. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.0...
. The 2018 National Institute on Aging-Alzheimer’s Association (NIA-AA) Research Framework99. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.0...
redefines AD based on the underlying pathophysiological changes documented in postmortem examinations or through in vivo biomarkers. AD is now recognized as a biological entity, not exclusively clinical, whose diagnosis is enhanced by biomarkers that provide a more precise characterization and understanding of the sequence of events that lead to cognitive decline99. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.0...
. Thus, the biological substrate underlying AD progression lies in the neurodegenerative mechanisms that precede the onset of symptoms by decades1010. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292-323. https://doi.org/10.1016/j.jalz.2016.02.002
https://doi.org/10.1016/j.jalz.2016.02.0...
, and their interactions with hormonal1111. Radaghdam S, Karamad V, Nourazarian A, Shademan B, Khaki-Khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer’s disease. Neurosci Lett. 2021;764:136221. https://doi.org/10.1016/j.neulet.2021.136221
https://doi.org/10.1016/j.neulet.2021.13...
,1212. Sedzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int J Mol Sci. 2021;22(18):9987. https://doi.org/10.3390/ijms22189987
https://doi.org/10.3390/ijms22189987...
, immunological1313. Ricci S, Fuso A, Ippoliti F, Businaro R. Stress-induced cytokines and neuronal dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2012;28(1):11-24. https://doi.org/10.3233/JAD-2011-110821
https://doi.org/10.3233/JAD-2011-110821...
,1414. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12(6):719-32. https://doi.org/10.1016/j.jalz.2016.02.010
https://doi.org/10.1016/j.jalz.2016.02.0...
, and psychological1515. Linnemann C, Lang UE. Pathways connecting late-life depression and dementia. Front Pharmacol. 2020;11:279. https://doi.org/10.3389/fphar.2020.00279
https://doi.org/10.3389/fphar.2020.00279...
,1616. Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7(5):532-9. https://doi.org/10.1016/j.jalz.2011.05.2410
https://doi.org/10.1016/j.jalz.2011.05.2...
factors impact cognitive performance and adaptability to neuronal decay1717. Scheltens P, Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-90. https://doi.org/10.1016/s0140-6736(20)32205-4
https://doi.org/10.1016/s0140-6736(20)32...
. Hence, the role of the HPA axis remains highly relevant as part of the complex network of biological events involved in the configuration of the pathogenic mechanisms implicated in the development of AD.

Corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol constitute the primary effectors of the HPA axis. Given their role as neuromodulators within the limbic system1818. Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1201-13. https://doi.org/10.1016/j.pnpbp.2005.08.006
https://doi.org/10.1016/j.pnpbp.2005.08....
, these hormones are acknowledged as potential mediators of AD pathophysiology1919. Ahmad MH, Fatima M, Mondal AC. Role of hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and insulin signaling in the pathophysiology of Alzheimer’s disease. Neuropsychobiology. 2019;77(4):197-205. https://doi.org/10.1159/000495521
https://doi.org/10.1159/000495521...
. Increased serum cortisol levels have been documented as an independent biomarker of cognitive impairment progression2020. Yeram N, Dalvi S, Mankeshwar R, Patil V, Kale V, Jagiasi K, et al. Relationship between cortisol, interleukin-6 and homocysteine in Alzheimer’s disease. Qatar Med J. 2021;2021(33):1-10. https://doi.org/10.5339/qmj.2021.33
https://doi.org/10.5339/qmj.2021.33...
. Moreover, AD-associated hypercortisolemic states have been proposed as both a diagnostic element2121. Zheng B, Tal R, Yang Z, Middleton L, Udeh-Momoh C. Cortisol hypersecretion and the risk of Alzheimer’s disease: a systematic review and meta-analysis. Ageing Res Rev. 2020;64:101171. https://doi.org/10.1016/j.arr.2020.101171
https://doi.org/10.1016/j.arr.2020.10117...
and a potential therapeutic target2222. de la Rubia Ortí JE, Prado-Gascó V, Sancho-Castillo S, Julián-Rochina M, Romero-Gómez FJ, García-Pardo MP. Cortisol and IgA are involved in the progression of Alzheimer’s disease. A pilot study. Cell Mol Neurobiol. 2019;39(7):1061-5. https://doi.org/10.1007/s10571-019-00699-z
https://doi.org/10.1007/s10571-019-00699...
in dementia. Despite the extensive study of plasma hypercortisolism in AD, there is still inconclusive evidence regarding the changes in HPA axis hormones in cerebrospinal fluid (CSF) of subjects with AD. Quantification of these hormones in CSF, combined with measurement of Aβ4242. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-6. https://doi.org/10.1111/j.1365-2796.2004.01380.x
https://doi.org/10.1111/j.1365-2796.2004...
and p-tau99. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.0...
, could provide a valuable complement to AD diagnosis and clinical staging. Therefore, the present study is a systematic review aiming to compile the literature on the variation in CSF levels of CRH, ACTH, and cortisol in subjects with mild cognitive impairment (MCI) and AD compared with subjects without cognitive disorders.

METHODS

A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) parameters2323. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9, W64. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://doi.org/10.7326/0003-4819-151-4-...
with the objective of gathering studies focused on assessing alterations in CSF levels of CRH, ACTH, and cortisol in individuals with MCI and AD-associated dementia.

Inclusion and exclusion criteria

Eligibility criteria for study inclusion were as follows:
  • investigations written in English and published in peer-reviewed journals;

  • observational studies carried out in humans;

  • reports of in vivo measurement of CRH, ACTH, and/or cortisol levels in CSF; and

  • records that conducted a statistical evaluation of the difference between individuals diagnosed with AD or MCI, and subjects without cognitive impairment.

Within the included investigations, different cognitive status assessment tools and diagnostic criteria for AD and MCI were accepted. Studies were excluded in cases of:
  • no comparison between healthy controls and subjects with AD or MCI;

  • quantification of HPA axis hormones in fluids other than CSF;

  • post-mortem investigations; and

  • studies in which subjects with cognitive disorders were included without a clear definition of the etiology of dementia.

Search strategy

For the systematic literature review, a structured search algorithm was employed using the following terms: [“Corticotropin-Releasing Hormone”], [“Adrenocorticotropic Hormone”], [“Hydrocortisone”], [“Cerebrospinal fluid”], [“Alzheimer Disease”], and [“Mild Cognitive Impairment”]. These were combined with their respective entry/emtree terms using truncators and Boolean operators (“AND” and “OR”) for the construction of the search strategy. MEDLINE (PubMed), EMBASE, and Web of Science databases were consulted on July 5th, 2022, and records published up to this date were extracted. The search algorithm used in each of the consulted databases is presented in Supplementary Material (https://www.demneuropsy.com.br/wp-content/uploads/2023/10/DN-2023.0031-Supplementary-Material.docx).

Study selection

The systematic search in the databases consulted was performed by all authors. The titles and abstracts of the retrieved records were compiled and managed with the aid of Microsoft Excel 2020®. Following duplicates removal, two reviewers (JAB and FDZ) independently screened all titles and abstracts to exclude articles with no relevance to the objective of the review. Studies selected by title and abstract were then evaluated by full text to determine their final inclusion based on the criteria previously discussed. Disagreements in the study selection process were resolved by consensus and, when necessary, a third reviewer (IM) was consulted.

Quality assessment

The methodological quality of the studies was assessed using the Newcastle-Ottawa Scale (NOS)2424. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. [cited on Aug. 1, 2022]. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
https://www.ohri.ca/programs/clinical_ep...
to evaluate the design of nonrandomized observational studies. This scale analyzes eight items that are rated by a series of questions graded with a scoring system from 1 to 9 in three different categories: selection, comparability, and exposure/outcomes. The records included in the review are scored as follows: “high quality”: scores 7-9, “moderate quality”: scores 4-6, “low quality”: scores 0-32424. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. [cited on Aug. 1, 2022]. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
https://www.ohri.ca/programs/clinical_ep...
.

Data extraction

The following data were extracted from the included studies:
  • authors and year of publication,

  • characteristics of the study population,

  • diagnostic criteria used to define dementia due to AD or MCI, and the scale for assessing cognitive impairment,

  • results of the variation of the analyzed hormone in CSF of subjects with AD or MCI versus healthy controls.

Additionally, depending on the results of each study, the different associations established between CSF hormone levels, the degree of progression or severity of the pathology, and the state of cognitive function were extracted.

RESULTS

The initial search in MEDLINE (via PubMed), EMBASE, and Web of Science databases yielded a total of 316 studies. After elimination of duplicates and screening based on title and abstract, 34 studies were obtained and underwent full-text evaluation. Finally, 17 observational studies were included (Figure 1). The characteristics of these studies are presented in Table 12525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...

26. Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
https://doi.org/10.1093/ageing/18.5.337...

27. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...

28. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...

29. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...

30. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...

31. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...

32. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
https://doi.org/10.1159/000107318...

33. Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
https://doi.org/10.1016/0006-3223(94)002...

34. Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
https://doi.org/10.1016/0024-3205(95)022...

35. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...

36. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...

37. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...

38. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...

39. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...

40. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
-4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
.

Figure 1.
PRISMA flow diagram of studies selection.
Table 1.
Cerebrospinal fluid levels of hypothalamic-pituitary-adrenal axis hormones in mild cognitive impairment and Alzheimer’s disease.

Eight studies evaluated the variation of CRH in CSF; three observed significantly lower levels in subjects with AD2727. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...
,3333. Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
https://doi.org/10.1016/0006-3223(94)002...
,3434. Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
https://doi.org/10.1016/0024-3205(95)022...
, two found higher concentrations in individuals with AD2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...
,3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
, and three found no significant difference compared to controls2828. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...
,3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
,3232. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
https://doi.org/10.1159/000107318...
. Only two studies addressed CSF ACTH variation evidencing both significantly lower levels in subjects with AD2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...
and no significant difference with controls2626. Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
https://doi.org/10.1093/ageing/18.5.337...
. Regarding the changes in CSF cortisol levels, five studies found that individuals with AD exhibited significantly higher concentrations3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...

36. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...

37. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
-3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
,4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
, whereas in two investigations there was no difference compared to subjects without cognitive impairment3939. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...
,4040. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
. The variation in CSF cortisol levels in individuals with MCI was evaluated in four studies, out of which only one found significantly higher cortisol levels in subjects with MCI when compared to controls, but not in subjects from the AD group3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
. The remaining three studies found no significant difference in CSF cortisol levels between subjects with MCI, individuals with AD, and controls3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
,4040. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
,4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
. Notably, out of the seventeen included studies, only seven reported an assessment of the cognitive status of controls. None of these evaluated the variation of ACTH in CSF. The results of these investigations show both decrease3333. Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
https://doi.org/10.1016/0006-3223(94)002...
and absence of significant changes in CRH3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
. In turn, three studies observed a significant increase in CSF cortisol levels in subjects with AD versus controls and individuals with MCI3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
,3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
,4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
, whereas two reported no significant difference3939. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...
,4040. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
. Thus, while comprising a lower proportion, the results of these seven studies resemble the findings evidenced when analyzing the overall observations of the included investigations.

In addition to CSF hormones quantification, HPA axis activity in subjects with AD was evaluated through a stimulation test with intravenous administration of 100 μg of recombinant human CRH (rhCRH) in parallel to the measurement of plasma cortisol at 15, 30, 60, and 120 minutes. In response to HPA axis stimulation, subjects with AD showed a plasma cortisol peak at 30 min, while in controls it occurred at 60 min after rhCRH injection2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...
,3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
. Furthermore, evaluation of HPA axis suppression response with 1 mg of dexamethasone in subjects with AD showed higher morning cortisol levels (8:00 a.m.) and lower suppression compared to the control group3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
. Notably, a direct correlation between serum and CSF cortisol concentrations was observed3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
, although evidence is uncertain as shown by the absence of a significant difference between plasma cortisol levels yet with a significant difference in CSF cortisol levels when comparing subjects with AD and controls3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
. R garding sample collection, twelve studies reported the time of lumbar puncture performed between 8:00-9:00 a.m.2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...

26. Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
https://doi.org/10.1093/ageing/18.5.337...

27. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...

28. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...

29. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...

30. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...

31. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
-3232. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
https://doi.org/10.1159/000107318...
and 9:00-11:00a.m.3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
,3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
,4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
. Lastly, two investigations assessed the magnitude of CSF cortisol change in subjects with AD and MCI in relation to the presence of apolipoprotein E (ApoE) gene alleles; ApoE-ε2, ApoE-ε3, and ApoE-ε4. The results from these studies disclose that CSF cortisol levels vary according to ApoE genotype such that homozygous carriers of the ApoE-ε4 allele exhibit higher CSF cortisol levels compared with AD heterozygous individuals and those with no ApoE-ε4 alleles3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
,3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
.

The assessment of cognitive function was heterogeneously conducted within the included investigations. The cognitive status of subjects with AD was determined in twelve studies2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...
,2727. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...

28. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...

29. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...

30. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
-3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
,3434. Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
https://doi.org/10.1016/0024-3205(95)022...
,3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...

38. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...

39. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...

40. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
-4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
by means of at least one of the following scales: Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR) scale, Mattis dementia scale, Wechsler Adult Intelligence Scale-Revised (WAIS-R), full scale IQ, Wechsler memory scale, Global Neuropsychological Impairment (GNI) scale, Hasegawa Dementia Scale (HDS), and Global Deterioration Scale (GDS). The severity of AD dementia was reported in four investigations with individuals with mild to moderate2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...
,3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
, moderate2828. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...
, and moderate to severe2727. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...
,3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
dementia. MCI was defined in four studies as amnestic MCI (aMCI)4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
, AD-type MCI (AD-MCI)3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
, MCI with progression to AD (PMCI)3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
, and classic MCI3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
,4040. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
based on criteria of the 2003 Key Symposium of MCI in Stockholm4242. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-6. https://doi.org/10.1111/j.1365-2796.2004.01380.x
https://doi.org/10.1111/j.1365-2796.2004...
, Rey Auditory Verbal Learning Test, CDR, and/or Logical Memory score. Among the diagnostic criteria applied for AD clinical evaluation, five were based exclusively on the 1984 National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) cirteria2727. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...
,3333. Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
https://doi.org/10.1016/0006-3223(94)002...
,3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
,3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
,4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
, five complemented these with the Diagnostic and Statistical Manual of Mental Disorders Third Edition (DSM-III) or Fourth Edition (DSM-IV) criteria2626. Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
https://doi.org/10.1093/ageing/18.5.337...
,2828. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...
,3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
,3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
,3939. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...
, and four used DSM-III or DSM-IV criteria exclusively2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...
,2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...

30. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
-3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
. Two studies did not explicitly state the criteria used for the evaluation of subjects with AD3232. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
https://doi.org/10.1159/000107318...
,3434. Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
https://doi.org/10.1016/0024-3205(95)022...
, and one assumed the diagnosis from Alzheimer’s disease Neuroimaging Initiative (ADNI) database reports4040. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
. The distinction of AD subtypes when assessing CSF hormone levels was reported in four studies as follows: senile AD (≥65 years) and presenile AD (<65 years)2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...
, familial AD, and sporadic AD3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
, and severe, moderate, and mild AD3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
.

At last, methodological quality and risk of bias were assessed by NOS, with an average score of 6.17 points. Of the seventeen included studies, nine were classified as high quality and low risk of bias2525. Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
https://doi.org/10.1159/000116270...
,2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...
,3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
,3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
,3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
,3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...

39. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
https://doi.org/10.1016/j.neulet.2015.10...

40. Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
https://doi.org/10.3389/fnagi.2018.00383...
-4141. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
https://doi.org/10.1002/gps.4856...
with an average score of 7.22. Within the remaining studies, seven were classified as moderate quality research2626. Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
https://doi.org/10.1093/ageing/18.5.337...

27. Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
https://doi.org/10.1016/0143-4179(86)900...
-2828. Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
https://doi.org/10.1016/0006-3223(89)900...
,3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...

32. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
https://doi.org/10.1159/000107318...
-3333. Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
https://doi.org/10.1016/0006-3223(94)002...
,3737. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
https://doi.org/10.1371/journal.pone.003...
with an average of 5.43 points, and one study3434. Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
https://doi.org/10.1016/0024-3205(95)022...
was designated as low quality research and high risk of bias with a score of 2.0.

DISCUSSION

The findings gathered in this review support a significant elevation of CSF cortisol in subjects with AD in line with the observations of HPA axis dysfunction and elevated plasma cortisol levels documented in observational studies in humans55. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry. 2006;163(12):2164-9. https://doi.org/10.1176/ajp.2006.163.12.2164
https://doi.org/10.1176/ajp.2006.163.12....
,4343. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 1997;18(3):285-9. https://doi.org/10.1016/s0197-4580(97)80309-0
https://doi.org/10.1016/s0197-4580(97)80...
and murine models4444. Guo Q, Zheng H, Justice NJ. Central CRF system perturbation in an Alzheimer’s disease knockin mouse model. Neurobiol Aging. 2012;33(11):2678-91. https://doi.org/10.1016/j.neurobiolaging.2012.01.002
https://doi.org/10.1016/j.neurobiolaging...
,4545. Hebda-Bauer EK, Simmons TA, Sugg A, Ural E, Stewart JA, Beals JL, et al. 3xTg-AD mice exhibit an activated central stress axis during early-stage pathology. J Alzheimers Dis. 2013;33(2):407-22. https://doi.org/10.3233/jad-2012-121438
https://doi.org/10.3233/jad-2012-121438...
. Adrenal hyperactivity along the AD continuum suggests a neuronal exposure to elevated glucocorticoid concentrations, increasing nervous tissue susceptibility to damage associated with neurodegeneration4646. Meaney MJ, O’Donnell D, Rowe W, Tannenbaum B, Steverman A, Walker M, et al. Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp Gerontol. 1995;30(4):229-51. https://doi.org/10.1016/0531-5565(94)00065-b
https://doi.org/10.1016/0531-5565(94)000...
and excitotoxicity4747. Jing H, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Taniguchi Y, et al. Multisignal regulation of the rat NMDA1 receptor subunit gene--a pivotal role of glucocorticoid-dependent transcription. Life Sci. 2008;82(23-24):1137-41. https://doi.org/10.1016/j.lfs.2008.03.022
https://doi.org/10.1016/j.lfs.2008.03.02...
, and contributing to the progression of the canonical pathophysiological cascade of events characterizing AD4848. Dong H, Yuede CM, Yoo HS, Martin MV, Deal C, Mace AG, et al. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience. 2008;155(1):154-63. https://doi.org/10.1016/j.neuroscience.2008.05.017
https://doi.org/10.1016/j.neuroscience.2...

49. Lesuis SL, Maurin H, Borghgraef P, Lucassen PJ, Van Leuven F, Krugers HJ. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer’s disease. Oncotarget. 2016;7(26):39118-35. https://doi.org/10.18632/oncotarget.9776
https://doi.org/10.18632/oncotarget.9776...
-5050. Rosa MLNM, Guimarães FS, Oliveira RMW, Padovan CM, Pearson RCA, Del Bel EA. Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala. Brain Res Bull. 2005;65(1):69-75. https://doi.org/10.1016/j.brainresbull.2004.11.011
https://doi.org/10.1016/j.brainresbull.2...
. Thus, the interactive mechanisms between AD neuropathology and HPA axis dysregulation establish a bidirectional phenomenon in which neurodegenerative involvement promotes HPA axis dysfunction and, reciprocally, HPA axis dysfunction drives neurodegeneration progression (Figure 2)5151. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24(3):151-80. https://doi.org/10.1016/j.yfrne.2003.07.001
https://doi.org/10.1016/j.yfrne.2003.07....

52. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603-21. https://doi.org/10.1002/cphy.c150015
https://doi.org/10.1002/cphy.c150015...

53. Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A, Hindley N, et al. Rapidly progressing atrophy of medial temporal lobe in Alzheimer’s disease. Lancet. 1994;343(8901):829-30. https://doi.org/10.1016/s0140-6736(94)92028-1
https://doi.org/10.1016/s0140-6736(94)92...

54. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer’s disease. Neurobiol Aging. 2022;111:44-53. https://doi.org/10.1016/j.neurobiolaging.2021.11.004
https://doi.org/10.1016/j.neurobiolaging...

55. Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, et al. A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet. 2019;28(13):2174-88. https://doi.org/10.1093/hmg/ddz045
https://doi.org/10.1093/hmg/ddz045...

56. Lv J, Chen L, Zhu N, Sun Y, Pan J, Gao J, et al. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis. 2020;35(8):1385-94. https://doi.org/10.1007/s11011-020-00613-3
https://doi.org/10.1007/s11011-020-00613...

57. Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging. 2013;34(5):1426-39. https://doi.org/10.1016/j.neurobiolaging.2012.11.015
https://doi.org/10.1016/j.neurobiolaging...
-5858. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-ß peptide injection in rats. PLoS One. 2013;8(1):e53117. https://doi.org/10.1371/journal.pone.0053117
https://doi.org/10.1371/journal.pone.005...
.

Figure 2.
Proposed scheme of interactions between Alzheimer’s disease pathophysiology and hypothalamic-pituitary-adrenal axis dysregulation. Neuroendocrine modulation of the hypothalamic-pituitary-adrenal axis relies on the glutamatergic efferents that arise from the hippocampus to subcortical structures, mainly to neurons from the bed nucleus of the stria terminalis that convey GABAergic projections to the paraventricular hypothalamic nucleus and subsequently decrease corticotropin-releasing hormone release, thus, establishing a central negative feedback pathway through the glucocorticoidmediated increase of hippocampal excitatory inputs to the bed nucleus of the stria terminalis5151. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24(3):151-80. https://doi.org/10.1016/j.yfrne.2003.07.001
https://doi.org/10.1016/j.yfrne.2003.07....
,5252. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603-21. https://doi.org/10.1002/cphy.c150015
https://doi.org/10.1002/cphy.c150015...
. Hippocampal neurodegeneration in Alzheimer’s disease5353. Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A, Hindley N, et al. Rapidly progressing atrophy of medial temporal lobe in Alzheimer’s disease. Lancet. 1994;343(8901):829-30. https://doi.org/10.1016/s0140-6736(94)92028-1
https://doi.org/10.1016/s0140-6736(94)92...

54. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer’s disease. Neurobiol Aging. 2022;111:44-53. https://doi.org/10.1016/j.neurobiolaging.2021.11.004
https://doi.org/10.1016/j.neurobiolaging...
-5555. Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, et al. A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet. 2019;28(13):2174-88. https://doi.org/10.1093/hmg/ddz045
https://doi.org/10.1093/hmg/ddz045...
conditions hypothalamic-pituitary-adrenal axis hyperactivity by downregulating the negative feedback from the limbic forebrain as it has also been demonstrated in previously healthy animal models with induced Alzheimer’s disease neuropathology through Aβ intracerebral injection5656. Lv J, Chen L, Zhu N, Sun Y, Pan J, Gao J, et al. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis. 2020;35(8):1385-94. https://doi.org/10.1007/s11011-020-00613-3
https://doi.org/10.1007/s11011-020-00613...

57. Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging. 2013;34(5):1426-39. https://doi.org/10.1016/j.neurobiolaging.2012.11.015
https://doi.org/10.1016/j.neurobiolaging...
-5858. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-ß peptide injection in rats. PLoS One. 2013;8(1):e53117. https://doi.org/10.1371/journal.pone.0053117
https://doi.org/10.1371/journal.pone.005...
.

Neurodegeneration and hypothalamic-pituitary-adrenal axis dysregulation

During the preclinical phase of AD, characterized by the presence of biomarkers indicative of the pathophysiological cascade preceding clinical manifestations by decades1717. Scheltens P, Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-90. https://doi.org/10.1016/s0140-6736(20)32205-4
https://doi.org/10.1016/s0140-6736(20)32...
, it has been shown that significantly elevated serum cortisol levels are associated with a decrease in hippocampal volume, neurogenesis, and plasticity5959. Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience. 2013;239:196-213. https://doi.org/10.1016/j.neuroscience.2012.08.065
https://doi.org/10.1016/j.neuroscience.2...
as well as with a more accelerated decline in cognitive functions6060. Pietrzak RH, Laws SM, Lim YY, Bender SJ, Porter T, Doecke J, et al. Plasma cortisol, brain amyloid-ß, and cognitive decline in preclinical alzheimer’s disease: a 6-year prospective cohort study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(1):45-52. https://doi.org/10.1016/j.bpsc.2016.08.006
https://doi.org/10.1016/j.bpsc.2016.08.0...
,6161. Lupien SJ, Leon M, Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1(1):69-73. https://doi.org/10.1038/271
https://doi.org/10.1038/271...
. As central nervous system involvement progresses, a gradual loss of neuronal functionality takes place hampering the capacity to maintain clinically acceptable cognitive performance and triggering the clinical course of the disease; either mild cognitive impairment (MCI-AD) when functional independence is preserved with at least one impaired cognitive domain6262. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270-9. https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.jalz.2011.03.0...
,6363. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183-94. https://doi.org/10.1111/j.1365-2796.2004.01388.x
https://doi.org/10.1111/j.1365-2796.2004...
, or dementia when independence is compromised due to cognitive decline in one or more domains6464. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263-9. https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.jalz.2011.03.0...
. On the other hand, during the clinical phase, disruption of the HPA axis activity is associated with the severity of cognitive impairment6565. Elgh E, Lindqvist-Astot A, Fagerlund M, Eriksson S, Olsson T, Näsman B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry. 2006;59(2):155-61. https://doi.org/10.1016/j.biopsych.2005.06.017
https://doi.org/10.1016/j.biopsych.2005....
,6666. Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, et al. Cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate, Alzheimer’s disease pathology, and cognitive decline. Front Aging Neurosci. 2022;14:892754. https://doi.org/10.3389/fnagi.2022.892754
https://doi.org/10.3389/fnagi.2022.89275...
, neuropsychiatric manifestations6767. Zverová M, Fišar Z, Jirák R, Kitzlerová E, Hroudová J, Raboch J. Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Med Sci Monit. 2013;19:681-9. https://doi.org/10.12659/MSM.889110
https://doi.org/10.12659/MSM.889110...
,6868. Du X, Pang TY. Is dysregulation of the HPA-Axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Front Psychiatry. 2015;6:32. https://doi.org/10.3389/fpsyt.2015.00032
https://doi.org/10.3389/fpsyt.2015.00032...
, and greater progression of neurodegeneration with concomitant decreases in insula and amygdala volume6666. Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, et al. Cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate, Alzheimer’s disease pathology, and cognitive decline. Front Aging Neurosci. 2022;14:892754. https://doi.org/10.3389/fnagi.2022.892754
https://doi.org/10.3389/fnagi.2022.89275...
.

As evidenced by the abnormal adrenal response in AD, an attenuation of the HPA axis feedback mechanisms could take place in the context of AD, similar to the neuroendocrine disruption likely accounting for the altered CRH, ACTH, and cortisol levels in neuropsychiatric disorders6969. Sher L. Combined dexamethasone suppression-corticotropin-releasing hormone stimulation test in studies of depression, alcoholism, and suicidal behavior. ScientificWorldJournal. 2006;6:1398-404. https://doi.org/10.1100/tsw.2006.251
https://doi.org/10.1100/tsw.2006.251...
. While the exact mechanisms remain unknown, it has been documented that disease duration influences the degree of insensitivity to HPA axis suppression7070. Petrowski K, Wintermann GB, Kirschbaum C, Bornstein SR. Dissociation between ACTH and cortisol response in DEX-CRH test in patients with panic disorder. Psychoneuroendocrinology. 2012;37(8):1199–-208. https://doi.org/10.1016/j.psyneuen.2011.12.013
https://doi.org/10.1016/j.psyneuen.2011....

