Acessibilidade / Reportar erro

Polysaccharides systems for probiotic bacteria microencapsulation: mini review

Abstract

Probiotic bacterial encapsulation systems have proven useful in protecting the bacteria from gastric acids, bile salts and other drastic conditions present in the gastrointestinal tract. In addition, daily intake of probiotic products has shown positive therapeutic effects on gastrointestinal and autoimmunity problems. Polysaccharides have aroused great interest in probiotic food applications due to their non-toxicity, biocompatibility, and the fact that they can be digested by enzymes in the gastrointestinal tract. The proper selection of an encapsulation system through the adequate combination of matrices and methods shows increased viability and provides a very promising shield for probiotic against various stress factors during processing, digestion, and storage conditions. Although most research has been conducted on simulated digestion, it is suggested to undertake systematic in vivo investigations of encapsulation efficacy where both the method and the encapsulation system are studied. The focus of this review is to provide an overview of the evolution of traditional encapsulation methods and the use of polysaccharides as efficient encapsulation systems. A second topic briefly reviewed are trends in encapsulation strategies and microencapsulation systems for non-dairy probiotic products. Finally, a new generation of probiotics as a preventive and therapeutic tool for different diseases, is showed.

Keywords:
probiotics; encapsulation; polysaccharides; therapeutic effects

1 Introduction

Probiotics are “[...] living microorganisms that, when administered in the proper quantities, improve the health of the hosts [...]” (Food and Agriculture Organization of the United Nations, 2006Food and Agriculture Organization of the United Nations – FAO. (2006). Probiotics in food: Health and nutritional properties and guidelines for evaluation - Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Roma: FAO/WHO. Retrieved from http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6
http://www.fao.org/publications/card/en/...
, p. 2-4). Probiotics adhere easily to the human mucous membrane or epithelial cells and show antimicrobial activity against pathogenic bacteria and enterobacteria adhesion to cell surface reduction. They also secrete hydrolase and regulate immune activity (Anal & Singh, 2007Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240-251. http://dx.doi.org/10.1016/j.tifs.2007.01.004.
http://dx.doi.org/10.1016/j.tifs.2007.01...
; Parvez et al., 2006Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171-1185. http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x. PMid:16696665.
http://dx.doi.org/10.1111/j.1365-2672.20...
). However, the probiotics show low tolerance to both gastric acids and bile salts, and its stability is the major difficulty during administration to the colon when ingested orally. Hence, proper selection of the encapsulation system is required to protect against various stress factors and to preserve the potential of the probiotic throughout their shelf life.

The market for probiotics is estimated at USD54.77 billion in 2020 and is expected to grow approximately 7.2% by 2028 as a result of the consumers and clients growing more aware of the benefits that these microorganisms bring to their diets (Grand View Research, 2021Grand View Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028. Retrieved from https://www.grandviewresearch.com/industry-analysis/probiotics-market
https://www.grandviewresearch.com/indust...
).

Daily consumption of probiotics has beneficial effects such as the reduction of inflammation in the gastrointestinal tract (Bruzzese et al., 2016Bruzzese, E., Fedele, M. C., Bruzzese, D., Viscovo, S., Giannattasio, A., Mandato, C., Siani, P., & Guarino, A. (2016). Randomised clinical trial: a Lactobacillus GG and micronutrient-containing mixture is effective in reducing nosocomial infections in children, vs. placebo. Alimentary Pharmacology & Therapeutics, 44(6), 568-575. http://dx.doi.org/10.1111/apt.13740. PMid:27464469.
http://dx.doi.org/10.1111/apt.13740...
; Viramontes-Hörner et al., 2017Viramontes-Hörner, D., Avery, A., & Stow, R. (2017). The Effects of Probiotics and Symbiotics on Risk Factors for Hepatic Encephalopathy: A Systematic Review. Journal of Clinical Gastroenterology, 51(4), 312-323. http://dx.doi.org/10.1097/MCG.0000000000000789. PMid:28059938.
http://dx.doi.org/10.1097/MCG.0000000000...
; Simon et al., 2021Simon, E., Călinoiu, L. F., Mitrea, L., & Vodnar, D. C. (2021). Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6), 2112. http://dx.doi.org/10.3390/nu13062112. PMid:34203002.
http://dx.doi.org/10.3390/nu13062112...
), improving the immune and allergic response (Li et al., 2019aLi, L., Han, Z., Niu, X., Zhang, G., Jia, Y., Zhang, S., & He, C. (2019a). Probiotic supplementation for prevention of atopic dermatitis in infants and children: a systematic review and meta-analysis. American Journal of Clinical Dermatology, 20(3), 367-377. http://dx.doi.org/10.1007/s40257-018-0404-3. PMid:30465329.
http://dx.doi.org/10.1007/s40257-018-040...
; Du et al., 2019Du, X., Wang, L., Wu, S., Yuan, L., Tang, S., Xiang, Y., Qu, X., Liu, H., Qin, X., & Liu, C. (2019). Efficacy of probiotic supplementary therapy for asthma, allergic rhinitis, and wheeze: A meta-analysis of randomized controlled trials. Allergy and Asthma Proceedings, 40(4), 250-260. http://dx.doi.org/10.2500/aap.2019.40.4227. PMid:31262380.
http://dx.doi.org/10.2500/aap.2019.40.42...
: Zhang et al., 2018aZhang, H., Yeh, C., Jin, Z., Ding, L., Liu, B. Y., Zhang, L., & Dannelly, H. K. (2018a). Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synthetic and Systems Biotechnology, 3(2), 113-120. http://dx.doi.org/10.1016/j.synbio.2018.03.001. PMid:29900424.
http://dx.doi.org/10.1016/j.synbio.2018....
; Simon et al., 2021Simon, E., Călinoiu, L. F., Mitrea, L., & Vodnar, D. C. (2021). Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6), 2112. http://dx.doi.org/10.3390/nu13062112. PMid:34203002.
http://dx.doi.org/10.3390/nu13062112...
), faster recovery from colitis (Jang et al., 2021Jang, H.-J., Son, S., Kim, J.-A., Jung, M. Y., Choi, Y., Kim, D.-H., Lee, H. K., Shin, D., & Kim, Y. (2021). Characterization and Functional Test of Canine Probiotics. Frontiers in Microbiology, 12, 625562. http://dx.doi.org/10.3389/fmicb.2021.625562. PMid:33763044.
http://dx.doi.org/10.3389/fmicb.2021.625...
; Barbieri et al., 2017Barbieri, N., Herrera, M., Salva, S., Villena, J., & Alvarez, S. (2017). Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice. Beneficial Microbes, 8(3), 393-405. http://dx.doi.org/10.3920/BM2016.0152. PMid:28504568.
http://dx.doi.org/10.3920/BM2016.0152...
), obesity and diabetes (Cai et al., 2019Cai, T., Wu, H., Qin, J., Qiao, J., Yang, Y., Wu, Y., Qiao, D., Xu, H., & Cao, Y. (2019). In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food. LWT, 115, 108455. http://dx.doi.org/10.1016/j.lwt.2019.108455.
http://dx.doi.org/10.1016/j.lwt.2019.108...
), skin diseases and eczemas (Sun et al., 2021Sun, M., Luo, J., Liu, H., Xi, Y., & Lin, Q. (2021). Can Mixed Strains of Lactobacillus and Bifidobacterium Reduce Eczema in Infants under Three Years of Age? A Meta-Analysis. Nutrients, 13(5), 1461. http://dx.doi.org/10.3390/nu13051461. PMid:33923096.
http://dx.doi.org/10.3390/nu13051461...
), cancer (Zhang et al., 2005Zhang, L., Li, N., Caicedo, R., & Neu, J. (2005). Alive and Dead Lactobacillus rhamnosus GG Decrease Tumor Necrosis Factor-α–Induced Interleukin-8 Production in Caco-2 Cells. The Journal of Nutrition, 135(7), 1752-1756. http://dx.doi.org/10.1093/jn/135.7.1752. PMid:15987860.
http://dx.doi.org/10.1093/jn/135.7.1752...
; Serban, 2014Serban, D. E. (2014). Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Letters, 345(2), 258-270. http://dx.doi.org/10.1016/j.canlet.2013.08.013. PMid:23981580.
http://dx.doi.org/10.1016/j.canlet.2013....
), improvement in slow bowel movements and stool formation (d’Ettorre et al., 2015d’Ettorre, G., Ceccarelli, G., Giustini, N., Serafino, S., Calantone, N., De Girolamo, G., Bianchi, L., Bellelli, V., Ascoli-Bartoli, T., Marcellini, S., Turriziani, O., Brenchley, J. M., & Vullo, V. (2015). Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the “Probio-HIV” Clinical Trial. PLoS One, 10(9), e0137200. http://dx.doi.org/10.1371/journal.pone.0137200. PMid:26376436.
http://dx.doi.org/10.1371/journal.pone.0...
). Thus, for example, clinical trials in nursing home residents demonstrated reduction of antibiotic (amoxicillin/clavulanic acid) associated diarrhea upon administration of probiotics containing multispecies probiotics Ecologic® AAD (van Wietmarschen et al., 2020van Wietmarschen, H. A., Busch, M., van Oostveen, A., Pot, G., & Jong, M. C. (2020). Probiotics use for antibiotic-associated diarrhea: a pragmatic participatory evaluation in nursing homes. BMC Gastroenterology, 20(1), 151. http://dx.doi.org/10.1186/s12876-020-01297-w. PMid:32404062.
http://dx.doi.org/10.1186/s12876-020-012...
).

Recently, probiotic intake has been associated with two possible mechanisms of immunity against Covid-19, the first one increases T cell activity, and the second one promotes lymphocyte maturation, differentiation, and reproduction (Hu et al., 2021Hu, J., Zhang, L., Lin, W., Tang, W., Chan, F. K. L., & Ng, S. C. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science & Technology, 108, 187-196. http://dx.doi.org/10.1016/j.tifs.2020.12.009. PMid:33519087.
http://dx.doi.org/10.1016/j.tifs.2020.12...
). Among the beneficial effects on health, it has been reported to compare with COVID, regulate blood glucose, decrease oxidative stress of the cell, immunomodulation, among others. The level of delivered probiotics is mainly in intestine and colon.

Table 1 summarizes the main probiotic bacterias used according to the evaluation group and the main health effects of probiotic consumption.

Table 1
main health effects of the consumption of probiotics.

Probiotics are present in various supplements and foods, mainly in milk and dairy products, which can become a limitation for mass consumption or people with some type of intolerance (Espitia et al., 2016Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42-52. http://dx.doi.org/10.1016/j.foodres.2016.10.026. PMid:29195890.
http://dx.doi.org/10.1016/j.foodres.2016...
). The main probiotic foods and supplements products generally come from the bacteria genera Lactobacillus sp and Bifidobacterium sp, known as lactic acid bacteria (LAB). Other microorganisms considered as probiotics are non-lactic microorganisms (NLAC), including Escherichia coli, Saccharomyces yeasts (cerevisiae and boulardii) and Previtella sp., as a biomarker for intestinal disease (Precup & Vodnar, 2019Precup, G., & Vodnar, D.-C. (2019). Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. The British Journal of Nutrition, 122(2), 131-140. http://dx.doi.org/10.1017/S0007114519000680. PMid:30924428.
http://dx.doi.org/10.1017/S0007114519000...
).

Nowadays, incorporating healthy foods into our diets has become a popular trend among consumers because they provide benefits and help fight disease. One of these healthy foods is probiotics. This review will address the main studies that show the effects of probiotics on human health, the main encapsulation methods or techniques, and the main polysaccharide-based polymeric matrices that have demonstrated higher efficiency in the transport and administration of these microorganisms (Figure 1).

Figure 1
Main polysaccharides for probiotic bacteria microencapsulation.

2 Traditional encapsulation methods

Probiotics must be capable of tolerating stomach pH conditions, bile salts in intestinal fluid, environmental stress, mechanical damage, interaction with foodstuffs, storage conditions, as well as oxygen and redox levels in the digestive system. These bioactive cells must be encapsulated to increase their viability, and the method chosen will depend on particle diameter, encapsulating agent, encapsulated substance, applications of the encapsulated material, release mechanism, and processing costs (García-Ceja et al., 2015García-Ceja, A., Mani-López, E., Palou, E., & López-Malo, A. (2015). Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. Lebensmittel-Wissenschaft + Technologie, 63(1), 482-489. http://dx.doi.org/10.1016/j.lwt.2015.03.071.
http://dx.doi.org/10.1016/j.lwt.2015.03....
; Călinoiu et al., 2016Călinoiu, L. F., Vodnar, D., & Precup, G. (2016). A review: the probiotic bacteria viability under different conditions. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 73(2), 55-60. http://dx.doi.org/10.15835/buasvmcn-fst:12448.
http://dx.doi.org/10.15835/buasvmcn-fst:...
; Menezes et al., 2019Menezes, M. F., Silva, T. M., Etchepare, M. A., Fonseca, B. S., Sonza, V. P., Codevilla, C. F., Barin, J. S., Silva, C. B., & Menezes, C. R. (2019). Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Ciência Rural, 49(9), e20181020. http://dx.doi.org/10.1590/0103-8478cr20181020.
http://dx.doi.org/10.1590/0103-8478cr201...
).

2.1 Chemical methods for probiotics encapsulation

Chemical methods for probiotic encapsulation are mainly ionic gelation, coacervation, and emulsion.

