Acessibilidade / Reportar erro

Long-term effects of cover crops on physical-hydric properties of compacted soil

ABSTRACT.

The screening of cover crops is essential for improving the physical-hydric properties of compacted soils. This study aimed to evaluate the effects of mixed or single cover crops on improving the physical-hydric properties of compacted Oxisol. Species with tap-rooted and fibrous-rooted rooting patterns were evaluated. The species included pearl millet (Pennisetum americanum), pigeon pea (Cajanus cajan), sunn hemp (Crotalaria spectabilis), velvet bean (Mucuna pruriens), white oat (Avena sativa), black oat (Avena strigosa), rye (Secale cereale), black oat + forage turnip (Raphanus sativus), black oat + white lupin (Lupinus albus L.), and black oat + group pea (Pisum arvense L.). Mixing cover crops did not improve the physical properties of the soil. The tap-rooted pigeon pea effectively reduces bulk density and increases porosity and saturated hydraulic conductivity (Ksat) in compact soils. The selection of cover crops with characteristics that improve soil physical-hydric properties is crucial for compacted areas.

Keywords:
compaction; bulk density; no-till; cover crop

Introduction

In Brazil, no-till (NT) farming is carried out with monocultures of maize (Zea mays L.), soybean (Glycine max L.), and wheat (Triticum aestivum L.) (Peixoto et al., 2019Peixoto, D. S., Silva, B. M., Oliveira, G. C., Moreira, S. G., Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, 194, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104307
https://doi.org/https://doi.org/10.1016/...
). On the one hand, simplifying production systems facilitates operational routines on rural properties (Garbelini et al., 2020Garbelini, L. G., Franchini, J. C., Debiasi, H., Balbinot Junior, A. A., Betioli Junior, E., & Telles, T. S. (2020). Profitability of soybean production models with diversified crops in the autumn winter. Agronomy Journal, 112(5), 4092-4103. DOI: https://doi.org/10.1002/agj2.20308
https://doi.org/https://doi.org/10.1002/...
). However, such rotations degrade the soil’s physical, chemical, and biological properties (Ferreira, Tormena, Severiano, Zotarelli, & Betioli Júnior, 2021Ferreira, C. J. B., Tormena, C. A., Severiano, E. D. C., Zotarelli, L., & Betioli Júnior, E. (2021). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 67(3), 383-396. DOI: https://doi.org/10.1080/03650340.2020.1733535
https://doi.org/https://doi.org/10.1080/...
). These systems do not produce sufficient straw to adequately cover the soil throughout the year. This lack of ground cover causes soil compaction problems (Reichert et al., 2022Reichert, J. M., Corcini, A. L., Awe, G. O., Reinert, D. J., Albuquerque, J. A., Gallarreta, C. C. G., & Docampo, R. (2022). Onion-forage cropping systems on a Vertic Argiudoll in Uruguay: Onion yield and soil organic matter, aggregation, porosity and permeability. Soil and Tillage Research, 216, 1-7. DOI: https://doi.org/10.1016/j.still.2021.105229
https://doi.org/https://doi.org/10.1016/...
). Soil compaction is caused by intense external pressures from agricultural equipment and the natural accommodation of soil particles (Hamza & Anderson, 2005Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. DOI: http://dx.doi.org/10.1016/j.still.2004.08.009
https://doi.org/http://dx.doi.org/10.101...
; Tormena, Karlen, Logsdon, & Cherubin, 2017Tormena, C. A., Karlen, D. L., Logsdon, S., & Cherubin, M. R. (2017). Corn stover harvest and tillage impacts on near-surface soil physical quality. Soil and Tillage Research, 166, 122-130. DOI: https://doi.org/10.1016/j.still.2016.09.015
https://doi.org/https://doi.org/10.1016/...
; Reichert et al., 2018; Ren, Nest, Ruysschaert, D’Hose, & Cornelis, 2019Ren, L., Nest, T. V., Ruysschaert, G., D’Hose, T., & Cornelis, W. M. (2019). Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil and Tillage Research, 192, 76-86. DOI: https://doi.org/10.1016/j.still.2019.04.026
https://doi.org/https://doi.org/10.1016/...
; Scarpare et al., 2019Scarpare, F. V., van Lier, Q. D. J., Camargo, L., Pires, R. C. M., Ruiz-Correa, S. T., Bezerra, A. H. F., ... Dias, C. T. D. S. (2019). Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil and Tillage Research, 187, 110-118. DOI: https://doi.org/10.1016/j.still.2018.12.005
https://doi.org/https://doi.org/10.1016/...
).