71. Peeters B, Meersseman P, Perre SV, Wouters PJ, Debaveye Y, Langouche L, et al. ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Med. 2018;44(12):2048-58. https://doi.org/10.1007/s00134-018-5427-y
https://doi.org/10.1007/s00134-018-5427-...
-7272. Wirtz PH, Siegrist J, Schuhmacher A, Hoefels S, Maier W, Zobel AW. Higher overcommitment to work is associated with higher plasma cortisol but not ACTH responses in the combined dexamethasone/CRH test in apparently healthy men and women. Psychoneuroendocrinology. 2010;35(4):536-43. https://doi.org/10.1016/j.psyneuen.2009.09.002
https://doi.org/10.1016/j.psyneuen.2009....
, suggesting a gradual dissociation between the inhibitory peripheral stimulus of cortisol and the modulation of CRH secretion in the hypothalamic paraventricular nucleus (PVN) neuroendocrine cells7373. Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab. 2008;19(5):175-80. https://doi.org/10.1016/j.tem.2008.01.009
https://doi.org/10.1016/j.tem.2008.01.00...
. Accordingly, cortisol secretion in response to different types of stress is altered in chronic multisystemic autoimmune7474. Gutiérrez MA, García ME, Rodriguez JA, Mardonez G, Jacobelli S, Rivero S. Hypothalamic-pituitary-adrenal axis function in patients with active rheumatoid arthritis: a controlled study using insulin hypoglycemia stress test and prolactin stimulation. J Rheumatol. 1999;26(2):277-81. PMID: 9972958,7575. Gutiérrez MA, Garcia ME, Rodriguez JA, Rivero S, Jacobelli S. Hypothalamic-pituitary-adrenal axis function and prolactin secretion in systemic lupus erythematosus. Lupus. 1998;7(6):404-8. https://doi.org/10.1191/096120398678920343
https://doi.org/10.1191/0961203986789203...
and metabolic diseases7676. Garbellotto GI, Reis FJ, Feoli AMP, Piovesan CH, Gustavo AS, Oliveira MS, et al. Salivary cortisol and metabolic syndrome component’s association. Arq Bras Cir Dig. 2018;31(1):e1351. https://doi.org/10.1590/0102-672020180001e1351
https://doi.org/10.1590/0102-67202018000...
,7777. Rhyu YA, Jang JY, Park S, An JH, Kim DL, Kim SK, et al. Impaired cortisol and growth hormone counterregulatory responses among severe hypoglycemic patients with type 2 Diabetes Mellitus. Endocrinol Metab (Seoul). 2019;34(2):187-94. https://doi.org/10.3803/enm.2019.34.2.187
https://doi.org/10.3803/enm.2019.34.2.18...
. From a molecular approach, several events underlie HPA axis dysregulation in states of disease which comprise an imbalance of glucocorticoid and mineralocorticoid receptors in the limbic system7878. Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res. 2009;1293:129-41. https://doi.org/10.1016/j.brainres.2009.03.039
https://doi.org/10.1016/j.brainres.2009....
,7979. Wetzel DM, Bohn MC, Kazee AM, Hamill RW. Glucocorticoid receptor mRNA in Alzheimer’s diseased hippocampus. Brain Res. 1995;679(1):72-81. https://doi.org/10.1016/0006-8993(95)00230-n
https://doi.org/10.1016/0006-8993(95)002...
, alterations of GABAergic signals modulating CRH-secreting neurons8080. Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry. 2002;7(3):254-75. https://doi.org/10.1038/sj.mp.4001032
https://doi.org/10.1038/sj.mp.4001032...
, and decreased hypophyseal conversion of proopiomelanocortin (POMC) to ACTH8181. Téblick A, Perre SV, Pauwels L, Derde S, Van Oudenhove T, Langouche L, et al. The role of pro-opiomelanocortin in the ACTH-cortisol dissociation of sepsis. Crit Care. 2021;25(1):65. https://doi.org/10.1186/s13054-021-03475-y
https://doi.org/10.1186/s13054-021-03475...
. In addition to this, neurodegeneration in AD involves a dysregulation of the HPA axis that extends beyond peripheral feedback systems compromise8282. Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a stress-related disorder? Focus on the HPA axis and its promising therapeutic targets. Front Aging Neurosci. 2019;11:269. https://doi.org/10.3389/fnagi.2019.00269
https://doi.org/10.3389/fnagi.2019.00269...
, as studies have shown that hippocampal lesions favor a direct activation of the HPA axis8382. Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a stress-related disorder? Focus on the HPA axis and its promising therapeutic targets. Front Aging Neurosci. 2019;11:269. https://doi.org/10.3389/fnagi.2019.00269
https://doi.org/10.3389/fnagi.2019.00269...

83. Herman JP, Dolgas CM, Carlson SL. Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioural responses to cognitive stressors. Neuroscience. 1998;86(2):449-59. https://doi.org/10.1016/s0306-4522(98)00055-4
https://doi.org/10.1016/s0306-4522(98)00...

84. Fendler K, Karmos G, Telegdy G. The effect of hippocampal lesion on pituitary-adrenal function. Acta Physiol Acad Sci Hung. 1961;20:293-7. PMID: 13892267
-8585. Knigge KM, Hays M. Evidence of inhibitive role of hippocampus in neural regulation of ACTH release. Proc Soc Exp Biol Med. 1963;114(1):67-9. https://doi.org/10.3181/00379727-114-28587
https://doi.org/10.3181/00379727-114-285...
.

Studies by Martignoni et al.3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
and Martignoni et al.2929. Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
https://doi.org/10.1002/jcla.1860040104...
showed that following intravenous administration of rh-CRH, subjects with AD reached peak plasma cortisol levels faster than subjects without cognitive impairment, but the net cortisol elevation was similar in both groups. In turn, an inverse correlation was found between age and peak plasma cortisol levels after rhCRH injection3030. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
https://doi.org/10.1111/j.1600-0404.1990...
. On the other hand, Molchan et al.3131. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
https://doi.org/10.1016/0306-4530(93)900...
observed that serum cortisol suppression following dexamethasone administration was significantly greater in subjects with AD than in subjects with depression. Despite the well-documented alteration in the HPA axis activity pattern in AD, the results of these studies raise uncertainty regarding the possibility that this change is a consequence of cortical degeneration, or neuropsychological alterations concomitant to the central nervous system senescence, affecting HPA axis function, as has been documented in psychiatric disorders and in aging8686. Keller-Wood M. Hypothalamic-pituitary--adrenal axis-feedback control. Compr Physiol. 2015;5(3):1161-82. https://doi.org/10.1002/cphy.c140065
https://doi.org/10.1002/cphy.c140065...
, the latter being the major risk factor for AD progression8787. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB; Alzheimer’s Disease Neuroimaging Initiative. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20-40. https://doi.org/10.1016/j.pneurobio.2014.02.004
https://doi.org/10.1016/j.pneurobio.2014...
,8888. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology. 2000;54(11):2072-7. https://doi.org/10.1212/wnl.54.11.2072
https://doi.org/10.1212/wnl.54.11.2072...
.

Cerebrospinal fluid cortisol in Alzheimer’s Disease

To date, literature addressing the variation of HPA axis hormones in CSF is limited. Recently, Panigrahi et al.8989. Panigrahi SK, Toedesbusch CD, McLeland JS, Lucey BP, Wardlaw SL. Diurnal patterns for cortisol, cortisone and agouti-related protein in human cerebrospinal fluid and blood. J Clin Endocrinol Metab. 2020;105(4):e1584-e1592. https://doi.org/10.1210/clinem/dgz274
https://doi.org/10.1210/clinem/dgz274...
elucidated a diurnal pattern of CSF cortisol showing that the maximum peak concentration is reached approximately two hours after the plasma peak in healthy individuals. It is now recognized that the circadian rhythm of cortisol secretion is subject to the pattern of ACTH release, which exhibits an increase in pulse amplitude between 5:00 and 9:00 a.m.9090. Horrocks PM, Jones AF, Ratcliffe WA, Holder G, White A, Holder R, et al. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin Endocrinol (Oxf). 1990;32(1):127-34. https://doi.org/10.1111/j.1365-2265.1990.tb03758.x
https://doi.org/10.1111/j.1365-2265.1990...
, resulting in morning cortisol elevation. Thus, based on the two-hour difference in maximum cortisol elevation8989. Panigrahi SK, Toedesbusch CD, McLeland JS, Lucey BP, Wardlaw SL. Diurnal patterns for cortisol, cortisone and agouti-related protein in human cerebrospinal fluid and blood. J Clin Endocrinol Metab. 2020;105(4):e1584-e1592. https://doi.org/10.1210/clinem/dgz274
https://doi.org/10.1210/clinem/dgz274...
and the absence of alteration in the circadian rhythm of the HPA axis in individuals with AD44. Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm despite cortisol hypersecretion in Alzheimer’s disease: a meta-analysis. Psychoneuroendocrinology. 2021;132:105367. https://doi.org/10.1016/j.psyneuen.2021.105367
https://doi.org/10.1016/j.psyneuen.2021....
, it is inferred that CSF cortisol quantification within the interval reported in the included studies (8:00-11:00 a.m.) reflects the peak levels achieved in subjects with AD.

In recent years the ApoE-ε4 allele has been recognized as a regulatory factor in cortisol elevation9191. Bruno D, Nierenberg JJ, Ritchie JC, Lutz MW, Pomara N. Cerebrospinal fluid cortisol concentrations in healthy elderly are affected by both APOE and TOMM40 variants. Psychoneuroendocrinology. 2012;37(3):366-71. https://doi.org/10.1016/j.psyneuen.2011.07.006
https://doi.org/10.1016/j.psyneuen.2011....
in addition to its direct relationship with the development of AD9292. Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68-80. https://doi.org/10.1016/S1474-4422(20)30412-9
https://doi.org/10.1016/S1474-4422(20)30...
. Apolipoprotein E modulates basal steroidogenic activity9393. Nicosia M, Prack MM, Williams DL. Differential regulation of apolipoprotein-E messenger RNA in zona fasciculata cells of rat adrenal gland determined by in situ hybridization. Mol Endocrinol. 1992;6(2):288-98. https://doi.org/10.1210/mend.6.2.1373819
https://doi.org/10.1210/mend.6.2.1373819...
in response to ACTH stimulation in murine adrenal cortex cells9494. Reyland ME, Williams DL. Suppression of cAMP-mediated signal transduction in mouse adrenocortical cells which express apolipoprotein E. J Biol Chem. 1991;266(31):21099-104. Available from: https://www.jbc.org/article/S0021-9258(18)54825-0/pdf
https://www.jbc.org/article/S0021-9258(1...
. Peskind et al.3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
found that elevated CSF cortisol was associated with a higher frequency of the ApoE-ε4 allele in subjects with AD and stated that the effect of the ApoE-ε4 genotype on HPA axis activity is related to the increased risk of developing AD in carrier individuals. In addition, Gil-Bea et al.3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
showed that the difference in CSF cortisol compared to controls was significant only in subjects with AD carrying the ApoE-ε4 allele. Among the included studies, only two evaluated the presence of the ApoE-ε4 in the studied individuals, which questions the feasibility of extrapolating the results of other investigations to the total population with AD. Thus, the findings of Peskind et al.3535. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
https://doi.org/10.1212/wnl.56.8.1094...
and Gil-Bea et al.3636. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
https://doi.org/10.3233/jad-2010-100663...
suggest the need for ApoE genotyping in order to establish with greater certainty its relationship with CSF cortisol variation.