Ionic gelation occurs when an aqueous solution of negatively charged polyelectrolytes interacts with divalent ions, such as Ca+2 and Mg+2, forming a stable gel. According to Pedroso-Santana & Fleitas‐Salazar (2020)Pedroso-Santana, S., & Fleitas‐Salazar, N. (2020). Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443-447. http://dx.doi.org/10.1002/pi.5970.
http://dx.doi.org/10.1002/pi.5970...
, ionic gelation is a simple, low-priced, and faster (< 10 hours) process with a high-efficiency rate (> 95%). Nevertheless, particle size heterogeneity can only be achieved with a polydispersity of up to 0.5, which might affect the quantity of the encapsulated bioactive compound and limit interaction with biological structures. There are two types of ionic gelation methods: internal and external (ionotropic). In the former, Ca+2 or Mg+2 ions migrate from the outside to the interior of the core fluid, prompting a structural reorganization, while in the latter, divalent ions migrate from the interior to the surface (Menezes et al., 2019Menezes, M. F., Silva, T. M., Etchepare, M. A., Fonseca, B. S., Sonza, V. P., Codevilla, C. F., Barin, J. S., Silva, C. B., & Menezes, C. R. (2019). Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Ciência Rural, 49(9), e20181020. http://dx.doi.org/10.1590/0103-8478cr20181020.
http://dx.doi.org/10.1590/0103-8478cr201...
; Silva et al., 2018Silva, K. C. G., Cezarino, E. C., Michelon, M., & Sato, A. C. K. (2018). Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT, 89, 503-509. http://dx.doi.org/10.1016/j.lwt.2017.11.026.
http://dx.doi.org/10.1016/j.lwt.2017.11....
). Kim et al. (2017)Kim, J. U., Kim, B., Shahbaz, H. M., Lee, S. H., Park, D., & Park, J. (2017). Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. International Journal of Food Science & Technology, 52(2), 519-530. http://dx.doi.org/10.1111/ijfs.13308.
http://dx.doi.org/10.1111/ijfs.13308...
found higher stability against acidic change between pH 1.5 and 2 when L. acidophilus was encapsulated through ionotropic gelation between phytic acid (PA) and chitosan (CS) with CaCO3 electrostatic extrusion, as well as higher microorganism survival in comparison with the PA-CS encapsulated bacteria without CaCO3.

The coacervation method involves phase separation of a macromolecular solution to form two separate or immiscible liquid phases: a polymer-rich phase or colloideal solute such as chitosan, starch, gelatine, and a polymer-depleted phase, termed coacervate and equilibrium solution, respectively (Chadha, 2021Chadha, S. (2021). Recent advances in nano-encapsulation technologies for controlled release of biostimulants and antimicrobial agents. In S. Jogaiah, H. B. Singh, L. F. Fraceto, & R. de Lima (Eds.), Advances in nano-fertilizers and nano-pesticides in agriculture (chap. 2, pp. 29-55). Sawston: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-12-820092-6.00002-1
http://dx.doi.org/10.1016/B978-0-12-8200...
). The process can be simple (only uses one polymer) or complex (requires two or more polymers with opposite charges). This is a relatively simple and low-priced method, it does not require high temperatures, nor organic solvents, presents high encapsulation rates (up to 99%). Nonetheless, it can only occur at certain pH levels and depends on the colloid and/or electrolyte concentration (Comunian et al., 2013Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release. Food Research International, 52(1), 373-379. http://dx.doi.org/10.1016/j.foodres.2013.03.028.
http://dx.doi.org/10.1016/j.foodres.2013...
; Huang et al., 2012Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534-539. http://dx.doi.org/10.1016/j.foodchem.2012.04.140. PMid:22868125.
http://dx.doi.org/10.1016/j.foodchem.201...
; Piacentini et al., 2013Piacentini, E., Giorno, L., Dragosavac, M. M., Vladisavljević, G. T., & Holdich, R. G. (2013). Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification. Food Research International, 53(1), 362-372. http://dx.doi.org/10.1016/j.foodres.2013.04.012.
http://dx.doi.org/10.1016/j.foodres.2013...
). Complex coacervation has attracted more interest in studies of probiotics encapsulation. Eratte et al. (2015)Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, 882-892. http://dx.doi.org/10.1016/j.jff.2015.01.037.
http://dx.doi.org/10.1016/j.jff.2015.01....
encapsulated L. casei with omega-3 fatty acids in a whey-gum Arabic matrix through complex coacervation and found that probiotic viability increased significantly in comparison with those encapsulated without fatty acids.

Emulsification is another common chemical method encapsulation has the advantage of an efficiency >70%, high reproducibility, easy mass production, and similar size distribution. However, efficiency can decrease when the emulsions are dispersed in the aqueous phase, and large quantities of water are removed (Girija & Sakthi Kumar, 2016Girija, A. R., & Sakthi Kumar, D. (2016). Novel paradigm of design and delivery of nutraceuticals with nanoscience and technology. In A. M. Grumezescu. Nutraceuticals (pp. 343-385). USA: Elsevier. http://dx.doi.org/10.1016/B978-0-12-804305-9.00010-5.
http://dx.doi.org/10.1016/B978-0-12-8043...
). Ma et al. (2020)Ma, L., Shang, Y., Zhu, Y., Zhang, X., e, J., Zhao, L., & Wang, J. (2020). Study on microencapsulation of Lactobacillus plantarum LIP-1 by emulsification method. Journal of Food Process Engineering, 43(8), e13437. http://dx.doi.org/10.1111/jfpe.13437.
http://dx.doi.org/10.1111/jfpe.13437...
proved L. plantarum LIPl encapsulation high efficiency through its emulsification system of skim milk/water/oil/chymosin matrices, achieving an 87% with a 1:10 water-oil ratio and survival rates of 55% in comparison with free bacteria (17%).

2.2 Physical methods for probiotic encapsulation

Physical methods for probiotic encapsulation are mainly spray drying, lyophilization, and extrusion

The Spray Drying method (SD) consists of atomizing or spraying a liquid in fine droplets in a drying chamber with hot air flow operated between 60 ºC to 150 ºC. The liquid is composed of probiotics together with the encapsulating wall material or protection matrix (Haffner et al., 2016Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: Insights into academic and industrial approaches. Materials (Basel), 3(1), 114-136. http://dx.doi.org/10.3934/matersci.2016.1.114.
http://dx.doi.org/10.3934/matersci.2016....
). This method is the most used one by the food industry and for research purposes, as it is fast, low-priced (less energy consumed), easy to adapt to industrial equipment, monodisperse; in addition, it helps in producing probiotic powders with higher stable shelf-life, powder properties such as size distribution bulk density, flowability, and lower transportation cost. The selection of wall material plays an important role in the system encapsulation as it directly links to encapsulation efficiency, stability, and release. Nunes et al. (2018)Nunes, G. L., Etchepare, M. A., Cichoski, A. J., Zepka, L. Q., Jacob Lopes, E., Barin, J. S., Flores, É. M. M., da Silva, C. B., & de Menezes, C. R. (2018). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT, 89, 128-133. https://doi.org/10.1016/j.lwt.2017.10.032.
https://doi.org/10.1016/j.lwt.2017.10.03...
encapsulated L. acidophilus LA5 through SA, using different matrices based on gum Arabic, inulin, resistant starch (Hi-maize), and trehalose. They found that microparticles of trehalose matrix achieved higher protection and heat resistance while starch matrix showed more protection against stomach fluids.

Lyophilization (LI) is the separation of water from a solution through ice freezing and later sublimation at reduced pressure. This method requires a high energy intake and long periods of time; the bacteria might be cut by ice crystals or under stress due to high osmotic concentration. It also prevents oxidation, presents little dispersity, and is easy to use for the industry (Haffner et al., 2016Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: Insights into academic and industrial approaches. Materials (Basel), 3(1), 114-136. http://dx.doi.org/10.3934/matersci.2016.1.114.
http://dx.doi.org/10.3934/matersci.2016....
). Shu et al. (2018)Shu, G., Wang, Z., Chen, L., Wan, H., & Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT, 90, 70-76. http://dx.doi.org/10.1016/j.lwt.2017.12.013.
http://dx.doi.org/10.1016/j.lwt.2017.12....
encapsulated L. acidophilus through a modified lyophilization method using cryoprotectant agents. The results demonstrated a high survival rate after LI (93.9%) in comparison with the control group, which only reached 36.6%. Regarding the storage conditions of the encapsulated bacteria, the highest viability was 11 log CFUg-1 at -18 ºC, while at higher temperatures, it dropped under 10 log CFUg-1.

Extrusion as a physical encapsulation method consists of producing small drops of encapsulating material through the forced stream of fluid from a syringe needle or nozzle, adding the microorganisms to the hydrocolloid solution, and then dripping its suspension over a drying solution (de Vos et al., 2010de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292-302. http://dx.doi.org/10.1016/j.idairyj.2009.11.008.
http://dx.doi.org/10.1016/j.idairyj.2009...
). Although extrusion is considered a simple method that does not use harmful solvents and that can protect the encapsulation at high temperatures, it has disadvantages such as slow particle formation, limited selection of coating or wall material, and high dispersion of samples (Burgain et al., 2011Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. http://dx.doi.org/10.1016/j.jfoodeng.2010.12.031.
http://dx.doi.org/10.1016/j.jfoodeng.201...
). A study conducted by Seth et al. (2017)Seth, D., Mishra, H. N., & Deka, S. C. (2017). Effect of microencapsulation using extrusion technique on viability of bacterial cells during spray drying of sweetened yoghurt. International Journal of Biological Macromolecules, 103, 802-807. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.099. PMid:28536022.
http://dx.doi.org/10.1016/j.ijbiomac.201...
confirm the efficiency of extrusion as a microencapsulation method to protect of S. thermophilus and L. bulgaricus at high temperatures (148 ºC), allowing encapsulation in new products

Table 2 shows probiotics bacteria and encapsulation methods used in both in in vitro and in vivo studies. Most studies are performed under simulated or in vitro conditions. This is attributed to the fact that in vitro conditions are an excellent tool that helps to select and predict the possible behavior of bacteria in vivo. On the other hand, it is attractive given its low-cost and easy implementation, obtaining a response in a short time, and estimating the effect of probiotics; however, they cannot accurately simulate the human gut.

Table 2
Main probiotics bacteria and encapsulation methods of probiotic for food and target delivery application.

In vivo probiotic inoculation remains a challenge. For this reason, different strategies are being studied to improve their survival, avoid unpleasant changes, or improve their performance in new applications. Preliminary results suggest that probiotic resistance could be increased by cross-adaptation/adaptive evolution or by bioengineering (Fareez et al., 2015Fareez, I. M., Lim, S. M., Mishra, R. K., & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419-1428. http://dx.doi.org/10.1016/j.ijbiomac.2014.10.054. PMid:25450046.
http://dx.doi.org/10.1016/j.ijbiomac.201...
; Speranza et al., 2020Speranza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Rosaria Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 20. http://dx.doi.org/10.3390/beverages6020020.
http://dx.doi.org/10.3390/beverages60200...
).

3 Polysaccharides used for probiotic encapsulation

Encapsulation is considered one of the best methods to obtain a symbiotic and synergistic effect of probiotic bacteria subjected to gastro-intestinal conditions. Hence, the growing interest in the microencapsulation of probiotics in biopolymeric matrices can reduce their loss of viability and offer adequate protective barrier conditions. There are numerous polysaccharides that meet these conditions, such as starch, pectin, alginate, carrageenan, and xanthan. Table 3 shows a summary of the main polysaccharide-based matrices used for probiotic encapsulation.

Table 3
Polysaccharide-based matrices used for probiotic encapsulation.

3.1 Starch

Is a polysaccharide composed of two main biopolymers, including amylose and amylopectin (Ismail et al., 2013Ismail, H., Irani, M., & Ahmad, Z. (2013). Starch-based hydrogels: present status and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 411-420. http://dx.doi.org/10.1080/00914037.2012.719141.
http://dx.doi.org/10.1080/00914037.2012....
). In addition, starch is considered the foremost glucose source for humans and is also low-priced raw material and renewable.

Starches are easily hydrolyzed by pancreatic enzymes, which is why they cannot reach the large intestine intact, as this might affect the viability of the probiotic.

Recently studies demonstrated starch blends are encapsulation efficient than alone starch. For example, pectin/starch blends form an interconnected network stabilized by a combination of weak intermolecular forces, hydrogen bonds, and hydrophobic interactions, which is an attractive alternative for the encapsulation of probiotics. According to Agudelo et al. (2014)Agudelo, A., Varela, P., Sanz, T., & Fiszman, S. M. (2014). Native tapioca starch as a potential thickener for fruit fillings. Evaluation of mixed models containing low-methoxyl pectin. Food Hydrocolloids, 35, 297-304. http://dx.doi.org/10.1016/j.foodhyd.2013.06.004.
http://dx.doi.org/10.1016/j.foodhyd.2013...
, incorporating pectin into native tapioca starch offers more thermal and mechanical stability. Dafe et al. (2017a)Dafe, A., Etemadi, H., Dilmaghani, A., & Mahdavinia, G. R. (2017a). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536-543. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.060. PMid:28108413.
http://dx.doi.org/10.1016/j.ijbiomac.201...
studied L. plantarum ATCC13643 viability when encapsulated in a pectin/starch blend under SGC and storage at 4 ºC for 30 days. The results showed cell death after continuous exposure to SGC for 2 h in free bacteria, while the survival rate for those encapsulated in the pectin and pectin/starch matrices was, respectively, 5.15 log CFU g-1 and 6.67 log CFU g-1. Zanjani et al. (2018)Zanjani, M. A. K., Ehsani, M. R., Ghiassi Tarzi, B., & Sharifan, A. (2018). Promoting Lactobacillus casei and Bifidobacterium adolescentis survival by microencapsulation with different starches and chitosan and poly L-lysine coatings in ice cream. Journal of Food Processing and Preservation, 42(1), e13318. http://dx.doi.org/10.1111/jfpp.13318.
http://dx.doi.org/10.1111/jfpp.13318...
found chitosan-starch and alginate-starch blends efficiency reached over 97% and increased the viability and storage condition. Besides, microorganism addition through the matrices did not affect the organoleptic parameters of the ice cream.