The predominance of crops with a nonaggressive root system combined with the absence of crop rotation in NT leads to soil compaction (Drescher et al., 2017Drescher, M. S., Reinert, D. J., Denardin, J. E., Gubiani, P. I., Faganello, A., Silva, B. R. D., & Zardin, M. C. (2017). Fertilizer shanks to promote soil decompaction in the seeding operation. Ciência Rural, 47(3), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20160026
https://doi.org/https://doi.org/10.1590/...
; Fuentes-Llanillo et al., 2021Fuentes-Llanillo, R., Telles, T. S., Junior, D. S., Melo, T. R., Friedrich, T., & Kassam, A. (2021). Expansion of no-tillage practice in conservation agriculture in Brazil. Soil and Tillage Research, 208, 1-28. DOI: https://doi.org/10.1016/j.still.2020.104877
https://doi.org/https://doi.org/10.1016/...
). Compacted layers restrict root growth and affect crop yield (Reichert, Suzuki, Reinert, Horn, & Hakansson, 2009Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Hakansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. DOI: https://doi.org/10.1016/j.still.2008.07.002
https://doi.org/https://doi.org/10.1016/...
; Garbelini et al., 2020Garbelini, L. G., Franchini, J. C., Debiasi, H., Balbinot Junior, A. A., Betioli Junior, E., & Telles, T. S. (2020). Profitability of soybean production models with diversified crops in the autumn winter. Agronomy Journal, 112(5), 4092-4103. DOI: https://doi.org/10.1002/agj2.20308
https://doi.org/https://doi.org/10.1002/...
; Ramos, Almeida, Amaral, & Suzuki, 2022Ramos, M. F., Silva Almeida, W. R., Amaral, R. D. L., & Suzuki, L. E. A. S. (2022). Degree of compactness and soil quality of peach orchards with different production ages. Soil and Tillage Research, 219, 1-7. DOI: https://doi.org/10.1016/j.still.2022.105324
https://doi.org/https://doi.org/10.1016/...
). Soil compaction costs farmers millions of dollars annually. The marked degradation of agricultural lands has generated annual losses of more than 600 million tons of soil due to erosion, at an estimated cost of 1.3 billion dollars per year (Dechen, Telles, Guimarães, & Maria, 2015Dechen, S. C. F., Telles, T. S., Guimarães, M. D. F., & Maria, I. C. D. (2015). Losses and costs associated with water erosion according to soil cover rate. Bragantia, 74(2), 224-233. DOI: https://doi.org/10.1590/1678-4499.0363
https://doi.org/https://doi.org/10.1590/...
).

Clay oxisols with compacted soil layers, as observed in numerous areas managed under NT in Brazil (Drescher et al., 2017Drescher, M. S., Reinert, D. J., Denardin, J. E., Gubiani, P. I., Faganello, A., Silva, B. R. D., & Zardin, M. C. (2017). Fertilizer shanks to promote soil decompaction in the seeding operation. Ciência Rural, 47(3), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20160026
https://doi.org/https://doi.org/10.1590/...
), require practices that remedy soil compaction (Ferreira et al., 2021Ferreira, C. J. B., Tormena, C. A., Severiano, E. D. C., Zotarelli, L., & Betioli Júnior, E. (2021). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 67(3), 383-396. DOI: https://doi.org/10.1080/03650340.2020.1733535
https://doi.org/https://doi.org/10.1080/...
). For example, scarification is one of the most widely used mechanical methods in Brazil, and there is evidence that scarification produces short-term effects (Calonego & Rosolem, 2010Calonego, J. C., & Rosolem, C. A. (2010). Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy, 33(3), 242-249. DOI: http://doi.org/10.1016/j.eja.2010.06.002
https://doi.org/http://doi.org/10.1016/j...
; Calonego, Raphael, Rigon, Oliveira Neto, & Rosolem, 2017Calonego, J. C., Raphael, J. P., Rigon, J. P., Oliveira Neto, L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31-37. DOI: https://doi.org/10.1016/j.eja.2017.02.001
https://doi.org/https://doi.org/10.1016/...
; Secco et al., 2021Secco, D., Bassegio, D., Villa, B., Marins, A. C., Junior, L. A. Z., Silva, T. R. B., & Souza, S. N. M. (2021). Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling. Industrial Crops and Products, 161, 1-6. DOI: https://doi.org/10.1016/j.indcrop.2020.113174
https://doi.org/https://doi.org/10.1016/...
). Additionally, cover crops have been proposed as a sustainable way to avoid soil compaction (Rosolem, Foloni, & Tiritan, 2002Rosolem, C. A., Foloni, J. S. S., & Tiritan, C. S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research, 65(1), 109-115. DOI: http://dx.doi.org/10.1016/S0167-1987(01)00286-0
https://doi.org/http://dx.doi.org/10.101...
; Hamza & Anderson, 2005Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. DOI: http://dx.doi.org/10.1016/j.still.2004.08.009
https://doi.org/http://dx.doi.org/10.101...
; Calonego & Rosolem, 2010Calonego, J. C., & Rosolem, C. A. (2010). Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy, 33(3), 242-249. DOI: http://doi.org/10.1016/j.eja.2010.06.002
https://doi.org/http://doi.org/10.1016/j...
; Calonego et al., 2017Calonego, J. C., Raphael, J. P., Rigon, J. P., Oliveira Neto, L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31-37. DOI: https://doi.org/10.1016/j.eja.2017.02.001
https://doi.org/https://doi.org/10.1016/...
; Secco et al., 2021Secco, D., Bassegio, D., Villa, B., Marins, A. C., Junior, L. A. Z., Silva, T. R. B., & Souza, S. N. M. (2021). Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling. Industrial Crops and Products, 161, 1-6. DOI: https://doi.org/10.1016/j.indcrop.2020.113174
https://doi.org/https://doi.org/10.1016/...
).