In CSF, cortisol concentrations differ from plasma depending on whether the total or free fraction is measured, as free plasma levels constitute 10% of total serum cortisol9595. Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH. Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab. 2004;89(1):281-7. https://doi.org/10.1210/jc.2003-030440
https://doi.org/10.1210/jc.2003-030440...
whereas in CSF about 88% is not bound to binding proteins9696. Predine J, Brailly S, Delaporte P, Milgrom E. Protein binding of cortisol in human cerebrospinal fluid. J Clin Endocrinol Metab. 1984;58(1):6-11. https://doi.org/10.1210/jcem-58-1-6
https://doi.org/10.1210/jcem-58-1-6...
. A wide variation of cortisol binding globulin (CBG) in CSF has been described with levels fluctuating between 0.3–66.0% of serum concentration9696. Predine J, Brailly S, Delaporte P, Milgrom E. Protein binding of cortisol in human cerebrospinal fluid. J Clin Endocrinol Metab. 1984;58(1):6-11. https://doi.org/10.1210/jcem-58-1-6
https://doi.org/10.1210/jcem-58-1-6...
,9797. Schwarz S, Pohl P. Steroid hormones and steroid hormone binding globulins in cerebrospinal fluid studied in individuals with intact and with disturbed blood-cerebrospinal fluid barrier. Neuroendocrinology. 1992;55(2):174-82. https://doi.org/10.1159/000126112
https://doi.org/10.1159/000126112...
, ultimately affecting free cortisol quantification in CSF. Overall, CSF cortisol seems to be equivalent to approximately one third of the free fraction in plasma9696. Predine J, Brailly S, Delaporte P, Milgrom E. Protein binding of cortisol in human cerebrospinal fluid. J Clin Endocrinol Metab. 1984;58(1):6-11. https://doi.org/10.1210/jcem-58-1-6
https://doi.org/10.1210/jcem-58-1-6...
. According to the results of the present review, there is a significant increase in CSF cortisol levels in AD dementia. Elevated glucocorticoids in the central nervous system have been associated with augmented tau pathology and neurodegeneration6666. Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, et al. Cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate, Alzheimer’s disease pathology, and cognitive decline. Front Aging Neurosci. 2022;14:892754. https://doi.org/10.3389/fnagi.2022.892754
https://doi.org/10.3389/fnagi.2022.89275...
. Moreover, increased cortisol levels in CSF could predict a more rapid decline of the disease9898. Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, et al. Cortisol, Amyloid-ß, and reserve predicts Alzheimer’s disease progression for cognitively normal older adults. J Alzheimers Dis. 2019;70(2):553-62. https://doi.org/10.3233/jad-181030
https://doi.org/10.3233/jad-181030...
. While it has been described that HPA axis dysregulation occurs in the early stages of AD, accelerating the progression of dementia3838. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
https://doi.org/10.1016/j.neurobiolaging...
, most studies evidenced no significant difference in CSF cortisol levels in subjects with MCI when compared to individuals with AD and healthy individuals.

Corticotropin-releasing hormone and adrenocorticotropic hormone variation in cerebrospinal fluid

As evidenced by the records gathered in this review, older studies focused on the variation of ACTH and CRH while the most recent ones addressed cortisol changes in CSF. This framework shift might be related to the discovery of peptidergic neurotransmission systems in cognitive and behavioral functions around the 1980s9999. Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M. Peptidergic neurones. Nature. 1980;284(5756):515-21. https://doi.org/10.1038/284515a0
https://doi.org/10.1038/284515a0...
,100100. Wied D, van Ree JM. Neuropeptides: animal behaviour and human psychopathology. Eur Arch Psychiatry Neurol Sci. 1989;238(5-6):323-31. https://doi.org/10.1007/BF00449813
https://doi.org/10.1007/BF00449813...
, followed later on by the uncovering of limbic-hypothalamic-pituitary-adrenal axis dysfunction in neuropsychiatric disorders101101. Holsboer F. Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatry Neurol Sci. 1989;238(5-6):302-22. https://doi.org/10.1007/BF00449812
https://doi.org/10.1007/BF00449812...
, thereby directing attention toward the study of cortisol alterations in the context of cognitive impairment and dementia. CRH exhibits a distinct pattern of CSF cortisol variation. It has been documented that the maximum concentration peaks are reached between 6:00 and 11:00 p.m., while the lowest levels are found around 7:00–8:00 a.m.102102. Kling MA, DeBellis MD, O’Rourke DK, Listwak SJ, Geracioti Jr TD, McCutcheon IE, et al. Diurnal variation of cerebrospinal fluid immunoreactive corticotropin-releasing hormone levels in healthy volunteers. J Clin Endocrinol Metab. 1994;79(1):233-9. https://doi.org/10.1210/jcem.79.1.8027234
https://doi.org/10.1210/jcem.79.1.802723...
. On the other hand, in postmortem brain tissue from subjects with AD, Behan et al.103103. Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, et al. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature. 1995;378(6554):284-7. https://doi.org/10.1038/378284a0
https://doi.org/10.1038/378284a0...
identified the presence of CRH-binding protein (CRHBP) as a factor involved in the decrease of free CRH in individuals with AD and demonstrated that the dissociation of this hormone from CRHBP results in an increase in CRH levels to the values reported in control subjects. In the human brain, CRHBP is anchored to the cell membrane of neurons present in the cerebral cortex and subcortical limbic structures, and its binding function suggests a role in disease states associated with a decrease in CRH104104. Behan DP, Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Front Neuroendocrinol. 1995;16(4):362-82. https://doi.org/10.1006/frne.1995.1013
https://doi.org/10.1006/frne.1995.1013...
. The inverse variation of CSF cortisol and CRH has been previously documented in neuropsychiatric diseases105105. Geracioti Jr TD, Loosen PT, Orth DN. Low cerebrospinal fluid corticotropin-releasing hormone concentrations in eucortisolemic depression. Biol Psychiatry. 1997;42(3):165-74. https://doi.org/10.1016/s0006-3223(96)00312-5
https://doi.org/10.1016/s0006-3223(96)00...
,106106. Ishiwata S, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, et al. Lower cerebrospinal fluid CRH concentration in chronic schizophrenia with negative symptoms. J Psychiatr Res. 2020;127:13-9. https://doi.org/10.1016/j.jpsychires.2020.03.010
https://doi.org/10.1016/j.jpsychires.202...
, however, according to the results compiled in this review, the change in CSF CRH values in AD dementia remains unclear. CRHBP, by influencing circulating levels of this hormone, could represent an understudied factor underlying CSF CRH variation in AD.

Changes of ACTH in CSF have been explored to a lesser extent. The role of this hormone in different cognitive functions is well known107107. Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. Vitam Horm. 2019;111:147-93. https://doi.org/10.1016/bs.vh.2019.05.001
https://doi.org/10.1016/bs.vh.2019.05.00...
, however, exogenous administration of ACTH has not been associated with an improvement of cognitive status or a decrease in biomarkers related to altered neurotransmitter pathways in AD108108. Jolkkonen JT, Soininen HS, Riekkinen PJ. The effect of ACTH4-9 analog (Org2766) on some cerebrospinal fluid parameters in patients with Alzheimer’s disease. Life Sci. 1985;37(7):585-90. https://doi.org/10.1016/0024-3205(85)90424-2
https://doi.org/10.1016/0024-3205(85)904...
,109109. Nappi G, Facchinetti F, Martignoni E, Petraglia F, Sinforiani E, Bono G, et al. N-terminal ACTH fragments increase the CSF beta-EP content in Alzheimer type dementia. Acta Neurol Scand. 1988;78(2):146-51. https://doi.org/10.1111/j.1600-0404.1988.tb03636.x
https://doi.org/10.1111/j.1600-0404.1988...
. Tsigos et al.110110. Tsigos C, Crosby SR, Gibson S, Young RJ, White A. Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab. 1993;76(3):620-4. https://doi.org/10.1210/jcem.76.3.8383142
https://doi.org/10.1210/jcem.76.3.838314...
found that the presence of uncleaved POMC to ACTH in CSF can result in a positive reading of ACTH levels and should always be considered when interpreting values obtained by immunoassay techniques. CSF POMC variation is related to adiposity111111. Page-Wilson G, Meece K, White A, Rosenbaum M, Leibel RL, Smiley R, et al. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. Am J Physiol Endocrinol Metab. 2015;309(5):E458-65. https://doi.org/10.1152/ajpendo.00206.2015
https://doi.org/10.1152/ajpendo.00206.20...
, and the absence of a change in POMC concentration following dexamethasone administration110110. Tsigos C, Crosby SR, Gibson S, Young RJ, White A. Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab. 1993;76(3):620-4. https://doi.org/10.1210/jcem.76.3.8383142
https://doi.org/10.1210/jcem.76.3.838314...
represents a major limitation for CSF ACTH quantification. Even though there appears to be no difference in ACTH concentration in subjects with MCI and AD compared with controls112112. Lei JK. Change of serum ACTH and cortisol levels in Alzheimer disease and mild cognition impairment. Zhonghua Yi Xue Za Zhi. 2010;90(41):2894-6. PMID: 21211392., the pattern of this hormone in the CSF of subjects with AD is still inconclusive and future investigations are required considering variations in measuring techniques and the presence of metabolic comorbidities in the study subjects.

Limitations

The changing clinical approach to AD throughout history, as well as the short time window in which molecular advances in the pathophysiology and diagnosis of AD dementia have been published, pose considerable limitations to the present review. Firstly, among the included studies there is high heterogeneity in the criteria used for the diagnosis of AD and MCI, as well as in their classification into different subtypes (senile AD, presenile AD, familial AD, sporadic AD, aMCI, classic MCI, AD-type MCI), which limits the comparison of results between studies. Moreover, a sizeable proportion of studies included in this review did not assess the cognitive status of controls, so a cautious analysis of the results must be carried out, given the high prevalence of cognitive complaints in older adults. Likewise, there are several factors not reported in all studies that could affect the concentration values of HPA axis hormones in the CSF of subjects with AD, including the ApoE genotype, the age of disease onset and its duration, the severity of dementia, and the sensitivity of laboratory techniques for quantifying of hormones in CSF.