3.2 Pectin

Is a heteropolysaccharide with D-galacturonic acid bound by α(1-4) glycosidic bonds with some methylated carboxylic groups. They have two forms: i) high methoxyl (HM) and ii) low methoxyl (LM) pectin. Gel formation depends on pectin structure, the presence of cross-linking agents, temperature, and pH. To form a gel with high methoxyl pectins (HM), a pH < 3.5 and high sugar concentrations are needed (Gawkowska et al., 2018Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers, 10(7), 762. http://dx.doi.org/10.3390/polym10070762. PMid:30960687.
http://dx.doi.org/10.3390/polym10070762...
; Martău et al., 2019Martău, G. A., Mihai, M., & Vodnar, D. C. (2019). The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers, 11(11), 1837. http://dx.doi.org/10.3390/polym11111837. PMid:31717269.
http://dx.doi.org/10.3390/polym11111837...
), while low methoxyl pectins (LM) can form gels in the presence of divalent cations such as Ca+2 at a pH between 2 and 6.

Li et al. (2019b) Li, M., Jin, Y., Wang, Y., Meng, L., Zhang, N., Sun, Y., Hao, J., Fu, Q., & Sun, Q. (2019b). Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of Dairy Science, 102(6), 4832-4843. http://dx.doi.org/10.3168/jds.2018-15597. PMid:30981490.
http://dx.doi.org/10.3168/jds.2018-15597...
studied B. breve CICC6182 encapsulation efficiency in LM pectin and the viability both in storage at three different temperatures (-20 ºC, 4 ºC and 25 ºC) for 13 weeks and in exposure to simulated gastrointestinal fluids. The encapsulation efficiency was 99%. After treatment under SGC, the viability of the encapsulated probiotics decreased only by 1.76 log CFU g-1 versus 4.82 log CFU g-1 of free bacteria. Stored under low-temperature conditions, encapsulated bacteria showed a decrease of 1.5 log CFU g-1 in comparison with unencapsulated probiotics (4 log CFU g-1). Gebara et al. (2013)Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F., & Gigante, M. L. (2013). Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International, 51(2), 872-878. http://dx.doi.org/10.1016/j.foodres.2013.02.008.
http://dx.doi.org/10.1016/j.foodres.2013...
studied pectin-encapsulated (PEC) L. acidophilus LA5 and pectin/milk serum (P-S) viability under two simulated gastrointestinal conditions, SGC1 (pH between 1.2 and 7) and SGC2 (pH between 3 and 7), as well as after exposure to heat treatment (80 ºC for 15 min). The results showed that viability after encapsulation was 8 log CFU g-1. Furthermore, the viability of cells encapsulated in PEC after SGC1 treatment (5.45 log CFU g-1) was higher than in those encapsulated with P-S (5.22 log CFU g-1), while for SGC2 the viability was higher in free bacteria (3.55 log CFU g-1), so adding pectin into the polymer matrix benefits probiotic survival rate.

3.3 Alginate

Is a polysaccharide obtained from brown algae consisting of D-mannuronic acid (M) and L-guluronic acid (G) units that are linked linearly by 1.4-glycosidic bonds. High G-blocks percentages tend to generate more fragile and rigid gels, while those with more M-blocks produce less rigid and more fragile gels (Rodrigues et al., 2020Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137, 109682. http://dx.doi.org/10.1016/j.foodres.2020.109682. PMid:33233258.
http://dx.doi.org/10.1016/j.foodres.2020...
). Alginates are biocompatible, non-toxic, low-priced, require mild processing conditions (up to 65 ºC-70 ºC), can form hydrogels with divalent ions, and are digested in the intestine. However, the gels obtained are very porous and susceptible to acidic environments, so they need to be applied with another polymer for probiotic encapsulation (Burgain et al., 2011Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. http://dx.doi.org/10.1016/j.jfoodeng.2010.12.031.
http://dx.doi.org/10.1016/j.jfoodeng.201...
), such as pectin, protein, and chitosan (Mahmoud et al., 2020Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3), e03541. http://dx.doi.org/10.1016/j.heliyon.2020.e03541. PMid:32190759.
http://dx.doi.org/10.1016/j.heliyon.2020...
). Thus, García-Ceja et al. (2015)García-Ceja, A., Mani-López, E., Palou, E., & López-Malo, A. (2015). Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. Lebensmittel-Wissenschaft + Technologie, 63(1), 482-489. http://dx.doi.org/10.1016/j.lwt.2015.03.071.
http://dx.doi.org/10.1016/j.lwt.2015.03....
demonstrated higher viability to encapsulate L. acidophilus and L. reuteri in Al-CH systems, stored at 5 ºC for one month in different foods such as milk, peach juice, and yogurt. In this study was achieved viability of 11 log CFU g-1 after storage in system matrix while viability in free cells was 7 log CFU g-1.

Table 3 show polysaccharide matrices such as alginate, starch, chitosan, pectin, among other, offers adequate protection to encapsulated probiotics, independent of the encapsulated microorganism. This protection is reflected in the increased viability during the transport of the probiotic in the GI system. Furthermore, it can be observed that co-encapsulation favors this increase.

3.4 Carrageenan

Is a linear anionic polysaccharide consisting of alternating β-galactose and 3.6-anhydro-α-galactose units linked by α(1.3) and β(1.4). There are three types: κ-carrageenan, ι-carrageenan, and λ-carrageenan, where the first of them is the most used one for probiotics encapsulation. κ-carrageenan can gel in the presence of monovalent or divalent cations, resulting in a heat-sensitive hydrogel that sustains reversible volume transitions in response to heat stimuli, making it suitable for probiotic administration with a temperature-controlled release (Gbassi & Vandamme, 2012Gbassi, G. K., & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4(1), 149-163. http://dx.doi.org/10.3390/pharmaceutics4010149. PMid:24300185.
http://dx.doi.org/10.3390/pharmaceutics4...
; Kwiecień & Kwiecień, 2018Kwiecień, I., & Kwiecień, M. (2018). Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels, 4(2), 47. http://dx.doi.org/10.3390/gels4020047. PMid:30674823.
http://dx.doi.org/10.3390/gels4020047...
). Soukoulis et al. (2017)Soukoulis, C., Behboudi-Jobbehdar, S., MacNaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids, 70, 345-355. http://dx.doi.org/10.1016/j.foodhyd.2017.04.014. PMid:28867864.
http://dx.doi.org/10.1016/j.foodhyd.2017...
found that the κ-carrageenan/carob bean gum showed greater stabilization of L. rhamnosus GG during 25 days of storage. However, studies by Zainal-Ariffin et al. (2014)Zainal-Ariffin, S. H., Yeen, W. W., Zainol Abidin, I. Z., Megat Abdul Wahab, R., Zainal Ariffin, Z., & Senafi, S. (2014). Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in human intestine and liver cell lines. BMC Complementary and Alternative Medicine, 14(1), 508. http://dx.doi.org/10.1186/1472-6882-14-508. PMid:25519220.
http://dx.doi.org/10.1186/1472-6882-14-5...
and Shang et al. (2017)Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87-95. http://dx.doi.org/10.1016/j.toxlet.2017.07.904. PMid:28778519.
http://dx.doi.org/10.1016/j.toxlet.2017....
showed controversial results when using κ-carrageenan due to induced colitis in rats and inhibition in human (Caco-2 and FHs 74 Int) and liver (HepG2 and Fa2N-4) cell lines. The use of other polymers to enhance the benefits of carrageenan as a probiotic encapsulation matrix is recommended. Thus, Dafe et al. (2017b)Dafe, A., Etemadi, H., Zarredar, H., & Mahdavinia, G. R. (2017b). Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules, 97, 299-307. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.016. PMid:28064052.
http://dx.doi.org/10.1016/j.ijbiomac.201...
reported a new system κ-carrageenan and carboxymethyl cellulose-based transport system to deliver L. plantarum ATCC13643 into the colon. After 2 hours of gastric juice incubation at pH 2 and bile at pH 7, the survival of the probiotics increased by 7.3 log CFU g–1 and 7.48 log CFU g–1, respectively, while free bacteria did not survive.

3.5 Xanthan

is a branched polysaccharide consisting of β(1.4)-D-glucose units attached to D-glucuronic acid sidechains located between two D-mannose units. They are produced by bacteria that ferment agro-industrial waste and form hydrogels interacting with bivalent cations (Kwiecień & Kwiecień, 2018Kwiecień, I., & Kwiecień, M. (2018). Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels, 4(2), 47. http://dx.doi.org/10.3390/gels4020047. PMid:30674823.
http://dx.doi.org/10.3390/gels4020047...
). Given the properties of xanthan, it needs to be mixed with other polymers to achieve optimal encapsulation applications. Alginate-xanthan matrix evidenced a higher survival rate of L. plantarum LAB12 after being incubated in gastric acid at pH 1.8 was higher (95%) than in free bacteria (46.15%) Fareez et al. (2015)Fareez, I. M., Lim, S. M., Mishra, R. K., & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419-1428. http://dx.doi.org/10.1016/j.ijbiomac.2014.10.054. PMid:25450046.
http://dx.doi.org/10.1016/j.ijbiomac.201...
. In addition, the authors reported improvements in probiotic survival after exposure to SGC when coating the encapsulated material with chitosan. However, Chen et al. (2017)Chen, L., Yang, T., Song, Y., Shu, G., & Chen, H. (2017). Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. Lebensmittel-Wissenschaft + Technologie, 81, 274-280. http://dx.doi.org/10.1016/j.lwt.2017.04.005.
http://dx.doi.org/10.1016/j.lwt.2017.04....
and Shu et al. (2018)Shu, G., Wang, Z., Chen, L., Wan, H., & Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT, 90, 70-76. http://dx.doi.org/10.1016/j.lwt.2017.12.013.
http://dx.doi.org/10.1016/j.lwt.2017.12....
found that B. bifidum BB01 and L. acidophilus encapsulation in xanthan/chitosan and xanthan/chitosan/xanthan matrices, respectively, showed significant improvements (p < 0.05) in probiotic survival when stored in yogurt for 21 days at 4 ºC (8 log CFU g–1), at 25 ºC (5 log CFU g–1), and after exposure to SGC (8 log CFU g–1).

3.6 Chitosan

Is a linear cationic natural biopolymer (amino polysacaccharide) that contains glycosidic linkages between monosaccharide units produced by the deacetylation of the naturally occurring chitin under high alkaline conditions (Dumitriu, 2004Dumitriu, S., (Ed.) (2004). Polysaccharides: structural diversity and functional versatility (2nd ed.). Boca Raton: CRC Press. http://dx.doi.org/10.1201/9781420030822.
http://dx.doi.org/10.1201/9781420030822...
). Phuong Ta et al. (2021)Phuong Ta, L., Bujna, E., Kun, S., Charalampopoulos, D., & Khutoryanskiy, V. V. (2021). Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. International Journal of Pharmaceutics, 597, 120342. http://dx.doi.org/10.1016/j.ijpharm.2021.120342. PMid:33545291.
http://dx.doi.org/10.1016/j.ijpharm.2021...
suggest that incorporation of prebiotics into alginate-chitosan matrix encapsulation could lead to increase the survival of probiotics and their delivery to the target sites of action in human body. The first study in which a double coat of alginate and chitosan was used for the encapsulation of L.plantarum and L. rhamnosus, resulting in a higher encapsulating efficiency (98%) and promising improvement in the survival capacity of probiotics were reported by Padhmavathi et al. (2021)Padhmavathi, V., Shruthy, R., & Preetha, R. (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology, 1-7. http://dx.doi.org/10.1007/s13197-021-05179-1..

4 Recent advances

Despite the numerous methods that have been used for oral administration of probiotics, the success rate achieved thus far remains limited. Hence, different strategies have been studied and proposed to increase or preserve the viability and stability of probiotics by combined encapsulation technologies (Table 4). Likewise, have alternatives of products of mass consumption different from milk or derivatives

Table 4
Encapsulation strategies emerging.

4.1 Microencapsulation systems

Microencapsulation of probiotic cells is now under special attention because it is considered as the best method for improving the survivability of probiotics (Padhmavathi et al., 2021Padhmavathi, V., Shruthy, R., & Preetha, R. (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology, 1-7. http://dx.doi.org/10.1007/s13197-021-05179-1.). The viability of probiotics can be improved by embedding technologies within microgels or other types of microcapsules (Yao et al., 2020Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: a review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874. http://dx.doi.org/10.1111/1541-4337.12532. PMid:33325164.
http://dx.doi.org/10.1111/1541-4337.1253...
). Simple microgels, core-shell microgels, biopolymer-complex microgels, and nutrient-doped microgels, constitutes the main embedding technologies. Pectin, starch, gelatin, chitosan, and alginate are polysaccharide used in preparing microgels (Yao et al., 2020Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: a review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874. http://dx.doi.org/10.1111/1541-4337.12532. PMid:33325164.
http://dx.doi.org/10.1111/1541-4337.1253...
). Microgels are small spherical particles that form a network of cross-linked biopolymers inside, with the pores completed by an aqueous solution (Holkem et al., 2016Holkem, A. T., Raddatz, G. C., Nunes, G. L., Cichoski, A. J., Jacob-Lopes, E., Ferreira Grosso, C. R., & de Menezes, C. R. (2016). Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. Lebensmittel-Wissenschaft + Technologie, 71, 302-308. http://dx.doi.org/10.1016/j.lwt.2016.04.012.
http://dx.doi.org/10.1016/j.lwt.2016.04....
).