Root growth is related to soil density and critical density for root growth (Reinert, Albuquerque, Reichert, Aita, & Andrada, 2008Reinert, D. J., Albuquerque, J. A., Reichert, J. M., Aita, C., & Andrada, M. M. C. (2008). Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002
https://doi.org/https://doi.org/10.1590/...
). There is a critical density for each soil type that can affect root growth (Reichert et al., 2009Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Hakansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. DOI: https://doi.org/10.1016/j.still.2008.07.002
https://doi.org/https://doi.org/10.1016/...
). This depends mainly on the textural class (Reinert et al., 2008Reinert, D. J., Albuquerque, J. A., Reichert, J. M., Aita, C., & Andrada, M. M. C. (2008). Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002
https://doi.org/https://doi.org/10.1590/...
). Reichert et al. (2009Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Hakansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. DOI: https://doi.org/10.1016/j.still.2008.07.002
https://doi.org/https://doi.org/10.1016/...
) proposed a critical soil density of 1.25-1.30 Mg m-3 for clayey soils. Soil density can affect the differences in root morphology among different cover plant species (Hudek, Putinica, Otten, & De Baets, 2022Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait‐based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73(1), 1-16. DOI: https://doi.org/10.1111/ejss.13147
https://doi.org/https://doi.org/10.1111/...
). Legume species have taproots with larger diameters and better penetration into the soil (Chen & Weil, 2010Chen, G., & Weil, R. R. (2010). Penetration of cover crop roots through compacted soils. Plant and Soil, 331(1), 31-43. DOI: https://doi.org/10.1007/s11104-009-0223-7
https://doi.org/https://doi.org/10.1007/...
) and can create large-diameter pores in the soil for the growth of subsequent roots (Colombi, Braun, Keller, & Walter, 2017Colombi, T., Braun, S., Keller, T., & Walter, A. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science of the Total Environment, 574, 1283-1293. DOI: https://doi.org/10.1016/j.scitotenv.2016.07.194
https://doi.org/https://doi.org/10.1016/...
). In contrast, grasses are fibrous-rooted and have greater root lengths that grow in deeper soil layers (Hudek et al., 2022Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait‐based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73(1), 1-16. DOI: https://doi.org/10.1111/ejss.13147
https://doi.org/https://doi.org/10.1111/...
). Therefore, a mixture of legumes and grasses could be an alternative because of their positive effects (Vujić et al., 2021Vujić, S., Krstić, D., Mačkić, K., Čabilovski, R., Radanović, Z., Zhan, A., & Ćupina, B. (2021). Effect of winter cover crops on water soil storage, total forage production, and quality of silage maize. European Journal of Agronomy, 130, 1-7. DOI: https://doi.org/10.1016/j.eja.2021.126366
https://doi.org/https://doi.org/10.1016/...
). Reinert et al. (2008Reinert, D. J., Albuquerque, J. A., Reichert, J. M., Aita, C., & Andrada, M. M. C. (2008). Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002
https://doi.org/https://doi.org/10.1590/...
) observed root deformation of cover crops such as Raphanus sativus, with increased root thickening, deviations in the vertical direction of root growth, and concentration of roots in the most superficial layer of soil with soil density above 1.85 Mg m-3. Jabro, Allen, Rand, Dangi, and Campbell (2021Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., & Campbell, J. W. (2021). Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land, 10(202), 1-10. DOI: https://doi.org/10.3390/land10020202
https://doi.org/https://doi.org/10.3390/...
) found that irrespective of rooting characteristics (tap- or fibrous roots), penetration resistance was reduced by 32.2% after three seasons.