In conclusion, AD diagnosis is currently dictated by a clinical approach based on the presence of symptoms and features of cognitive impairment which could be complemented with diagnostic biomarkers that reflect the molecular pathophysiological events that precede the clinical manifestations of AD. Based on the results of this study, there is a dysregulation of the HPA axis in subjects with AD dementia, as evidenced by a significant increase in CSF cortisol levels compared to subjects without cognitive impairment. This elevation seems to be directly related to ApoE- ε4 allele frequency. On the other hand, the variation of CRH and ACTH levels in CSF of subjects with AD is still inconclusive, as the gathered studies report contradictory results. Regarding MCI, most investigations indicate that at this early stage, there is no significant difference in cortisol levels between healthy subjects and individuals with AD. At last, in agreement with the 2018 NIA-AA Research Framework99. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.0...
, the importance of approaching AD continuum as a progressive biological entity with distinct clinical stages influenced by the underlying HPA axis dysfunction is highlighted. Hence, future research aimed at elucidating the utility of CSF cortisol quantification as a complementary tool in the diagnosis, staging, and prognosis of AD dementia is warranted.

REFERENCES

  • 1.
    Milligan-Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, et al. Chronic stress and Alzheimer’s disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc. 2021;96(5):2209-28. https://doi.org/10.1111/brv.12750
    » https://doi.org/10.1111/brv.12750
  • 2.
    Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, lifestyle stress, and neurodegeneration. Immunity. 2020;52(2):222-40. https://doi.org/10.1016/j.immuni.2019.12.003
    » https://doi.org/10.1016/j.immuni.2019.12.003
  • 3.
    Lyons CE, Bartolomucci A. Stress and Alzheimer’s disease: asenescence link? Neurosci Biobehav Rev. 2020;115:285-98. https://doi.org/10.1016/j.neubiorev.2020.05.010
    » https://doi.org/10.1016/j.neubiorev.2020.05.010
  • 4.
    Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm despite cortisol hypersecretion in Alzheimer’s disease: a meta-analysis. Psychoneuroendocrinology. 2021;132:105367. https://doi.org/10.1016/j.psyneuen.2021.105367
    » https://doi.org/10.1016/j.psyneuen.2021.105367
  • 5.
    Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry. 2006;163(12):2164-9. https://doi.org/10.1176/ajp.2006.163.12.2164
    » https://doi.org/10.1176/ajp.2006.163.12.2164
  • 6.
    Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci. 2019;11:43. https://doi.org/10.3389/fnagi.2019.00043
    » https://doi.org/10.3389/fnagi.2019.00043
  • 7.
    Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry. 1995;152(9):1372-6. https://doi.org/10.1176/ajp.152.9.1372
    » https://doi.org/10.1176/ajp.152.9.1372
  • 8.
    Klyubin I, Ondrejcak T, Hu NW, Rowan MJ. Glucocorticoids, synaptic plasticity and Alzheimer’s disease. Curr Opin Endocr Metab Res. 2022;25:100365. https://doi.org/10.1016/j.coemr.2022.100365
    » https://doi.org/10.1016/j.coemr.2022.100365
  • 9.
    Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/j.jalz.2018.02.018
    » https://doi.org/10.1016/j.jalz.2018.02.018
  • 10.
    Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292-323. https://doi.org/10.1016/j.jalz.2016.02.002
    » https://doi.org/10.1016/j.jalz.2016.02.002
  • 11.
    Radaghdam S, Karamad V, Nourazarian A, Shademan B, Khaki-Khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer’s disease. Neurosci Lett. 2021;764:136221. https://doi.org/10.1016/j.neulet.2021.136221
    » https://doi.org/10.1016/j.neulet.2021.136221
  • 12.
    Sedzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int J Mol Sci. 2021;22(18):9987. https://doi.org/10.3390/ijms22189987
    » https://doi.org/10.3390/ijms22189987
  • 13.
    Ricci S, Fuso A, Ippoliti F, Businaro R. Stress-induced cytokines and neuronal dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2012;28(1):11-24. https://doi.org/10.3233/JAD-2011-110821
    » https://doi.org/10.3233/JAD-2011-110821
  • 14.
    Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12(6):719-32. https://doi.org/10.1016/j.jalz.2016.02.010
    » https://doi.org/10.1016/j.jalz.2016.02.010
  • 15.
    Linnemann C, Lang UE. Pathways connecting late-life depression and dementia. Front Pharmacol. 2020;11:279. https://doi.org/10.3389/fphar.2020.00279
    » https://doi.org/10.3389/fphar.2020.00279
  • 16.
    Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7(5):532-9. https://doi.org/10.1016/j.jalz.2011.05.2410
    » https://doi.org/10.1016/j.jalz.2011.05.2410
  • 17.
    Scheltens P, Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-90. https://doi.org/10.1016/s0140-6736(20)32205-4
    » https://doi.org/10.1016/s0140-6736(20)32205-4
  • 18.
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1201-13. https://doi.org/10.1016/j.pnpbp.2005.08.006
    » https://doi.org/10.1016/j.pnpbp.2005.08.006
  • 19.
    Ahmad MH, Fatima M, Mondal AC. Role of hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and insulin signaling in the pathophysiology of Alzheimer’s disease. Neuropsychobiology. 2019;77(4):197-205. https://doi.org/10.1159/000495521
    » https://doi.org/10.1159/000495521
  • 20.
    Yeram N, Dalvi S, Mankeshwar R, Patil V, Kale V, Jagiasi K, et al. Relationship between cortisol, interleukin-6 and homocysteine in Alzheimer’s disease. Qatar Med J. 2021;2021(33):1-10. https://doi.org/10.5339/qmj.2021.33
    » https://doi.org/10.5339/qmj.2021.33
  • 21.
    Zheng B, Tal R, Yang Z, Middleton L, Udeh-Momoh C. Cortisol hypersecretion and the risk of Alzheimer’s disease: a systematic review and meta-analysis. Ageing Res Rev. 2020;64:101171. https://doi.org/10.1016/j.arr.2020.101171
    » https://doi.org/10.1016/j.arr.2020.101171
  • 22.
    de la Rubia Ortí JE, Prado-Gascó V, Sancho-Castillo S, Julián-Rochina M, Romero-Gómez FJ, García-Pardo MP. Cortisol and IgA are involved in the progression of Alzheimer’s disease. A pilot study. Cell Mol Neurobiol. 2019;39(7):1061-5. https://doi.org/10.1007/s10571-019-00699-z
    » https://doi.org/10.1007/s10571-019-00699-z
  • 23.
    Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9, W64. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
    » https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  • 24.
    Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. [cited on Aug. 1, 2022]. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
    » https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
  • 25.
    Nappi G, Sinforiani E, Martignoni E, Petraglia F, Facchinetti F, Rossi F, et al. Aging brain and dementias: changes in central opioids. Eur Neurol. 1988;28(4):217-20. https://doi.org/10.1159/000116270
    » https://doi.org/10.1159/000116270
  • 26.
    Roelandts F. A single measurement of adrenocorticotrophic hormone in cerebrospinal fluid is of no value in the diagnosis of dementia. Age Ageing. 1989;18(5):337-8. https://doi.org/10.1093/ageing/18.5.337
    » https://doi.org/10.1093/ageing/18.5.337
  • 27.
    Mouradian MM, Farah Jr JM, Mohr E, Fabbrini G, O’Donohue TL, Chase TN. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides. 1986;8(4):393-400. https://doi.org/10.1016/0143-4179(86)90010-7
    » https://doi.org/10.1016/0143-4179(86)90010-7
  • 28.
    Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry. 1989;26(5):500-4. https://doi.org/10.1016/0006-3223(89)90071-1
    » https://doi.org/10.1016/0006-3223(89)90071-1
  • 29.
    Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G. Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal. 1990;4(1):5-8. https://doi.org/10.1002/jcla.1860040104
    » https://doi.org/10.1002/jcla.1860040104
  • 30.
    Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand. 1990;81(5):452-6. https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
    » https://doi.org/10.1111/j.1600-0404.1990.tb00994.x
  • 31.
    Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509-19. https://doi.org/10.1016/0306-4530(93)90044-l
    » https://doi.org/10.1016/0306-4530(93)90044-l
  • 32.
    Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia. 1993;4(4):167-71. https://doi.org/10.1159/000107318
    » https://doi.org/10.1159/000107318
  • 33.
    Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1995;38(4):210-6. https://doi.org/10.1016/0006-3223(94)00239-y
    » https://doi.org/10.1016/0006-3223(94)00239-y
  • 34.
    Suemaru S, Suemaru K, Kawai K, Miyata S, Nobukuni K, Ihara Y, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci. 1995;57(24):2231-5. https://doi.org/10.1016/0024-3205(95)02215-5
    » https://doi.org/10.1016/0024-3205(95)02215-5
  • 35.
    Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. 2001;56(8):1094-8. https://doi.org/10.1212/wnl.56.8.1094
    » https://doi.org/10.1212/wnl.56.8.1094
  • 36.
    Gil-Bea FJ, Aisa B, Solomon A, Solas M, Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis. 2010;22(3):829-38. https://doi.org/10.3233/jad-2010-100663
    » https://doi.org/10.3233/jad-2010-100663
  • 37.
    Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7(2):e31501. https://doi.org/10.1371/journal.pone.0031501
    » https://doi.org/10.1371/journal.pone.0031501
  • 38.
    Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, et al. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging. 2015;36(2):601-7. https://doi.org/10.1016/j.neurobiolaging.2014.10.031
    » https://doi.org/10.1016/j.neurobiolaging.2014.10.031
  • 39.
    Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett. 2015;609:58-62. https://doi.org/10.1016/j.neulet.2015.10.006
    » https://doi.org/10.1016/j.neulet.2015.10.006
  • 40.
    Wang Q, Zhou W, Zhang J; Alzheimer’s Disease Neuroimaging Initiative. Levels of cortisol in CSF are associated with SNAP-25 and tau pathology but not amyloid-ß. Front Aging Neurosci. 2018;10:383. https://doi.org/10.3389/fnagi.2018.00383
    » https://doi.org/10.3389/fnagi.2018.00383
  • 41.
    Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szot P, et al. Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriatr Psychiatry. 2018;33(5):763-8. https://doi.org/10.1002/gps.4856
    » https://doi.org/10.1002/gps.4856
  • 42.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-6. https://doi.org/10.1111/j.1365-2796.2004.01380.x
    » https://doi.org/10.1111/j.1365-2796.2004.01380.x
  • 43.
    Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 1997;18(3):285-9. https://doi.org/10.1016/s0197-4580(97)80309-0
    » https://doi.org/10.1016/s0197-4580(97)80309-0
  • 44.
    Guo Q, Zheng H, Justice NJ. Central CRF system perturbation in an Alzheimer’s disease knockin mouse model. Neurobiol Aging. 2012;33(11):2678-91. https://doi.org/10.1016/j.neurobiolaging.2012.01.002
    » https://doi.org/10.1016/j.neurobiolaging.2012.01.002
  • 45.
    Hebda-Bauer EK, Simmons TA, Sugg A, Ural E, Stewart JA, Beals JL, et al. 3xTg-AD mice exhibit an activated central stress axis during early-stage pathology. J Alzheimers Dis. 2013;33(2):407-22. https://doi.org/10.3233/jad-2012-121438
    » https://doi.org/10.3233/jad-2012-121438
  • 46.
    Meaney MJ, O’Donnell D, Rowe W, Tannenbaum B, Steverman A, Walker M, et al. Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp Gerontol. 1995;30(4):229-51. https://doi.org/10.1016/0531-5565(94)00065-b
    » https://doi.org/10.1016/0531-5565(94)00065-b
  • 47.
    Jing H, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Taniguchi Y, et al. Multisignal regulation of the rat NMDA1 receptor subunit gene--a pivotal role of glucocorticoid-dependent transcription. Life Sci. 2008;82(23-24):1137-41. https://doi.org/10.1016/j.lfs.2008.03.022
    » https://doi.org/10.1016/j.lfs.2008.03.022
  • 48.
    Dong H, Yuede CM, Yoo HS, Martin MV, Deal C, Mace AG, et al. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience. 2008;155(1):154-63. https://doi.org/10.1016/j.neuroscience.2008.05.017
    » https://doi.org/10.1016/j.neuroscience.2008.05.017
  • 49.
    Lesuis SL, Maurin H, Borghgraef P, Lucassen PJ, Van Leuven F, Krugers HJ. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer’s disease. Oncotarget. 2016;7(26):39118-35. https://doi.org/10.18632/oncotarget.9776
    » https://doi.org/10.18632/oncotarget.9776
  • 50.
    Rosa MLNM, Guimarães FS, Oliveira RMW, Padovan CM, Pearson RCA, Del Bel EA. Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala. Brain Res Bull. 2005;65(1):69-75. https://doi.org/10.1016/j.brainresbull.2004.11.011
    » https://doi.org/10.1016/j.brainresbull.2004.11.011
  • 51.
    Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24(3):151-80. https://doi.org/10.1016/j.yfrne.2003.07.001
    » https://doi.org/10.1016/j.yfrne.2003.07.001
  • 52.
    Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603-21. https://doi.org/10.1002/cphy.c150015
    » https://doi.org/10.1002/cphy.c150015
  • 53.
    Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A, Hindley N, et al. Rapidly progressing atrophy of medial temporal lobe in Alzheimer’s disease. Lancet. 1994;343(8901):829-30. https://doi.org/10.1016/s0140-6736(94)92028-1
    » https://doi.org/10.1016/s0140-6736(94)92028-1
  • 54.
    Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer’s disease. Neurobiol Aging. 2022;111:44-53. https://doi.org/10.1016/j.neurobiolaging.2021.11.004
    » https://doi.org/10.1016/j.neurobiolaging.2021.11.004
  • 55.
    Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, et al. A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet. 2019;28(13):2174-88. https://doi.org/10.1093/hmg/ddz045
    » https://doi.org/10.1093/hmg/ddz045
  • 56.
    Lv J, Chen L, Zhu N, Sun Y, Pan J, Gao J, et al. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis. 2020;35(8):1385-94. https://doi.org/10.1007/s11011-020-00613-3
    » https://doi.org/10.1007/s11011-020-00613-3
  • 57.
    Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging. 2013;34(5):1426-39. https://doi.org/10.1016/j.neurobiolaging.2012.11.015
    » https://doi.org/10.1016/j.neurobiolaging.2012.11.015
  • 58.
    Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-ß peptide injection in rats. PLoS One. 2013;8(1):e53117. https://doi.org/10.1371/journal.pone.0053117
    » https://doi.org/10.1371/journal.pone.0053117
  • 59.
    Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience. 2013;239:196-213. https://doi.org/10.1016/j.neuroscience.2012.08.065
    » https://doi.org/10.1016/j.neuroscience.2012.08.065
  • 60.
    Pietrzak RH, Laws SM, Lim YY, Bender SJ, Porter T, Doecke J, et al. Plasma cortisol, brain amyloid-ß, and cognitive decline in preclinical alzheimer’s disease: a 6-year prospective cohort study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(1):45-52. https://doi.org/10.1016/j.bpsc.2016.08.006
    » https://doi.org/10.1016/j.bpsc.2016.08.006
  • 61.
    Lupien SJ, Leon M, Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1(1):69-73. https://doi.org/10.1038/271
    » https://doi.org/10.1038/271
  • 62.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270-9. https://doi.org/10.1016/j.jalz.2011.03.008
    » https://doi.org/10.1016/j.jalz.2011.03.008
  • 63.
    Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183-94. https://doi.org/10.1111/j.1365-2796.2004.01388.x
    » https://doi.org/10.1111/j.1365-2796.2004.01388.x
  • 64.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263-9. https://doi.org/10.1016/j.jalz.2011.03.005
    » https://doi.org/10.1016/j.jalz.2011.03.005
  • 65.
    Elgh E, Lindqvist-Astot A, Fagerlund M, Eriksson S, Olsson T, Näsman B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry. 2006;59(2):155-61. https://doi.org/10.1016/j.biopsych.2005.06.017
    » https://doi.org/10.1016/j.biopsych.2005.06.017
  • 66.
    Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, et al. Cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate, Alzheimer’s disease pathology, and cognitive decline. Front Aging Neurosci. 2022;14:892754. https://doi.org/10.3389/fnagi.2022.892754
    » https://doi.org/10.3389/fnagi.2022.892754
  • 67.
    Zverová M, Fišar Z, Jirák R, Kitzlerová E, Hroudová J, Raboch J. Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Med Sci Monit. 2013;19:681-9. https://doi.org/10.12659/MSM.889110
    » https://doi.org/10.12659/MSM.889110
  • 68.
    Du X, Pang TY. Is dysregulation of the HPA-Axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Front Psychiatry. 2015;6:32. https://doi.org/10.3389/fpsyt.2015.00032
    » https://doi.org/10.3389/fpsyt.2015.00032
  • 69.
    Sher L. Combined dexamethasone suppression-corticotropin-releasing hormone stimulation test in studies of depression, alcoholism, and suicidal behavior. ScientificWorldJournal. 2006;6:1398-404. https://doi.org/10.1100/tsw.2006.251
    » https://doi.org/10.1100/tsw.2006.251
  • 70.
    Petrowski K, Wintermann GB, Kirschbaum C, Bornstein SR. Dissociation between ACTH and cortisol response in DEX-CRH test in patients with panic disorder. Psychoneuroendocrinology. 2012;37(8):1199–-208. https://doi.org/10.1016/j.psyneuen.2011.12.013
    » https://doi.org/10.1016/j.psyneuen.2011.12.013
  • 71.
    Peeters B, Meersseman P, Perre SV, Wouters PJ, Debaveye Y, Langouche L, et al. ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Med. 2018;44(12):2048-58. https://doi.org/10.1007/s00134-018-5427-y
    » https://doi.org/10.1007/s00134-018-5427-y
  • 72.
    Wirtz PH, Siegrist J, Schuhmacher A, Hoefels S, Maier W, Zobel AW. Higher overcommitment to work is associated with higher plasma cortisol but not ACTH responses in the combined dexamethasone/CRH test in apparently healthy men and women. Psychoneuroendocrinology. 2010;35(4):536-43. https://doi.org/10.1016/j.psyneuen.2009.09.002
    » https://doi.org/10.1016/j.psyneuen.2009.09.002
  • 73.
    Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab. 2008;19(5):175-80. https://doi.org/10.1016/j.tem.2008.01.009
    » https://doi.org/10.1016/j.tem.2008.01.009
  • 74.
    Gutiérrez MA, García ME, Rodriguez JA, Mardonez G, Jacobelli S, Rivero S. Hypothalamic-pituitary-adrenal axis function in patients with active rheumatoid arthritis: a controlled study using insulin hypoglycemia stress test and prolactin stimulation. J Rheumatol. 1999;26(2):277-81. PMID: 9972958
  • 75.
    Gutiérrez MA, Garcia ME, Rodriguez JA, Rivero S, Jacobelli S. Hypothalamic-pituitary-adrenal axis function and prolactin secretion in systemic lupus erythematosus. Lupus. 1998;7(6):404-8. https://doi.org/10.1191/096120398678920343
    » https://doi.org/10.1191/096120398678920343
  • 76.
    Garbellotto GI, Reis FJ, Feoli AMP, Piovesan CH, Gustavo AS, Oliveira MS, et al. Salivary cortisol and metabolic syndrome component’s association. Arq Bras Cir Dig. 2018;31(1):e1351. https://doi.org/10.1590/0102-672020180001e1351