The functional performance of core-shell microgels can be further enhanced by coating them with one or more layers of biopolymer molecules (de Araujo Etchepare et al., 2020). Chitosin is the most widely used polysaccharide in the formation of microgels due to its positive charge, whereas most other polysaccharides have a negative charge (Trabelsi et al., 2014Trabelsi, I., Ayadi, D., Bejar, W., Bejar, S., Chouayekh, H., & Ben Salah, R. (2014). Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. International Journal of Biological Macromolecules, 64, 84-89. http://dx.doi.org/10.1016/j.ijbiomac.2013.11.031. PMid:24315948.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). Biopolymer-complex microgels improve the viability of encapsulated probiotics under gastric conditions involve controlling the pore size and internal pH of microgels (Yao et al., 2017Yao, M., Wu, J., Li, B., Xiao, H., McClements, D. J., & Li, L. (2017). Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, 72, 228-236. http://dx.doi.org/10.1016/j.foodhyd.2017.05.033.
http://dx.doi.org/10.1016/j.foodhyd.2017...
)). Nutrient-doped microgels Nutrient doped microgels that encapsulate probiotics within the nucleus of microgels have been studied to increase their viability (Liao et al., 2019Liao, N., Luo, B., Gao, J., Li, X., Zhao, Z., Zhang, Y., Ni, Y., & Tian, F. (2019). Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnology Letters, 41(2), 263-272. http://dx.doi.org/10.1007/s10529-018-02634-6. PMid:30535881.
http://dx.doi.org/10.1007/s10529-018-026...
)

4.2 Emerging encapsulation strategies

Spray-freeze-drying (SFD)

In this method, the probiotics together with the encapsulating wall material (liquid feed) are atomized, forming fine droplets with a high interfacial area that come into contact with a cryogenic medium such as liquid nitrogen (Rajam & Anandharamakrishnan, 2015bRajam, R., & Anandharamakrishnan, C. (2015b). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95-103. http://dx.doi.org/10.1016/j.jfoodeng.2015.05.029.
http://dx.doi.org/10.1016/j.jfoodeng.201...
; Rajam & Anandharamakrishnan, 2015bRajam, R., & Anandharamakrishnan, C. (2015b). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95-103. http://dx.doi.org/10.1016/j.jfoodeng.2015.05.029.
http://dx.doi.org/10.1016/j.jfoodeng.201...
). Allows obtaining highly porous particles with excellent reconstitution capacity. However, its application on an industrial scale requires evaluating the high time consumed, adequate osmotic/ atomization pressure control, and the handling of cryogens (Meng et al., 2008Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C., & Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416. http://dx.doi.org/10.1016/j.foodchem.2007.04.076.
http://dx.doi.org/10.1016/j.foodchem.200...
; Semyonov et al., 2010Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193-202. http://dx.doi.org/10.1016/j.foodres.2009.09.028.
http://dx.doi.org/10.1016/j.foodres.2009...
).

Electrohydrodynamic

Electrohydrodynamic processes involve the use of electrostatic force to produce polymeric materials in the form of fibers (electrospinning) or powders electrospraying (Yoha et al., 2020Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. http://dx.doi.org/10.1016/j.jfoodeng.2020.110033.
http://dx.doi.org/10.1016/j.jfoodeng.202...
). Electrospinning and electrospraying are well known within electrospinning processes. Several studies confirm that the electrospray coating improved the survivability and thermal stability of probiotics (Gomez-Mascaraque et al., 2016Gomez-Mascaraque, L. G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G., & Lopez-Rubio, A. (2016). Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. Lebensmittel-Wissenschaft + Technologie, 69, 438-446. http://dx.doi.org/10.1016/j.lwt.2016.01.071.
http://dx.doi.org/10.1016/j.lwt.2016.01....
, Gómez-Mascaraque et al., 2017Gómez-Mascaraque, L. G., Ambrosio-Martín, J., Perez-Masiá, R., & Lopez-Rubio, A. (2017). Impact of acetic acid on the survival of L. plantarum upon microencapsulation by coaxial electrospraying. Journal of Healthcare Engineering, 2017, e4698079. http://dx.doi.org/10.1155/2017/4698079. PMid:29065607.
http://dx.doi.org/10.1155/2017/4698079...
; Feng et al., 2018Feng, K., Zhai, M.-Y., Zhang, Y., Linhardt, R. J., Zong, M.-H., Li, L., & Wu, H. (2018). Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat. Journal of Agricultural and Food Chemistry, 66(41), 10890-10897. http://dx.doi.org/10.1021/acs.jafc.8b02644. PMid:30260640.
http://dx.doi.org/10.1021/acs.jafc.8b026...
; Škrlec et al., 2019Škrlec, K., Zupančič, Š., Prpar Mihevc, S., Kocbek, P., Kristl, J., & Berlec, A. (2019). Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. European Journal of Pharmaceutics and Biopharmaceutics, 136, 108-119. http://dx.doi.org/10.1016/j.ejpb.2019.01.013. PMid:30660693.
http://dx.doi.org/10.1016/j.ejpb.2019.01...
). This method is considered a promising process to protect microbial cells under various stress conditions. However, it requires adequate control of high voltage as this can be harmful to cells and affect their viability (Moayyedi et al., 2018Moayyedi, M., Eskandari, M. H., Rad, A. H. E., Ziaee, E., Khodaparast, M. H. H., & Golmakani, M.-T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods, 40, 391-399. http://dx.doi.org/10.1016/j.jff.2017.11.016.
http://dx.doi.org/10.1016/j.jff.2017.11....
; Phuong Ta et al., 2021Phuong Ta, L., Bujna, E., Kun, S., Charalampopoulos, D., & Khutoryanskiy, V. V. (2021). Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. International Journal of Pharmaceutics, 597, 120342. http://dx.doi.org/10.1016/j.ijpharm.2021.120342. PMid:33545291.
http://dx.doi.org/10.1016/j.ijpharm.2021...
)

Microfluidics

Very recent studies are finding synergy when applying microfluidic techniques for the individual cultivation of bacteria within double-layer emulsions (Yoha et al., 2021Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. http://dx.doi.org/10.1016/j.lwt.2021.111461.
http://dx.doi.org/10.1016/j.lwt.2021.111...
). Double water-in-oil-in-water (MDE) microfluidic emulsion is a relatively new class of soft solid, particularly in system encapsulation. MDE is considered a “deep functional profiling” technique, with the advantages of providing a single-celled functional characterization of the strain (Chen et al., 2018Chen, J., Vestergaard, M., Shen, J., Solem, C., Dufva, M., & Jensen, P. R. (2018). Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria. FEMS Microbiology Letters, 365(23). http://dx.doi.org/10.1093/femsle/fny258. PMid:30357328.
http://dx.doi.org/10.1093/femsle/fny258...
; Villa et al., 2019Villa, M. M., Bloom, R. J., Silverman, J. D., Durand, H. K., Jiang, S., Wu, A., Huang, S., You, L., & David, L. A. (2019). High-throughput isolation and culture of human gut bacteria with droplet microfluidics. bioRxiv. 630822. https://doi.org/10.1101/630822.
https://doi.org/10.1101/630822...
)

Genetic engineering

Engineering or genetically modified microorganisms (GMOs) is considered a promising way to achieve better performance of probiotic strains. It consists of the manipulation or design of a gene with specific properties or focused, for example, to improve tolerance to stress, extreme temperatures, oxygen, and acidification during food production, and or to treat metabolic diseases and cancer, and/or increase survival of probiotics under gastro-intestinal conditions (Appala Naidu et al., 2019Appala Naidu, B., Kannan, K., Santhosh Kumar, D. P., Oliver, J. W. K., & Abbott, Z. D. (2019). Lyophilized B. subtilis ZB183 spores: 90-Day Repeat Dose Oral (Gavage) toxicity study in wistar rats. Journal of Toxicology, 2019, 3042108. http://dx.doi.org/10.1155/2019/3042108. PMid:31781202.
http://dx.doi.org/10.1155/2019/3042108...
)

Recently, the results of an animal study with GMOs have been reported, which proved to be very promising as they were able to treat diseases such as diabetes and colitis by having a metabolic pathway that efficiently produces and secretes various proteins (Speranza et al., 2020Speranza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Rosaria Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 20. http://dx.doi.org/10.3390/beverages6020020.
http://dx.doi.org/10.3390/beverages60200...
). However, they are classified as genetically modified organisms (Mathipa & Thantsha, 2017Mathipa, M. G., & Thantsha, M. S. (2017). Probiotic engineering: Towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens, 9(1), 28. http://dx.doi.org/10.1186/s13099-017-0178-9. PMid:28491143.
http://dx.doi.org/10.1186/s13099-017-017...
) and contain additional elements that could affect metabolic pathways and safety (Kumar et al., 2016Kumar, M., Yadav, A. K., Verma, V., Singh, B., Mal, G., Nagpal, R., & Hemalatha, R. (2016). Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiology, 11(4), 585-600. http://dx.doi.org/10.2217/fmb.16.4. PMid:27070955.
http://dx.doi.org/10.2217/fmb.16.4...
).

High-internal-phase emulsions (HIPEs)

HIPEs are commonly defined as highly concentrated emulsions with an internal phase volume fraction of more than 74% or 64% for hexagonal close packing or random close packing of the droplets, respectively (Xu et al., 2020Xu, Y.-T., Tang, C.-H., & Binks, B. P. (2020). High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles. Food Hydrocolloids, 98, 105254. http://dx.doi.org/10.1016/j.foodhyd.2019.105254.
http://dx.doi.org/10.1016/j.foodhyd.2019...
). HIPEs process integrated with Co-encapsulation technical exhibited a significantly higher physical stability as well as better protecting effects on strain and bioactive agent against pasteurization treatment (Su et al., 2021Su, J., Cai, Y., Tai, K., Guo, Q., Zhu, S., Mao, L., Gao, Y., Yuan, F., & Van der Meeren, P. (2021). High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food & Function, 12(1), 70-82. http://dx.doi.org/10.1039/D0FO01659D. PMid:33191429.
http://dx.doi.org/10.1039/D0FO01659D...
)

3D Printing

3D printing is an emerging technology and has promising food and encapsulation applications (Nachal et al., 2019;Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D Printing in Food Processing. Food Engineering Reviews, 11(3), 123-141. http://dx.doi.org/10.1007/s12393-019-09199-8.
http://dx.doi.org/10.1007/s12393-019-091...
Pereira et al., 2021Pereira, T., Barroso, S., & Gil, M. M. (2021). Food texture design by 3D printing: a review. Foods, 10(2), 320. http://dx.doi.org/10.3390/foods10020320. PMid:33546337.
http://dx.doi.org/10.3390/foods10020320...
). Recent studies have reported the printing process integrated with encapsulation has no adverse effect on the viability of probiotic cells (Zhang et al., 2018bZhang, L., Lou, Y., & Schutyser, M. A. I. (2018b). 3D printing of cereal-based food structures containing probiotics. Food Structure, 18, 14-22. http://dx.doi.org/10.1016/j.foostr.2018.10.002.
http://dx.doi.org/10.1016/j.foostr.2018....
; Yoha et al., 2021Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. http://dx.doi.org/10.1016/j.lwt.2021.111461.
http://dx.doi.org/10.1016/j.lwt.2021.111...
)

Co-encaspulation

This technique consists of taking advantage of the same delivery vehicle or matrix to incorporate more than two active components that will lead to increased efficiency in the stability and/or viability of probiotics. Rashidinejad et al. (2022)Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), 2470-2494. http://dx.doi.org/10.1080/10408398.2020.1854169. PMid:33251846.
http://dx.doi.org/10.1080/10408398.2020....
assure that probiotic/prebiotic co-encapsulation is an effective method of administration of probiotic live cells and that a greater survival efficiency of probiotics can be achieved during the encapsulation process and the manufacture and storage of food. Likewise, Raddatz & Menezes (2021)Raddatz, G. C., & Menezes, C. R. (2021). Microencapsulation and co-encapsulation of bioactive compounds for application in food: challenges and perspectives. Ciência Rural, 51(3), e20200616. http://dx.doi.org/10.1590/0103-8478cr20200616.
http://dx.doi.org/10.1590/0103-8478cr202...
and Youssef et al. (2021)Youssef, M., Korin, A., Zhan, F., Hady, E., Ahmed, H. Y., Geng, F., Chen, Y., & Li, B. (2021). Encapsulation of Lactobacillus Salivarius in Single and Dual biopolymer. Journal of Food Engineering, 294, 110398. http://dx.doi.org/10.1016/j.jfoodeng.2020.110398.
http://dx.doi.org/10.1016/j.jfoodeng.202...
reported different studies with an increase in the survival of probiotic cells by co-encapsulating.

Table 4 Summarizes the main encapsulation strategies emerging with the potential to increase the viability of probiotics in real application conditions.

4.3 Thermal resistance

Through modern encapsulation systems it has been possible to respond to one of the main challenges of a decade ago, and that was to improve the viability of probiotics during manufacturing processes, particularly thermal processing (Solanki et al., 2013Solanki, H. K., Pawar, D. D., Shah, D. A., Prajapati, V. D., Jani, G. K., Mulla, A. M., & Thakar, P. M. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. http://dx.doi.org/10.1155/2013/620719. PMid:24027760.
http://dx.doi.org/10.1155/2013/620719...
). Table 5 describes the components of the matrices and results obtained with better behavior or thermal resistance. The use of carbohydrate as protectants of bacterial cell can alternatively be explained by the water replacement hypothesis, which envisages the function of carbohydrate as water substitutes when the hydration shell of proteins, as well as water molecules around polar residues in membrane phospholipids, are removed (Tantratian & Pradeamchai, 2020Tantratian, S., & Pradeamchai, M. (2020). Select a protective agent for encapsulation of Lactobacillus plantarum. LWT, 123, 109075. http://dx.doi.org/10.1016/j.lwt.2020.109075.
http://dx.doi.org/10.1016/j.lwt.2020.109...
). The ability to protect bacterial cells of carbohydrate is related to the difference in their glass-forming tendencies, which is reflected in their glass transition temperatures (Tg) and indicates the efficacy of a protective agent to protect the bacterial cell during drying. Glass transition temperature (Tg) of selected protective agents in decreased order starch > maltodextrina >carbomethycellullose>lactose >sucrose >glucose.

Table 5
Protective encapsulation systems and methods encapsulation that improve the thermal behavior of probiotic strains.