The authors have studied the effect of different cover crops under greenhouse conditions using compacted soils in pots (Rosolem et al., 2002Rosolem, C. A., Foloni, J. S. S., & Tiritan, C. S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research, 65(1), 109-115. DOI: http://dx.doi.org/10.1016/S0167-1987(01)00286-0
https://doi.org/http://dx.doi.org/10.101...
; Calonego, Gomes, Santos, & Tiritan, 2011Calonego, J. C., Gomes, T. C., Santos, C. H., & Tiritan, C. S. (2011). Cover crops growth in compacted soil. Bioscience Journal, 27(2), 289-296.; Farias et al., 2013Farias, L. D. N., Bonfim-Silva, E. M., Pietro-Souza, W., Vilarinho, M. K., Silva, T. J., & Guimarães, S. L. (2013). Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(5), 497-503. DOI: https://doi.org/10.1590/S1415-43662013000500005
https://doi.org/https://doi.org/10.1590/...
; Lima, Petter, & Leandro, 2015Lima, L. B., Petter, F. A. & Leandro, W. M. (2015). Desempenho de plantas de cobertura sob níveis de compactação em Latossolo Vermelho de Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1064-1071. DOI: http://dx.doi.org/10.1590/18071929/agriambi.v19n11p1064-1071
https://doi.org/http://dx.doi.org/10.159...
) and field conditions in non-mechanically compacted areas (Ren et al., 2019Ren, L., Nest, T. V., Ruysschaert, G., D’Hose, T., & Cornelis, W. M. (2019). Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil and Tillage Research, 192, 76-86. DOI: https://doi.org/10.1016/j.still.2019.04.026
https://doi.org/https://doi.org/10.1016/...
; Jabro et al., 2021Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., & Campbell, J. W. (2021). Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land, 10(202), 1-10. DOI: https://doi.org/10.3390/land10020202
https://doi.org/https://doi.org/10.3390/...
; Hudek et al., 2022Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait‐based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73(1), 1-16. DOI: https://doi.org/10.1111/ejss.13147
https://doi.org/https://doi.org/10.1111/...
). Soil compacted under field conditions can create physical impediments to the soil surface, similar to the heavy traffic of machines and equipment in NT. To the best of our knowledge, there have been no studies on the of several cover crops under mechanical compaction. Thus, we hypothesized that some cover crops, either single or mixed, would be better adapted to grow in mechanically compacted soil, thereby affecting the physical-hydric properties of the soil. This study aimed to evaluate the effects of ten single or mixed cover crops on the physical properties of soil.

Material and methods

Site description

A long-term experiment (2015-2020) was conducted at the Rural Development Institute of Paraná - IAPAR - EMATER, Experimental Station of Santa Tereza do Oeste (53º29'37" W, 24º50'42" S, and 607 m a.s.l). According to the Koppen classification, the region presents a humid subtropical climate, with a mean annual rainfall of 1,840 mm.

The soil of the experimental area was classified as Oxisol (Soil Survey Staff, 2010Soil Survey Staff. (2010). Keys to soil taxonomy (11th ed.). Washingthon, DC: USDA-Natural Resources Conservation Service.). Table 1 shows the chemical and physical characteristics of the soil for the experimental area at a depth of 0.0-0.4 m. The following chemical attributes were analyzed: soil pH (CaCl2); P and K+ (Mehlich-1); exchangeable Ca2+, Mg2+, and Al3+ (KCl 1 mol L-1); organic matter (Walkley Black); and base saturation (V%).

Table 1
Soil characteristics before the experiment start.

Experimental design and treatments

Different cover crops were established in 2015 autumn-winter (March) under a NT system on soybean remains. The area was under a NT and crop rotation system, with maize grown in the winter and soybean in the summer.