    » https://doi.org/10.1590/0102-672020180001e1351
  • 77.
    Rhyu YA, Jang JY, Park S, An JH, Kim DL, Kim SK, et al. Impaired cortisol and growth hormone counterregulatory responses among severe hypoglycemic patients with type 2 Diabetes Mellitus. Endocrinol Metab (Seoul). 2019;34(2):187-94. https://doi.org/10.3803/enm.2019.34.2.187
    » https://doi.org/10.3803/enm.2019.34.2.187
  • 78.
    Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res. 2009;1293:129-41. https://doi.org/10.1016/j.brainres.2009.03.039
    » https://doi.org/10.1016/j.brainres.2009.03.039
  • 79.
    Wetzel DM, Bohn MC, Kazee AM, Hamill RW. Glucocorticoid receptor mRNA in Alzheimer’s diseased hippocampus. Brain Res. 1995;679(1):72-81. https://doi.org/10.1016/0006-8993(95)00230-n
    » https://doi.org/10.1016/0006-8993(95)00230-n
  • 80.
    Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry. 2002;7(3):254-75. https://doi.org/10.1038/sj.mp.4001032
    » https://doi.org/10.1038/sj.mp.4001032
  • 81.
    Téblick A, Perre SV, Pauwels L, Derde S, Van Oudenhove T, Langouche L, et al. The role of pro-opiomelanocortin in the ACTH-cortisol dissociation of sepsis. Crit Care. 2021;25(1):65. https://doi.org/10.1186/s13054-021-03475-y
    » https://doi.org/10.1186/s13054-021-03475-y
  • 82.
    Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a stress-related disorder? Focus on the HPA axis and its promising therapeutic targets. Front Aging Neurosci. 2019;11:269. https://doi.org/10.3389/fnagi.2019.00269
    » https://doi.org/10.3389/fnagi.2019.00269
  • 83.
    Herman JP, Dolgas CM, Carlson SL. Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioural responses to cognitive stressors. Neuroscience. 1998;86(2):449-59. https://doi.org/10.1016/s0306-4522(98)00055-4
    » https://doi.org/10.1016/s0306-4522(98)00055-4
  • 84.
    Fendler K, Karmos G, Telegdy G. The effect of hippocampal lesion on pituitary-adrenal function. Acta Physiol Acad Sci Hung. 1961;20:293-7. PMID: 13892267
  • 85.
    Knigge KM, Hays M. Evidence of inhibitive role of hippocampus in neural regulation of ACTH release. Proc Soc Exp Biol Med. 1963;114(1):67-9. https://doi.org/10.3181/00379727-114-28587
    » https://doi.org/10.3181/00379727-114-28587
  • 86.
    Keller-Wood M. Hypothalamic-pituitary--adrenal axis-feedback control. Compr Physiol. 2015;5(3):1161-82. https://doi.org/10.1002/cphy.c140065
    » https://doi.org/10.1002/cphy.c140065
  • 87.
    Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB; Alzheimer’s Disease Neuroimaging Initiative. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20-40. https://doi.org/10.1016/j.pneurobio.2014.02.004
    » https://doi.org/10.1016/j.pneurobio.2014.02.004
  • 88.
    Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology. 2000;54(11):2072-7. https://doi.org/10.1212/wnl.54.11.2072
    » https://doi.org/10.1212/wnl.54.11.2072
  • 89.
    Panigrahi SK, Toedesbusch CD, McLeland JS, Lucey BP, Wardlaw SL. Diurnal patterns for cortisol, cortisone and agouti-related protein in human cerebrospinal fluid and blood. J Clin Endocrinol Metab. 2020;105(4):e1584-e1592. https://doi.org/10.1210/clinem/dgz274
    » https://doi.org/10.1210/clinem/dgz274
  • 90.
    Horrocks PM, Jones AF, Ratcliffe WA, Holder G, White A, Holder R, et al. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin Endocrinol (Oxf). 1990;32(1):127-34. https://doi.org/10.1111/j.1365-2265.1990.tb03758.x
    » https://doi.org/10.1111/j.1365-2265.1990.tb03758.x
  • 91.
    Bruno D, Nierenberg JJ, Ritchie JC, Lutz MW, Pomara N. Cerebrospinal fluid cortisol concentrations in healthy elderly are affected by both APOE and TOMM40 variants. Psychoneuroendocrinology. 2012;37(3):366-71. https://doi.org/10.1016/j.psyneuen.2011.07.006
    » https://doi.org/10.1016/j.psyneuen.2011.07.006
  • 92.
    Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68-80. https://doi.org/10.1016/S1474-4422(20)30412-9
    » https://doi.org/10.1016/S1474-4422(20)30412-9
  • 93.
    Nicosia M, Prack MM, Williams DL. Differential regulation of apolipoprotein-E messenger RNA in zona fasciculata cells of rat adrenal gland determined by in situ hybridization. Mol Endocrinol. 1992;6(2):288-98. https://doi.org/10.1210/mend.6.2.1373819
    » https://doi.org/10.1210/mend.6.2.1373819
  • 94.
    Reyland ME, Williams DL. Suppression of cAMP-mediated signal transduction in mouse adrenocortical cells which express apolipoprotein E. J Biol Chem. 1991;266(31):21099-104. Available from: https://www.jbc.org/article/S0021-9258(18)54825-0/pdf
    » https://www.jbc.org/article/S0021-9258(18)54825-0/pdf
  • 95.
    Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH. Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab. 2004;89(1):281-7. https://doi.org/10.1210/jc.2003-030440
    » https://doi.org/10.1210/jc.2003-030440
  • 96.
    Predine J, Brailly S, Delaporte P, Milgrom E. Protein binding of cortisol in human cerebrospinal fluid. J Clin Endocrinol Metab. 1984;58(1):6-11. https://doi.org/10.1210/jcem-58-1-6
    » https://doi.org/10.1210/jcem-58-1-6
  • 97.
    Schwarz S, Pohl P. Steroid hormones and steroid hormone binding globulins in cerebrospinal fluid studied in individuals with intact and with disturbed blood-cerebrospinal fluid barrier. Neuroendocrinology. 1992;55(2):174-82. https://doi.org/10.1159/000126112
    » https://doi.org/10.1159/000126112
  • 98.
    Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, et al. Cortisol, Amyloid-ß, and reserve predicts Alzheimer’s disease progression for cognitively normal older adults. J Alzheimers Dis. 2019;70(2):553-62. https://doi.org/10.3233/jad-181030
    » https://doi.org/10.3233/jad-181030
  • 99.
    Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M. Peptidergic neurones. Nature. 1980;284(5756):515-21. https://doi.org/10.1038/284515a0
    » https://doi.org/10.1038/284515a0
  • 100.
    Wied D, van Ree JM. Neuropeptides: animal behaviour and human psychopathology. Eur Arch Psychiatry Neurol Sci. 1989;238(5-6):323-31. https://doi.org/10.1007/BF00449813
    » https://doi.org/10.1007/BF00449813
  • 101.
    Holsboer F. Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatry Neurol Sci. 1989;238(5-6):302-22. https://doi.org/10.1007/BF00449812
    » https://doi.org/10.1007/BF00449812
  • 102.
    Kling MA, DeBellis MD, O’Rourke DK, Listwak SJ, Geracioti Jr TD, McCutcheon IE, et al. Diurnal variation of cerebrospinal fluid immunoreactive corticotropin-releasing hormone levels in healthy volunteers. J Clin Endocrinol Metab. 1994;79(1):233-9. https://doi.org/10.1210/jcem.79.1.8027234
    » https://doi.org/10.1210/jcem.79.1.8027234
  • 103.
    Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, et al. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature. 1995;378(6554):284-7. https://doi.org/10.1038/378284a0
    » https://doi.org/10.1038/378284a0
  • 104.
    Behan DP, Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Front Neuroendocrinol. 1995;16(4):362-82. https://doi.org/10.1006/frne.1995.1013
    » https://doi.org/10.1006/frne.1995.1013
  • 105.
    Geracioti Jr TD, Loosen PT, Orth DN. Low cerebrospinal fluid corticotropin-releasing hormone concentrations in eucortisolemic depression. Biol Psychiatry. 1997;42(3):165-74. https://doi.org/10.1016/s0006-3223(96)00312-5
    » https://doi.org/10.1016/s0006-3223(96)00312-5
  • 106.
    Ishiwata S, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, et al. Lower cerebrospinal fluid CRH concentration in chronic schizophrenia with negative symptoms. J Psychiatr Res. 2020;127:13-9. https://doi.org/10.1016/j.jpsychires.2020.03.010
    » https://doi.org/10.1016/j.jpsychires.2020.03.010
  • 107.
    Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. Vitam Horm. 2019;111:147-93. https://doi.org/10.1016/bs.vh.2019.05.001
    » https://doi.org/10.1016/bs.vh.2019.05.001
  • 108.
    Jolkkonen JT, Soininen HS, Riekkinen PJ. The effect of ACTH4-9 analog (Org2766) on some cerebrospinal fluid parameters in patients with Alzheimer’s disease. Life Sci. 1985;37(7):585-90. https://doi.org/10.1016/0024-3205(85)90424-2
    » https://doi.org/10.1016/0024-3205(85)90424-2
  • 109.
    Nappi G, Facchinetti F, Martignoni E, Petraglia F, Sinforiani E, Bono G, et al. N-terminal ACTH fragments increase the CSF beta-EP content in Alzheimer type dementia. Acta Neurol Scand. 1988;78(2):146-51. https://doi.org/10.1111/j.1600-0404.1988.tb03636.x
    » https://doi.org/10.1111/j.1600-0404.1988.tb03636.x
  • 110.
    Tsigos C, Crosby SR, Gibson S, Young RJ, White A. Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab. 1993;76(3):620-4. https://doi.org/10.1210/jcem.76.3.8383142
    » https://doi.org/10.1210/jcem.76.3.8383142
  • 111.
    Page-Wilson G, Meece K, White A, Rosenbaum M, Leibel RL, Smiley R, et al. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. Am J Physiol Endocrinol Metab. 2015;309(5):E458-65. https://doi.org/10.1152/ajpendo.00206.2015
    » https://doi.org/10.1152/ajpendo.00206.2015
  • 112.
    Lei JK. Change of serum ACTH and cortisol levels in Alzheimer disease and mild cognition impairment. Zhonghua Yi Xue Za Zhi. 2010;90(41):2894-6. PMID: 21211392.
  • Funding: none.

Publication Dates

  • Publication in this collection
    11 Dec 2023
  • Date of issue
    2023

History

  • Received
    29 Apr 2023
  • Accepted
    10 Oct 2023
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br