Recent studies confirm that the combination of different methods such as: extrusion, emulsion, and spray drying methods used in the encapsulation of probiotics give a better heat resistance performance (greater viability) than that achieved with the one alternative method (Silva et al., 2018Silva, K. C. G., Cezarino, E. C., Michelon, M., & Sato, A. C. K. (2018). Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT, 89, 503-509. http://dx.doi.org/10.1016/j.lwt.2017.11.026.
http://dx.doi.org/10.1016/j.lwt.2017.11....
; Pupa et al., 2021Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., & Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. http://dx.doi.org/10.1038/s41598-021-93263-z. PMid:34215824.
http://dx.doi.org/10.1038/s41598-021-932...
). In a review article by Călinoiu et al. (2019)Călinoiu, L.-F., Ştefănescu, B. E., Pop, I. D., Muntean, L., & Vodnar, D. C. (2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194. http://dx.doi.org/10.3390/coatings9030194.
http://dx.doi.org/10.3390/coatings903019...
, the importance of chitosan coating in encapsulation was investigated for improve the survival of the probiotic. The conclusion suggested that the chitosan coating provided the probiotic with greater survival at high temperatures.

4.4 Next generation probiotics

The administration of traditional probiotics does not aim against specific diseases. Based on these situations, identification and characterization of novel and disease-specific next-generation probiotics (NGP) are urgently needed (Olveira & González-Molero, 2016Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482-494. http://dx.doi.org/10.1016/j.endonu.2016.07.006. PMid:27633133.
http://dx.doi.org/10.1016/j.endonu.2016....
). Through analyses using the next generation sequencing and bioinformatics platforms, many potential NGP are currently under intensive development (Chang et al., 2019Chang, C.-J., Lin, T.-L., Tsai, Y.-L., Wu, T.-R., Lai, W.-F., Lu, C.-C., & Lai, H.-C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615-622. http://dx.doi.org/10.1016/j.jfda.2018.12.011. PMid:31324278.
http://dx.doi.org/10.1016/j.jfda.2018.12...
).

Christensenella minuta, Parabacteroides goldsteinii, Prevotella copri, and Akkermansia muciniphila are selectively as NGP potential against obesity and associated metabolic disorders (Everard et al., 2013Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066-9071. http://dx.doi.org/10.1073/pnas.1219451110. PMid:23671105.
http://dx.doi.org/10.1073/pnas.121945111...
; Plovier et al., 2017Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., Loumaye, A., Hermans, M. P., Thissen, J. P., Belzer, C., de Vos, W. M., & Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1), 107-113. http://dx.doi.org/10.1038/nm.4236. PMid:27892954.
http://dx.doi.org/10.1038/nm.4236...
; Cani & de Vos, 2017Cani, P. D., & de Vos, W. M. (2017). Next-generation beneficial microbes: the case of akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. http://dx.doi.org/10.3389/fmicb.2017.01765. PMid:29018410.
http://dx.doi.org/10.3389/fmicb.2017.017...
) while Bifidobacterium spp and Bacteroides fragilis present in a systematic amelioration of inflammation-related diseases such as abscess, neuro-inflammations and good outcomes of anticancer therapies (Round & Mazmanian, 2010Round, J. L., & Mazmanian, S. K. (2010). Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12204-12209. http://dx.doi.org/10.1073/pnas.0909122107. PMid:20566854.
http://dx.doi.org/10.1073/pnas.090912210...
; Huang et al., 2011Huang, J. Y., Lee, S. M., & Mazmanian, S. K. (2011). The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe, 17(4), 137-141. http://dx.doi.org/10.1016/j.anaerobe.2011.05.017. PMid:21664470.
http://dx.doi.org/10.1016/j.anaerobe.201...
). Studies with L. johnsonii BS15 demonstrated that this type of microorganism prevents psychological stress-induced memory dysfunction in mice by modulating the intestinal environment (Wang et al., 2020aWang, H., Sun, Y., Xin, J., Zhang, T., Sun, N., Ni, X., Zeng, D., & Bai, Y. (2020a). Lactobacillus johnsonii BS15 prevents psychological stress–induced memory dysfunction in mice by modulating the Gut–Brain Axis. Frontiers in Microbiology, 11, 1941. http://dx.doi.org/10.3389/fmicb.2020.01941. PMid:32903531.
http://dx.doi.org/10.3389/fmicb.2020.019...
). In addition, it was possible to recover or repair the intestinal physiology (microbiota) and reverse the memory deficit in mice that were stressed and exposed to fluorides by inoculating L. johnsonii BS15 (Xin et al., 2021Xin, J., Wang, H., Sun, N., Bughio, S., Zeng, D., Li, L., Wang, Y., Khalique, A., Zeng, Y., Pan, K., Jing, B., Ma, H., Bai, Y., & Ni, X. (2021). Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicology and Environmental Safety, 215, 112108. http://dx.doi.org/10.1016/j.ecoenv.2021.112108. PMid:33799132.
http://dx.doi.org/10.1016/j.ecoenv.2021....
).

A higher molecular weight polysaccharide fraction (>300 kDa) isolated from the water extract not only lowers body weight by 50% but it also reduces intestinal permeability, metabolic endotoxemia, inflammation, and insulin resistance (Chang et al., 2015Chang, C.-J., Lin, C.-S., Lu, C.-C., Martel, J., Ko, Y.-F., Ojcius, D. M., Tseng, S.-F., Wu, T.-R., Chen, Y.-Y. M., Young, J. D., & Lai, H.-C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6(1), 7489. http://dx.doi.org/10.1038/ncomms8489. PMid:26102296.
http://dx.doi.org/10.1038/ncomms8489...
).

5 Trends and challenges

One of the main challenges in the encapsulation of probiotics is the development of manufacturing processes for products with greater tolerance to high temperatures. The opportunity exists to develop commercial probiotic products that are stable at higher temperatures. Consequently, future research should be focused on producing heat-resistant probiotic microorganisms (natural or engineered or recombinant) and developing encapsulation systems that act effectively as an “insulating material”. Another challenge is focused on generating a greater number of in vivo studies of human nutrition to demonstrate the effectiveness and impact on health and anti-inflammatory diseases (Călinoiu et al., 2019Călinoiu, L.-F., Ştefănescu, B. E., Pop, I. D., Muntean, L., & Vodnar, D. C. (2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194. http://dx.doi.org/10.3390/coatings9030194.
http://dx.doi.org/10.3390/coatings903019...
; Simon et al., 2021Simon, E., Călinoiu, L. F., Mitrea, L., & Vodnar, D. C. (2021). Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6), 2112. http://dx.doi.org/10.3390/nu13062112. PMid:34203002.
http://dx.doi.org/10.3390/nu13062112...
). In addition, to know the results of different clinical trials on the effect and mechanism of action of probiotics in patients with Covid that evaluate the efficacy and safety of Clostridium butyricum capsules and live Bacillus coagulans tablets for the treatment of patients affected by pneumonia. by the new coronavirus and to study its mechanism of action (Gao et al., 2020Gao, Q. Y., Chen, Y. X., & Fang, J. Y. (2020). 2019 Novel coronavirus infection and gastrointestinal tract. Journal of Digestive Diseases, 21(3), 125-126. http://dx.doi.org/10.1111/1751-2980.12851. PMid:32096611.
http://dx.doi.org/10.1111/1751-2980.1285...
; Vodnar et al., 2020Vodnar, D. C., Mitrea, L., Teleky, B. E., Szabo, K., Călinoiu, L. F., Nemeş, S. A., & Martău, G. A. (2020). Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10. Retrieved from https://www.frontiersin.org/article/10.3389/fcimb.2020.575559.
https://www.frontiersin.org/article/10.3...
).

6 Conclusions

Health benefits of probiotics have significantly increased their use and encouraged the food industry to develop alternative, non-dairy probiotic products. The regular use of probiotics poses challenges to the study of other associated therapeutic effects. Encapsulation of probiotics with highly digestible and naturally compatible polysaccharides has been found to be a promising approach. Polysaccharides can be used to provide protection for encapsulated probiotic cells under adverse conditions. Combining two polysaccharides or polysaccharides and non-polysaccharides can have a synergistic effect on the properties of the encapsulated materials, aiding encapsulation viability and improving protection against harsh conditions that reduce stability, storage, and consumption, compared to matrices based on only one polysaccharide. Pectin and starch-based blends are of increasing interest as a low-cost alternative for encapsulation of probiotics with a high viability rate, as well as probiotic and immunostimulatory capacity. Microfluidics, HIPE, double coating, coencapsulation, 3D printing, coaxial electrospinning or combinations ot these techniques show promise for the encapsulation of non-dairy probiotic products. These techniques are characterized by high yield and (probiotic) protection, as well as improved preservation and stability for longer shelf life

Acknowledgements

The authors thank to the projects: Regular Fondecyt 1191651 for financial support, Conicyt Regional, GORE BIO BIO R17A10003, Conicyt PIA/APOYO CCTE AFB170007 and Redes 190181.

  • Practical Application: Encapsulation of probiotic bacteria for food applications.

References

  • Afzaal, M., Saeed, F., Saeed, M., Azam, M., Hussain, S., Mohamed, A. A., Alamri, M. S., & Anjum, F. M. (2020). Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal and thermal conditions. International Journal of Food Properties, 23(1), 1899-1912. http://dx.doi.org/10.1080/10942912.2020.1826513
    » http://dx.doi.org/10.1080/10942912.2020.1826513
  • Agudelo, A., Varela, P., Sanz, T., & Fiszman, S. M. (2014). Native tapioca starch as a potential thickener for fruit fillings. Evaluation of mixed models containing low-methoxyl pectin. Food Hydrocolloids, 35, 297-304. http://dx.doi.org/10.1016/j.foodhyd.2013.06.004
    » http://dx.doi.org/10.1016/j.foodhyd.2013.06.004
  • Agudelo, J., Cano, A., González-Martínez, C., & Chiralt, A. (2017). Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. Journal of Functional Foods, 37, 416-423. http://dx.doi.org/10.1016/j.jff.2017.08.014
    » http://dx.doi.org/10.1016/j.jff.2017.08.014
  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240-251. http://dx.doi.org/10.1016/j.tifs.2007.01.004
    » http://dx.doi.org/10.1016/j.tifs.2007.01.004
  • Antunes, A. E. C., Liserre, A. M., Coelho, A. L. A., Menezes, C. R., Moreno, I., Yotsuyanagi, K., & Azambuja, N. C. (2013). Acerola nectar with added microencapsulated probiotic. Lebensmittel-Wissenschaft + Technologie, 54(1), 125-131. http://dx.doi.org/10.1016/j.lwt.2013.04.018
    » http://dx.doi.org/10.1016/j.lwt.2013.04.018
  • Appala Naidu, B., Kannan, K., Santhosh Kumar, D. P., Oliver, J. W. K., & Abbott, Z. D. (2019). Lyophilized B. subtilis ZB183 spores: 90-Day Repeat Dose Oral (Gavage) toxicity study in wistar rats. Journal of Toxicology, 2019, 3042108. http://dx.doi.org/10.1155/2019/3042108 PMid:31781202.
    » http://dx.doi.org/10.1155/2019/3042108
  • Arslan-Tontul, S., Erbas, M., & Gorgulu, A. (2019). The use of probiotic-loaded single- and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840-849. http://dx.doi.org/10.1007/s12602-018-9467-y PMid:30215181.
    » http://dx.doi.org/10.1007/s12602-018-9467-y
  • Barbieri, N., Herrera, M., Salva, S., Villena, J., & Alvarez, S. (2017). Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice. Beneficial Microbes, 8(3), 393-405. http://dx.doi.org/10.3920/BM2016.0152 PMid:28504568.
    » http://dx.doi.org/10.3920/BM2016.0152
  • Bruzzese, E., Fedele, M. C., Bruzzese, D., Viscovo, S., Giannattasio, A., Mandato, C., Siani, P., & Guarino, A. (2016). Randomised clinical trial: a Lactobacillus GG and micronutrient-containing mixture is effective in reducing nosocomial infections in children, vs. placebo. Alimentary Pharmacology & Therapeutics, 44(6), 568-575. http://dx.doi.org/10.1111/apt.13740 PMid:27464469.
    » http://dx.doi.org/10.1111/apt.13740
  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. http://dx.doi.org/10.1016/j.jfoodeng.2010.12.031
    » http://dx.doi.org/10.1016/j.jfoodeng.2010.12.031
  • Burns, P., Alard, J., Hrdỳ, J., Boutillier, D., Páez, R., Reinheimer, J., Pot, B., Vinderola, G., & Grangette, C. (2017). Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice. Scientific Reports, 7(1), 43211. http://dx.doi.org/10.1038/srep43211 PMid:28233848.
    » http://dx.doi.org/10.1038/srep43211
  • Bustamante, M., Oomah, B. D., Rubilar, M., & Shene, C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chemistry, 216, 97-105. http://dx.doi.org/10.1016/j.foodchem.2016.08.019 PMid:27596397.
    » http://dx.doi.org/10.1016/j.foodchem.2016.08.019
  • Cai, T., Wu, H., Qin, J., Qiao, J., Yang, Y., Wu, Y., Qiao, D., Xu, H., & Cao, Y. (2019). In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food. LWT, 115, 108455. http://dx.doi.org/10.1016/j.lwt.2019.108455
    » http://dx.doi.org/10.1016/j.lwt.2019.108455
  • Călinoiu, L. F., Vodnar, D., & Precup, G. (2016). A review: the probiotic bacteria viability under different conditions. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 73(2), 55-60. http://dx.doi.org/10.15835/buasvmcn-fst:12448
    » http://dx.doi.org/10.15835/buasvmcn-fst:12448
  • Călinoiu, L.-F., Ştefănescu, B. E., Pop, I. D., Muntean, L., & Vodnar, D. C. (2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194. http://dx.doi.org/10.3390/coatings9030194
    » http://dx.doi.org/10.3390/coatings9030194
  • Cani, P. D., & de Vos, W. M. (2017). Next-generation beneficial microbes: the case of akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. http://dx.doi.org/10.3389/fmicb.2017.01765 PMid:29018410.
    » http://dx.doi.org/10.3389/fmicb.2017.01765
  • Chadha, S. (2021). Recent advances in nano-encapsulation technologies for controlled release of biostimulants and antimicrobial agents. In S. Jogaiah, H. B. Singh, L. F. Fraceto, & R. de Lima (Eds.), Advances in nano-fertilizers and nano-pesticides in agriculture (chap. 2, pp. 29-55). Sawston: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-12-820092-6.00002-1
    » http://dx.doi.org/10.1016/B978-0-12-820092-6.00002-1
  • Chang, C.-J., Lin, C.-S., Lu, C.-C., Martel, J., Ko, Y.-F., Ojcius, D. M., Tseng, S.-F., Wu, T.-R., Chen, Y.-Y. M., Young, J. D., & Lai, H.-C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6(1), 7489. http://dx.doi.org/10.1038/ncomms8489 PMid:26102296.
    » http://dx.doi.org/10.1038/ncomms8489
  • Chang, C.-J., Lin, T.-L., Tsai, Y.-L., Wu, T.-R., Lai, W.-F., Lu, C.-C., & Lai, H.-C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615-622. http://dx.doi.org/10.1016/j.jfda.2018.12.011 PMid:31324278.
    » http://dx.doi.org/10.1016/j.jfda.2018.12.011
  • Chean, S. X., Hoh, P. Y., How, Y. H., Nyam, K. L., & Pui, L. P. (2021). Microencapsulation of Lactiplantibacillus plantarum with inulin and evaluation of survival in simulated gastrointestinal conditions and roselle juice. Brazilian Journal of Food Technology, 24, e2020224. http://dx.doi.org/10.1590/1981-6723.22420
    » http://dx.doi.org/10.1590/1981-6723.22420
  • Chen, J., Vestergaard, M., Shen, J., Solem, C., Dufva, M., & Jensen, P. R. (2018). Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria. FEMS Microbiology Letters, 365(23). http://dx.doi.org/10.1093/femsle/fny258 PMid:30357328.
    » http://dx.doi.org/10.1093/femsle/fny258
  • Chen, L., Yang, T., Song, Y., Shu, G., & Chen, H. (2017). Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. Lebensmittel-Wissenschaft + Technologie, 81, 274-280. http://dx.doi.org/10.1016/j.lwt.2017.04.005
    » http://dx.doi.org/10.1016/j.lwt.2017.04.005
  • Cheow, W. S., Kiew, T. Y., & Hadinoto, K. (2014). Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohydrate Polymers, 103, 587-595. http://dx.doi.org/10.1016/j.carbpol.2014.01.036 PMid:24528770.
    » http://dx.doi.org/10.1016/j.carbpol.2014.01.036
  • Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release. Food Research International, 52(1), 373-379. http://dx.doi.org/10.1016/j.foodres.2013.03.028
    » http://dx.doi.org/10.1016/j.foodres.2013.03.028
  • Cruz-Benítez, M. M., Gómez-Aldapa, C. A., Castro-Rosas, J., Hernández-Hernández, E., Gómez-Hernández, E., & Fonseca-Florido, H. A. (2019). Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus. LWT, 105, 110-117. http://dx.doi.org/10.1016/j.lwt.2019.01.069
    » http://dx.doi.org/10.1016/j.lwt.2019.01.069
  • d’Ettorre, G., Ceccarelli, G., Giustini, N., Serafino, S., Calantone, N., De Girolamo, G., Bianchi, L., Bellelli, V., Ascoli-Bartoli, T., Marcellini, S., Turriziani, O., Brenchley, J. M., & Vullo, V. (2015). Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the “Probio-HIV” Clinical Trial. PLoS One, 10(9), e0137200. http://dx.doi.org/10.1371/journal.pone.0137200 PMid:26376436.
    » http://dx.doi.org/10.1371/journal.pone.0137200
  • Dafe, A., Etemadi, H., Dilmaghani, A., & Mahdavinia, G. R. (2017a). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536-543. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.060 PMid:28108413.
    » http://dx.doi.org/10.1016/j.ijbiomac.2017.01.060
  • Dafe, A., Etemadi, H., Zarredar, H., & Mahdavinia, G. R. (2017b). Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules, 97, 299-307. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.016 PMid:28064052.
    » http://dx.doi.org/10.1016/j.ijbiomac.2017.01.016
  • de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292-302. http://dx.doi.org/10.1016/j.idairyj.2009.11.008
    » http://dx.doi.org/10.1016/j.idairyj.2009.11.008
  • Dias, C. O., dos Santos Opuski de Almeida, J., Pinto, S. S., de Oliveira Santana, F. C., Verruck, S., Müller, C. M. O., Prudêncio, E. S., & de Mello Castanho Amboni, R. D. (2018). Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Bioscience, 24, 26-36. http://dx.doi.org/10.1016/j.fbio.2018.05.006
    » http://dx.doi.org/10.1016/j.fbio.2018.05.006
  • Du, X., Wang, L., Wu, S., Yuan, L., Tang, S., Xiang, Y., Qu, X., Liu, H., Qin, X., & Liu, C. (2019). Efficacy of probiotic supplementary therapy for asthma, allergic rhinitis, and wheeze: A meta-analysis of randomized controlled trials. Allergy and Asthma Proceedings, 40(4), 250-260. http://dx.doi.org/10.2500/aap.2019.40.4227 PMid:31262380.
    » http://dx.doi.org/10.2500/aap.2019.40.4227
  • Duan, F. F., Liu, J. H., & March, J. C. (2015). Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 64(5), 1794-1803. http://dx.doi.org/10.2337/db14-0635 PMid:25626737.
    » http://dx.doi.org/10.2337/db14-0635
  • Dumitriu, S., (Ed.) (2004). Polysaccharides: structural diversity and functional versatility (2nd ed.). Boca Raton: CRC Press. http://dx.doi.org/10.1201/9781420030822
    » http://dx.doi.org/10.1201/9781420030822
  • Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, 882-892. http://dx.doi.org/10.1016/j.jff.2015.01.037
    » http://dx.doi.org/10.1016/j.jff.2015.01.037
  • Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42-52. http://dx.doi.org/10.1016/j.foodres.2016.10.026 PMid:29195890.
    » http://dx.doi.org/10.1016/j.foodres.2016.10.026
  • Etchepare, M. A., Nunes, G. L., Nicoloso, B. R., Barin, J. S., Moraes Flores, E. M., de Oliveira Mello, R., & Ragagnin de Menezes, C. (2020). Improvement of the viability of encapsulated probiotics using whey proteins. LWT, 117, 108601. http://dx.doi.org/10.1016/j.lwt.2019.108601
    » http://dx.doi.org/10.1016/j.lwt.2019.108601
  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066-9071. http://dx.doi.org/10.1073/pnas.1219451110 PMid:23671105.
    » http://dx.doi.org/10.1073/pnas.1219451110
  • Fang, Y., Kennedy, B., Rivera, T., Han, K.-S., Anal, A. K., & Singh, H. (2018). Encapsulation system for protection of probiotics during processing. US20180084805A1. Retrieved from https://patents.google.com/patent/US20180084805A1/en
    » https://patents.google.com/patent/US20180084805A1/en
  • Fareez, I. M., Lim, S. M., Mishra, R. K., & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419-1428. http://dx.doi.org/10.1016/j.ijbiomac.2014.10.054 PMid:25450046.
    » http://dx.doi.org/10.1016/j.ijbiomac.2014.10.054
  • Feng, K., Zhai, M.-Y., Zhang, Y., Linhardt, R. J., Zong, M.-H., Li, L., & Wu, H. (2018). Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat. Journal of Agricultural and Food Chemistry, 66(41), 10890-10897. http://dx.doi.org/10.1021/acs.jafc.8b02644 PMid:30260640.
    » http://dx.doi.org/10.1021/acs.jafc.8b02644
  • Food and Agriculture Organization of the United Nations – FAO. (2006). Probiotics in food: Health and nutritional properties and guidelines for evaluation - Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria Roma: FAO/WHO. Retrieved from http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6
    » http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6
  • Fratianni, F., Cardinale, F., Russo, I., Iuliano, C., Tremonte, P., Coppola, R., & Nazzaro, F. (2014). Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, 31(3), 299-305. http://dx.doi.org/10.3109/02652048.2013.871361 PMid:24405451.
    » http://dx.doi.org/10.3109/02652048.2013.871361
  • Gao, Q. Y., Chen, Y. X., & Fang, J. Y. (2020). 2019 Novel coronavirus infection and gastrointestinal tract. Journal of Digestive Diseases, 21(3), 125-126. http://dx.doi.org/10.1111/1751-2980.12851 PMid:32096611.
    » http://dx.doi.org/10.1111/1751-2980.12851
  • García-Ceja, A., Mani-López, E., Palou, E., & López-Malo, A. (2015). Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. Lebensmittel-Wissenschaft + Technologie, 63(1), 482-489. http://dx.doi.org/10.1016/j.lwt.2015.03.071
    » http://dx.doi.org/10.1016/j.lwt.2015.03.071
  • Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers, 10(7), 762. http://dx.doi.org/10.3390/polym10070762 PMid:30960687.
    » http://dx.doi.org/10.3390/polym10070762
  • Gbassi, G. K., & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4(1), 149-163. http://dx.doi.org/10.3390/pharmaceutics4010149 PMid:24300185.
    » http://dx.doi.org/10.3390/pharmaceutics4010149
  • Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F., & Gigante, M. L. (2013). Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International, 51(2), 872-878. http://dx.doi.org/10.1016/j.foodres.2013.02.008
    » http://dx.doi.org/10.1016/j.foodres.2013.02.008
  • Girija, A. R., & Sakthi Kumar, D. (2016). Novel paradigm of design and delivery of nutraceuticals with nanoscience and technology. In A. M. Grumezescu. Nutraceuticals (pp. 343-385). USA: Elsevier. http://dx.doi.org/10.1016/B978-0-12-804305-9.00010-5
    » http://dx.doi.org/10.1016/B978-0-12-804305-9.00010-5
  • Gómez-Mascaraque, L. G., Ambrosio-Martín, J., Perez-Masiá, R., & Lopez-Rubio, A. (2017). Impact of acetic acid on the survival of L. plantarum upon microencapsulation by coaxial electrospraying. Journal of Healthcare Engineering, 2017, e4698079. http://dx.doi.org/10.1155/2017/4698079 PMid:29065607.
    » http://dx.doi.org/10.1155/2017/4698079
  • Gomez-Mascaraque, L. G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G., & Lopez-Rubio, A. (2016). Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. Lebensmittel-Wissenschaft + Technologie, 69, 438-446. http://dx.doi.org/10.1016/j.lwt.2016.01.071
    » http://dx.doi.org/10.1016/j.lwt.2016.01.071
  • Grand View Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028 Retrieved from https://www.grandviewresearch.com/industry-analysis/probiotics-market
    » https://www.grandviewresearch.com/industry-analysis/probiotics-market
  • Gul, O., & Atalar, I. (2019). Different stress tolerance of spray and freeze dried Lactobacillus casei Shirota microcapsules with different encapsulating agents. Food Science and Biotechnology, 28(3), 807-816. http://dx.doi.org/10.1007/s10068-018-0507-x PMid:31093438.
    » http://dx.doi.org/10.1007/s10068-018-0507-x
  • Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: Insights into academic and industrial approaches. Materials (Basel), 3(1), 114-136. http://dx.doi.org/10.3934/matersci.2016.1.114
    » http://dx.doi.org/10.3934/matersci.2016.1.114
  • Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas, J., Gómez-Aldapa, C. A., Cadena-Ramírez, A., Acevedo-Sandoval, O. A., Gordillo-Martínez, A. J., & Falfán-Cortés, R. N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT, 95, 216-222. http://dx.doi.org/10.1016/j.lwt.2018.04.075
    » http://dx.doi.org/10.1016/j.lwt.2018.04.075
  • Heumann, A., Assifaoui, A., Da Silva Barreira, D., Thomas, C., Briandet, R., Laurent, J., Beney, L., Lapaquette, P., Guzzo, J., & Rieu, A. (2020). Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. NPJ Biofilms and Microbiomes, 6(1), 44. http://dx.doi.org/10.1038/s41522-020-00159-3 PMid:33116127.
    » http://dx.doi.org/10.1038/s41522-020-00159-3
  • Holkem, A. T., Raddatz, G. C., Nunes, G. L., Cichoski, A. J., Jacob-Lopes, E., Ferreira Grosso, C. R., & de Menezes, C. R. (2016). Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. Lebensmittel-Wissenschaft + Technologie, 71, 302-308. http://dx.doi.org/10.1016/j.lwt.2016.04.012
    » http://dx.doi.org/10.1016/j.lwt.2016.04.012
  • Hu, J., Zhang, L., Lin, W., Tang, W., Chan, F. K. L., & Ng, S. C. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science & Technology, 108, 187-196. http://dx.doi.org/10.1016/j.tifs.2020.12.009 PMid:33519087.
    » http://dx.doi.org/10.1016/j.tifs.2020.12.009
  • Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534-539. http://dx.doi.org/10.1016/j.foodchem.2012.04.140 PMid:22868125.
    » http://dx.doi.org/10.1016/j.foodchem.2012.04.140
  • Huang, J. Y., Lee, S. M., & Mazmanian, S. K. (2011). The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe, 17(4), 137-141. http://dx.doi.org/10.1016/j.anaerobe.2011.05.017 PMid:21664470.
    » http://dx.doi.org/10.1016/j.anaerobe.2011.05.017
  • Ismail, H., Irani, M., & Ahmad, Z. (2013). Starch-based hydrogels: present status and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 411-420. http://dx.doi.org/10.1080/00914037.2012.719141
    » http://dx.doi.org/10.1080/00914037.2012.719141
  • Jang, H.-J., Son, S., Kim, J.-A., Jung, M. Y., Choi, Y., Kim, D.-H., Lee, H. K., Shin, D., & Kim, Y. (2021). Characterization and Functional Test of Canine Probiotics. Frontiers in Microbiology, 12, 625562. http://dx.doi.org/10.3389/fmicb.2021.625562 PMid:33763044.
    » http://dx.doi.org/10.3389/fmicb.2021.625562
  • Khosravi Zanjani, M. A., Ehsani, M. R., Ghiassi Tarzi, B., & Sharifan, A. (2018). Promoting Probiotics Survival by Microencapsualtion with Hylon Starch and Genipin Cross-linked Coatings in Simulated Gastro-intestinal Condition and Heat Treatment. Iranian Journal of Pharmaceutical Research : IJPR, 17(2), 753-766. PMid:29881432.
  • Kim, J. U., Kim, B., Shahbaz, H. M., Lee, S. H., Park, D., & Park, J. (2017). Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. International Journal of Food Science & Technology, 52(2), 519-530. http://dx.doi.org/10.1111/ijfs.13308
    » http://dx.doi.org/10.1111/ijfs.13308
  • Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. Lebensmittel-Wissenschaft + Technologie, 57(2), 761-766. http://dx.doi.org/10.1016/j.lwt.2014.01.037
    » http://dx.doi.org/10.1016/j.lwt.2014.01.037
  • Kumar, M., Yadav, A. K., Verma, V., Singh, B., Mal, G., Nagpal, R., & Hemalatha, R. (2016). Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiology, 11(4), 585-600. http://dx.doi.org/10.2217/fmb.16.4 PMid:27070955.
    » http://dx.doi.org/10.2217/fmb.16.4
  • Kwiecień, I., & Kwiecień, M. (2018). Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels, 4(2), 47. http://dx.doi.org/10.3390/gels4020047 PMid:30674823.
    » http://dx.doi.org/10.3390/gels4020047
  • Leylak, C., Özdemir, K. S., Gurakan, G. C., & Ogel, Z. B. (2021). Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: its application in yoghurt. International Dairy Journal, 112, 104865. http://dx.doi.org/10.1016/j.idairyj.2020.104865
    » http://dx.doi.org/10.1016/j.idairyj.2020.104865
  • Li, L., Han, Z., Niu, X., Zhang, G., Jia, Y., Zhang, S., & He, C. (2019a). Probiotic supplementation for prevention of atopic dermatitis in infants and children: a systematic review and meta-analysis. American Journal of Clinical Dermatology, 20(3), 367-377. http://dx.doi.org/10.1007/s40257-018-0404-3 PMid:30465329.
    » http://dx.doi.org/10.1007/s40257-018-0404-3
  • Li, M., Jin, Y., Wang, Y., Meng, L., Zhang, N., Sun, Y., Hao, J., Fu, Q., & Sun, Q. (2019b). Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of Dairy Science, 102(6), 4832-4843. http://dx.doi.org/10.3168/jds.2018-15597 PMid:30981490.
    » http://dx.doi.org/10.3168/jds.2018-15597
  • Li, Q., Cheng, F., Xu, Q., Su, Y., Cai, X., Zeng, F., & Zhang, Y. (2021). The role of probiotics in coronavirus disease-19 infection in Wuhan: a retrospective study of 311 severe patients. International Immunopharmacology, 95, 107531. http://dx.doi.org/10.1016/j.intimp.2021.107531 PMid:33714884.
    » http://dx.doi.org/10.1016/j.intimp.2021.107531
  • Liao, N., Luo, B., Gao, J., Li, X., Zhao, Z., Zhang, Y., Ni, Y., & Tian, F. (2019). Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnology Letters, 41(2), 263-272. http://dx.doi.org/10.1007/s10529-018-02634-6 PMid:30535881.
    » http://dx.doi.org/10.1007/s10529-018-02634-6
  • Ma, L., Shang, Y., Zhu, Y., Zhang, X., e, J., Zhao, L., & Wang, J. (2020). Study on microencapsulation of Lactobacillus plantarum LIP-1 by emulsification method. Journal of Food Process Engineering, 43(8), e13437. http://dx.doi.org/10.1111/jfpe.13437
    » http://dx.doi.org/10.1111/jfpe.13437
  • Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3), e03541. http://dx.doi.org/10.1016/j.heliyon.2020.e03541 PMid:32190759.
    » http://dx.doi.org/10.1016/j.heliyon.2020.e03541
  • Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., & Makouie, S. (2020). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. LWT, 126, 109224. http://dx.doi.org/10.1016/j.lwt.2020.109224
    » http://dx.doi.org/10.1016/j.lwt.2020.109224
  • Martău, G. A., Mihai, M., & Vodnar, D. C. (2019). The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers, 11(11), 1837. http://dx.doi.org/10.3390/polym11111837 PMid:31717269.
    » http://dx.doi.org/10.3390/polym11111837
  • Mathipa, M. G., & Thantsha, M. S. (2017). Probiotic engineering: Towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens, 9(1), 28. http://dx.doi.org/10.1186/s13099-017-0178-9 PMid:28491143.
    » http://dx.doi.org/10.1186/s13099-017-0178-9
  • Menezes, M. F., Silva, T. M., Etchepare, M. A., Fonseca, B. S., Sonza, V. P., Codevilla, C. F., Barin, J. S., Silva, C. B., & Menezes, C. R. (2019). Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Ciência Rural, 49(9), e20181020. http://dx.doi.org/10.1590/0103-8478cr20181020
    » http://dx.doi.org/10.1590/0103-8478cr20181020
  • Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C., & Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416. http://dx.doi.org/10.1016/j.foodchem.2007.04.076
    » http://dx.doi.org/10.1016/j.foodchem.2007.04.076
  • Moayyedi, M., Eskandari, M. H., Rad, A. H. E., Ziaee, E., Khodaparast, M. H. H., & Golmakani, M.-T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods, 40, 391-399. http://dx.doi.org/10.1016/j.jff.2017.11.016
    » http://dx.doi.org/10.1016/j.jff.2017.11.016
  • Muhammad, Z., Ramzan, R., Zhang, R., & Zhang, M. (2021). Resistant starch-based edible coating composites for spray-dried microencapsulation of Lactobacillus acidophilus, comparative assessment of thermal protection, in vitro digestion and physicochemical characteristics. Coatings, 11(5), 587. http://dx.doi.org/10.3390/coatings11050587
    » http://dx.doi.org/10.3390/coatings11050587
  • Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D Printing in Food Processing. Food Engineering Reviews, 11(3), 123-141. http://dx.doi.org/10.1007/s12393-019-09199-8
    » http://dx.doi.org/10.1007/s12393-019-09199-8
  • Nambiar, R. B., Sellamuthu, P. S., & Perumal, A. B. (2018). Development of milk chocolate supplemented with microencapsulated Lactobacillus plantarum HM47 and to determine the safety in a Swiss albino mice model. Food Control, 94, 300-306. http://dx.doi.org/10.1016/j.foodcont.2018.07.024
    » http://dx.doi.org/10.1016/j.foodcont.2018.07.024
  • Nunes, G. L., Etchepare, M. A., Cichoski, A. J., Zepka, L. Q., Jacob Lopes, E., Barin, J. S., Flores, É. M. M., da Silva, C. B., & de Menezes, C. R. (2018). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT, 89, 128-133. https://doi.org/10.1016/j.lwt.2017.10.032
    » https://doi.org/10.1016/j.lwt.2017.10.032
  • Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482-494. http://dx.doi.org/10.1016/j.endonu.2016.07.006 PMid:27633133.
    » http://dx.doi.org/10.1016/j.endonu.2016.07.006
  • Padhmavathi, V., Shruthy, R., & Preetha, R. (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology, 1-7. http://dx.doi.org/10.1007/s13197-021-05179-1.
  • Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171-1185. http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x PMid:16696665.
    » http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x
  • Paz-Samaniego, R., Rascón-Chu, A., Brown-Bojorquez, F., Carvajal-Millan, E., Pedroza-Montero, M., Silva-Campa, E., Sotelo-Cruz, N., López-Franco, Y. L., & Lizardi-Mendoza, J. (2018). Electrospray-assisted fabrication of core-shell arabinoxylan gel particles for insulin and probiotics entrapment. Journal of Applied Polymer Science, 135(26), 46411. http://dx.doi.org/10.1002/app.46411
    » http://dx.doi.org/10.1002/app.46411
  • Pedroso-Santana, S., & Fleitas‐Salazar, N. (2020). Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443-447. http://dx.doi.org/10.1002/pi.5970
    » http://dx.doi.org/10.1002/pi.5970
  • Pereira, T., Barroso, S., & Gil, M. M. (2021). Food texture design by 3D printing: a review. Foods, 10(2), 320. http://dx.doi.org/10.3390/foods10020320 PMid:33546337.
    » http://dx.doi.org/10.3390/foods10020320
  • Phuong Ta, L., Bujna, E., Kun, S., Charalampopoulos, D., & Khutoryanskiy, V. V. (2021). Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. International Journal of Pharmaceutics, 597, 120342. http://dx.doi.org/10.1016/j.ijpharm.2021.120342 PMid:33545291.
    » http://dx.doi.org/10.1016/j.ijpharm.2021.120342
  • Piacentini, E., Giorno, L., Dragosavac, M. M., Vladisavljević, G. T., & Holdich, R. G. (2013). Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification. Food Research International, 53(1), 362-372. http://dx.doi.org/10.1016/j.foodres.2013.04.012
    » http://dx.doi.org/10.1016/j.foodres.2013.04.012
  • Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., Loumaye, A., Hermans, M. P., Thissen, J. P., Belzer, C., de Vos, W. M., & Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1), 107-113. http://dx.doi.org/10.1038/nm.4236 PMid:27892954.
    » http://dx.doi.org/10.1038/nm.4236
  • Poletto, G., Raddatz, G. C., Cichoski, A. J., Zepka, L. Q., Lopes, E. J., Barin, J. S., Wagner, R., & de Menezes, C. R. (2019). Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocolloids, 95, 238-244. http://dx.doi.org/10.1016/j.foodhyd.2019.04.049
    » http://dx.doi.org/10.1016/j.foodhyd.2019.04.049
  • Precup, G., & Vodnar, D.-C. (2019). Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. The British Journal of Nutrition, 122(2), 131-140. http://dx.doi.org/10.1017/S0007114519000680 PMid:30924428.
    » http://dx.doi.org/10.1017/S0007114519000680
  • Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., & Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. http://dx.doi.org/10.1038/s41598-021-93263-z PMid:34215824.
    » http://dx.doi.org/10.1038/s41598-021-93263-z
  • Qaziyani, S. D., Pourfarzad, A., Gheibi, S., & Nasiraie, L. R. (2019). Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: Study with univariate and multivariate analyses. Heliyon, 5(7), e02144. http://dx.doi.org/10.1016/j.heliyon.2019.e02144 PMid:31372570.
    » http://dx.doi.org/10.1016/j.heliyon.2019.e02144
  • Qin, X.-S., Gao, Q.-Y., & Luo, Z.-G. (2021). Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids, 116, 106658. http://dx.doi.org/10.1016/j.foodhyd.2021.106658
    » http://dx.doi.org/10.1016/j.foodhyd.2021.106658
  • Quintana, G., Gerbino, E., Alves, P., Simões, P. N., Rúa, M. L., Fuciños, C., & Gomez-Zavaglia, A. (2021). Microencapsulation of Lactobacillus plantarum in W/O emulsions of okara oil and block-copolymers of poly(acrylic acid) and pluronic using microfluidic devices. Food Research International, 140, 110053. http://dx.doi.org/10.1016/j.foodres.2020.110053 PMid:33648278.
    » http://dx.doi.org/10.1016/j.foodres.2020.110053
  • Raddatz, G. C., & Menezes, C. R. (2021). Microencapsulation and co-encapsulation of bioactive compounds for application in food: challenges and perspectives. Ciência Rural, 51(3), e20200616. http://dx.doi.org/10.1590/0103-8478cr20200616
    » http://dx.doi.org/10.1590/0103-8478cr20200616
  • Rajam, R., & Anandharamakrishnan, C. (2015a). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lebensmittel-Wissenschaft + Technologie, 60(2, Pt 1), 773-780. http://dx.doi.org/10.1016/j.lwt.2014.09.062
    » http://dx.doi.org/10.1016/j.lwt.2014.09.062
  • Rajam, R., & Anandharamakrishnan, C. (2015b). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95-103. http://dx.doi.org/10.1016/j.jfoodeng.2015.05.029
    » http://dx.doi.org/10.1016/j.jfoodeng.2015.05.029
  • Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), 2470-2494. http://dx.doi.org/10.1080/10408398.2020.1854169 PMid:33251846.
    » http://dx.doi.org/10.1080/10408398.2020.1854169
  • Rø, A. D. B., Simpson, M. R., Rø, T. B., Storrø, O., Johnsen, R., Videm, V., & Øien, T. (2017). Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clinical and Experimental Allergy, 47(8), 1014-1021. http://dx.doi.org/10.1111/cea.12930 PMid:28346719.
    » http://dx.doi.org/10.1111/cea.12930
  • Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137, 109682. http://dx.doi.org/10.1016/j.foodres.2020.109682 PMid:33233258.
    » http://dx.doi.org/10.1016/j.foodres.2020.109682
  • Round, J. L., & Mazmanian, S. K. (2010). Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12204-12209. http://dx.doi.org/10.1073/pnas.0909122107 PMid:20566854.
    » http://dx.doi.org/10.1073/pnas.0909122107
  • Sanborn, V. E., Azcarate-Peril, M. A., & Gunstad, J. (2020). Lactobacillus rhamnosus GG and HbA1c in middle age and older adults without type 2 diabetes mellitus: A preliminary randomized study. Diabetes & Metabolic Syndrome, 14(5), 907-909. http://dx.doi.org/10.1016/j.dsx.2020.05.034 PMid:32570015.
    » http://dx.doi.org/10.1016/j.dsx.2020.05.034
  • Santos, D. X., Casazza, A. A., Aliakbarian, B., Bedani, R., Saad, S. M. I., & Perego, P. (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT, 99, 404-410. http://dx.doi.org/10.1016/j.lwt.2018.10.010
    » http://dx.doi.org/10.1016/j.lwt.2018.10.010
  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193-202. http://dx.doi.org/10.1016/j.foodres.2009.09.028
    » http://dx.doi.org/10.1016/j.foodres.2009.09.028
  • Serban, D. E. (2014). Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Letters, 345(2), 258-270. http://dx.doi.org/10.1016/j.canlet.2013.08.013 PMid:23981580.
    » http://dx.doi.org/10.1016/j.canlet.2013.08.013
  • Seth, D., Mishra, H. N., & Deka, S. C. (2017). Effect of microencapsulation using extrusion technique on viability of bacterial cells during spray drying of sweetened yoghurt. International Journal of Biological Macromolecules, 103, 802-807. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.099 PMid:28536022.
    » http://dx.doi.org/10.1016/j.ijbiomac.2017.05.099
  • Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87-95. http://dx.doi.org/10.1016/j.toxlet.2017.07.904 PMid:28778519.
    » http://dx.doi.org/10.1016/j.toxlet.2017.07.904
  • Shu, G., Wang, Z., Chen, L., Wan, H., & Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT, 90, 70-76. http://dx.doi.org/10.1016/j.lwt.2017.12.013
    » http://dx.doi.org/10.1016/j.lwt.2017.12.013
  • Silva, K. C. G., Cezarino, E. C., Michelon, M., & Sato, A. C. K. (2018). Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT, 89, 503-509. http://dx.doi.org/10.1016/j.lwt.2017.11.026
    » http://dx.doi.org/10.1016/j.lwt.2017.11.026
  • Simon, E., Călinoiu, L. F., Mitrea, L., & Vodnar, D. C. (2021). Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6), 2112. http://dx.doi.org/10.3390/nu13062112 PMid:34203002.
    » http://dx.doi.org/10.3390/nu13062112
  • Singu, B. D., Bhushette, P. R., & Annapure, U. S. (2020). Thermo-tolerant Saccharomyces cerevisiae var. Boulardii coated cornflakes as a potential probiotic vehicle. Food Bioscience, 36, 100668. http://dx.doi.org/10.1016/j.fbio.2020.100668
    » http://dx.doi.org/10.1016/j.fbio.2020.100668
  • Škrlec, K., Zupančič, Š., Prpar Mihevc, S., Kocbek, P., Kristl, J., & Berlec, A. (2019). Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. European Journal of Pharmaceutics and Biopharmaceutics, 136, 108-119. http://dx.doi.org/10.1016/j.ejpb.2019.01.013 PMid:30660693.
    » http://dx.doi.org/10.1016/j.ejpb.2019.01.013
  • Solanki, H. K., Pawar, D. D., Shah, D. A., Prajapati, V. D., Jani, G. K., Mulla, A. M., & Thakar, P. M. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. http://dx.doi.org/10.1155/2013/620719 PMid:24027760.
    » http://dx.doi.org/10.1155/2013/620719
  • Soukoulis, C., Behboudi-Jobbehdar, S., MacNaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids, 70, 345-355. http://dx.doi.org/10.1016/j.foodhyd.2017.04.014 PMid:28867864.
    » http://dx.doi.org/10.1016/j.foodhyd.2017.04.014
  • Speranza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Rosaria Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 20. http://dx.doi.org/10.3390/beverages6020020
    » http://dx.doi.org/10.3390/beverages6020020
  • Su, J., Cai, Y., Tai, K., Guo, Q., Zhu, S., Mao, L., Gao, Y., Yuan, F., & Van der Meeren, P. (2021). High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food & Function, 12(1), 70-82. http://dx.doi.org/10.1039/D0FO01659D PMid:33191429.
    » http://dx.doi.org/10.1039/D0FO01659D
  • Sun, M., Luo, J., Liu, H., Xi, Y., & Lin, Q. (2021). Can Mixed Strains of Lactobacillus and Bifidobacterium Reduce Eczema in Infants under Three Years of Age? A Meta-Analysis. Nutrients, 13(5), 1461. http://dx.doi.org/10.3390/nu13051461 PMid:33923096.
    » http://dx.doi.org/10.3390/nu13051461
  • Tantratian, S., & Pradeamchai, M. (2020). Select a protective agent for encapsulation of Lactobacillus plantarum. LWT, 123, 109075. http://dx.doi.org/10.1016/j.lwt.2020.109075
    » http://dx.doi.org/10.1016/j.lwt.2020.109075
  • Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., Zhang, D., Wang, Z., Liu, M., & Han, J. (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering, 252, 10-17. http://dx.doi.org/10.1016/j.jfoodeng.2019.02.009
    » http://dx.doi.org/10.1016/j.jfoodeng.2019.02.009
  • Trabelsi, I., Ayadi, D., Bejar, W., Bejar, S., Chouayekh, H., & Ben Salah, R. (2014). Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. International Journal of Biological Macromolecules, 64, 84-89. http://dx.doi.org/10.1016/j.ijbiomac.2013.11.031 PMid:24315948.
    » http://dx.doi.org/10.1016/j.ijbiomac.2013.11.031
  • van Wietmarschen, H. A., Busch, M., van Oostveen, A., Pot, G., & Jong, M. C. (2020). Probiotics use for antibiotic-associated diarrhea: a pragmatic participatory evaluation in nursing homes. BMC Gastroenterology, 20(1), 151. http://dx.doi.org/10.1186/s12876-020-01297-w PMid:32404062.
    » http://dx.doi.org/10.1186/s12876-020-01297-w
  • Villa, M. M., Bloom, R. J., Silverman, J. D., Durand, H. K., Jiang, S., Wu, A., Huang, S., You, L., & David, L. A. (2019). High-throughput isolation and culture of human gut bacteria with droplet microfluidics. bioRxiv 630822. https://doi.org/10.1101/630822
    » https://doi.org/10.1101/630822
  • Viramontes-Hörner, D., Avery, A., & Stow, R. (2017). The Effects of Probiotics and Symbiotics on Risk Factors for Hepatic Encephalopathy: A Systematic Review. Journal of Clinical Gastroenterology, 51(4), 312-323. http://dx.doi.org/10.1097/MCG.0000000000000789 PMid:28059938.
    » http://dx.doi.org/10.1097/MCG.0000000000000789
  • Vodnar, D. C., & Socaciu, C. (2012). Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions. Chemistry Central Journal, 6(1), 61. http://dx.doi.org/10.1186/1752-153X-6-61 PMid:22727242.
    » http://dx.doi.org/10.1186/1752-153X-6-61
  • Vodnar, D. C., & Socaciu, C. (2014). Selenium enriched green tea increase stability of Lactobacillus casei and Lactobacillus plantarum in chitosan coated alginate microcapsules during exposure to simulated gastrointestinal and refrigerated conditions. Lebensmittel-Wissenschaft + Technologie, 57(1), 406-411. http://dx.doi.org/10.1016/j.lwt.2013.12.043
    » http://dx.doi.org/10.1016/j.lwt.2013.12.043
  • Vodnar, D. C., Socaciu, C., Rotar, A. M., & Stãnilã, A. (2010). Morphology, FTIR fingerprint and survivability of encapsulated lactic bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) in simulated gastric juice and intestinal juice: Morphology, FTIR fingerprint and survivability of encapsulated lactic bacteria. International Journal of Food Science & Technology, 45(11), 2345-2351. http://dx.doi.org/10.1111/j.1365-2621.2010.02406.x
    » http://dx.doi.org/10.1111/j.1365-2621.2010.02406.x
  • Vodnar, D. C., Mitrea, L., Teleky, B. E., Szabo, K., Călinoiu, L. F., Nemeş, S. A., & Martău, G. A. (2020). Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10. Retrieved from https://www.frontiersin.org/article/10.3389/fcimb.2020.575559
    » https://www.frontiersin.org/article/10.3389/fcimb.2020.575559
  • Wang, H., Sun, Y., Xin, J., Zhang, T., Sun, N., Ni, X., Zeng, D., & Bai, Y. (2020a). Lactobacillus johnsonii BS15 prevents psychological stress–induced memory dysfunction in mice by modulating the Gut–Brain Axis. Frontiers in Microbiology, 11, 1941. http://dx.doi.org/10.3389/fmicb.2020.01941 PMid:32903531.
    » http://dx.doi.org/10.3389/fmicb.2020.01941
  • Xin, J., Wang, H., Sun, N., Bughio, S., Zeng, D., Li, L., Wang, Y., Khalique, A., Zeng, Y., Pan, K., Jing, B., Ma, H., Bai, Y., & Ni, X. (2021). Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicology and Environmental Safety, 215, 112108. http://dx.doi.org/10.1016/j.ecoenv.2021.112108 PMid:33799132.
    » http://dx.doi.org/10.1016/j.ecoenv.2021.112108
  • Xu, Y.-T., Tang, C.-H., & Binks, B. P. (2020). High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles. Food Hydrocolloids, 98, 105254. http://dx.doi.org/10.1016/j.foodhyd.2019.105254
    » http://dx.doi.org/10.1016/j.foodhyd.2019.105254
  • Yamamoto, H. S., Xu, Q., & Fichorova, R. N. (2013). Homeostatic properties of Lactobacillus jensenii engineered as a live vaginal anti-HIV microbicide. BMC Microbiology, 13(1), 4. http://dx.doi.org/10.1186/1471-2180-13-4 PMid:23298379.
    » http://dx.doi.org/10.1186/1471-2180-13-4
  • Yao, M., Wu, J., Li, B., Xiao, H., McClements, D. J., & Li, L. (2017). Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, 72, 228-236. http://dx.doi.org/10.1016/j.foodhyd.2017.05.033
    » http://dx.doi.org/10.1016/j.foodhyd.2017.05.033
  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: a review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874. http://dx.doi.org/10.1111/1541-4337.12532 PMid:33325164.
    » http://dx.doi.org/10.1111/1541-4337.12532
  • Ying, D., Schwander, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C., & Augustin, M. A. (2013). Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: probiotic survival in fruit juice. Journal of Functional Foods, 5(1), 98-105. http://dx.doi.org/10.1016/j.jff.2012.08.009
    » http://dx.doi.org/10.1016/j.jff.2012.08.009
  • Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. http://dx.doi.org/10.1016/j.lwt.2021.111461
    » http://dx.doi.org/10.1016/j.lwt.2021.111461
  • Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. http://dx.doi.org/10.1016/j.jfoodeng.2020.110033
    » http://dx.doi.org/10.1016/j.jfoodeng.2020.110033
  • Youssef, M., Korin, A., Zhan, F., Hady, E., Ahmed, H. Y., Geng, F., Chen, Y., & Li, B. (2021). Encapsulation of Lactobacillus Salivarius in Single and Dual biopolymer. Journal of Food Engineering, 294, 110398. http://dx.doi.org/10.1016/j.jfoodeng.2020.110398
    » http://dx.doi.org/10.1016/j.jfoodeng.2020.110398
  • Zaeim, D., Sarabi-Jamab, M., Ghorani, B., & Kadkhodaee, R. (2019). Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. LWT, 110, 102-109. http://dx.doi.org/10.1016/j.lwt.2019.04.040
    » http://dx.doi.org/10.1016/j.lwt.2019.04.040
  • Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., Liu, W., & Tromp, R. H. (2020). Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Structure, 25, 100147. http://dx.doi.org/10.1016/j.foostr.2020.100147
    » http://dx.doi.org/10.1016/j.foostr.2020.100147
  • Zainal-Ariffin, S. H., Yeen, W. W., Zainol Abidin, I. Z., Megat Abdul Wahab, R., Zainal Ariffin, Z., & Senafi, S. (2014). Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in human intestine and liver cell lines. BMC Complementary and Alternative Medicine, 14(1), 508. http://dx.doi.org/10.1186/1472-6882-14-508 PMid:25519220.
    » http://dx.doi.org/10.1186/1472-6882-14-508
  • Zanjani, M. A. K., Ehsani, M. R., Ghiassi Tarzi, B., & Sharifan, A. (2018). Promoting Lactobacillus casei and Bifidobacterium adolescentis survival by microencapsulation with different starches and chitosan and poly L-lysine coatings in ice cream. Journal of Food Processing and Preservation, 42(1), e13318. http://dx.doi.org/10.1111/jfpp.13318
    » http://dx.doi.org/10.1111/jfpp.13318
  • Zhang, H., Yeh, C., Jin, Z., Ding, L., Liu, B. Y., Zhang, L., & Dannelly, H. K. (2018a). Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synthetic and Systems Biotechnology, 3(2), 113-120. http://dx.doi.org/10.1016/j.synbio.2018.03.001 PMid:29900424.
    » http://dx.doi.org/10.1016/j.synbio.2018.03.001
  • Zhang, L., Li, N., Caicedo, R., & Neu, J. (2005). Alive and Dead Lactobacillus rhamnosus GG Decrease Tumor Necrosis Factor-α–Induced Interleukin-8 Production in Caco-2 Cells. The Journal of Nutrition, 135(7), 1752-1756. http://dx.doi.org/10.1093/jn/135.7.1752 PMid:15987860.
    » http://dx.doi.org/10.1093/jn/135.7.1752
  • Zhang, L., Lou, Y., & Schutyser, M. A. I. (2018b). 3D printing of cereal-based food structures containing probiotics. Food Structure, 18, 14-22. http://dx.doi.org/10.1016/j.foostr.2018.10.002
    » http://dx.doi.org/10.1016/j.foostr.2018.10.002
  • Zhao, M., Wang, Y., Huang, X., Gaenzle, M., Wu, Z., Nishinari, K., Yang, N., & Fang, Y. (2018). Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food & Function, 9(2), 1000-1008. http://dx.doi.org/10.1039/C7FO01802A PMid:29345267.
    » http://dx.doi.org/10.1039/C7FO01802A

Publication Dates

  • Publication in this collection
    20 May 2022
  • Date of issue
    2022

History

  • Received
    30 Sept 2021
  • Accepted
    22 Mar 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br