The species included pearl millet (Pennisetum americanum), pigeon pea (Cajanus cajan), sunn hemp (Crotalaria spectabilis), velvet bean (Mucuna pruriens), white oat (Avena sativa), black oat (Avena strigosa), rye (Secale cereale), black oat + forage turnip (Raphanus sativus), black oat + white lupin (Lupinus albus L.), and black oat + group pea (Pisum arvense L.). Ten cover crops were evaluated mixed or single. Species with tap-rooted and fibrous-rooted rooting patterns were evaluated. The experiment was established in a completely randomized design with ten treatments and four replications. Each plot consisted of a 20 × 25 m area. The sowing of the cover species followed technical recommendations.

In 2017, a 16-t single drum roller (BOMAG BW 211D-40) was used to compact the soil in the plots with the cover crops. As a result, the soil moisture content was 38% and 37% in 0.0-0.1 and 0.1-0.2 m soil layers, respectively.

In October 2017, 2018, and 2019 soybeans were grown in the summer. In 2018 autumn-winter (March), the cover crops were established on soybean remains. In March 2019, maize was grown on soybean crop remains. Details on the treatments and crops are shown in Table 2.

Table 2
Crops development during the study period (2014-2015 to 2019-2020) and the treatment application scheme during the entire experimental period (2017-2018 to 2019-2020).

Sampling and analysis

Bulk density, macroporosity, microporosity, total porosity, and Ksat were determined. Using steel support, soil samples were taken at the center of the 0.0-0.3 m soil layer depths to force a volumetric ring into the soil. Collections of undisturbed samples were performed in 2017-2018 after soybean cultivation, in 2018-2019 before cover crops, in 2019 after soybean cultivation, and in 2019-2020 after maize harvest.

Then, the soil samples were placed to saturate in plastic trays with water up to 2/3 of the cylinder height. The bottom of the cylinder was wrapped in polyester fabric to prevent soil loss. The samples were weighed after 48 h of immersion to determine the saturated weight. Then, the cylinders were set on a sand column (Reinert & Reichert, 2006Reinert, D. J., & Reichert, J. M. (2006). Coluna de areia para medir a retenção de água no solo: protótipos e teste. Ciência Rural, 36(6), 1931-1935. DOI: https://doi.org/10.1590/S0103-84782006000600044
https://doi.org/https://doi.org/10.1590/...
), submitted to a tension of 0.6-m, and recorded the wet weight. After this, samples were dried in a forced-air oven at 105°C for 48h, and the dry soil mass was determined. First, bulk density was calculated by dividing the dry soil by the volume of the volumetric cylinder. Considering that the water in the macropores was removed at 0.6-m, the volume of micropores was determined. Next, total soil porosity was calculated based on the difference between the saturated and dry soil masses, plus the sample volume. Finally, Macroporosity was obtained by calculating the difference between the total porosity and microporosity. Subsequently, soil samples were re-saturated for 24h, and Ksat was measured using a falling-head permeameter (Gubiani, Reinert, Reichert, Gelain, & Minella, 2010Gubiani, P. I., Reinert, D. J., Reichert, J. M., Gelain, N. S., & Minella, J. P. G. (2010). Permeâmetro de carga decrescente associado a programa computacional para a determinação da condutividade hidráulica do solo saturado. Revista Brasileira de Ciência do Solo, 34(3), 993-997. DOI: https://doi.org/10.1590/S0100-06832010000300041
https://doi.org/https://doi.org/10.1590/...
).

Statistical analysis

The data were tested for the assumptions of analysis of variance (normality). When these requirements were met, the data were subjected to an analysis of variance (p < 0.05) using the statistical software Sisvar® (Statistical Analysis Software, UFLa, Lavras, Minas Gerais State, Brazil). The means were compared using the LSD test, and statistical significance was tested at p < 0.05.

Results and discussion

Cover crops did not differ concerning bulk density values in the first seasons before mechanical compaction (2017-2018) (Figure 1A). Density values in the first year were not affected by the residual effect of NT used before the start of the experiment. The lack of difference between cover crops in soil physical properties in this study in the early years was expected, as physical properties generally change slowly (Blanco‐Canqui & Ruis, 2020Blanco‐Canqui, H., & Ruis, S. J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5), 1527-1576. DOI: https://doi.org/10.1002/saj2.20129
https://doi.org/https://doi.org/10.1002/...
; Secco et al., 2021Secco, D., Bassegio, D., Villa, B., Marins, A. C., Junior, L. A. Z., Silva, T. R. B., & Souza, S. N. M. (2021). Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling. Industrial Crops and Products, 161, 1-6. DOI: https://doi.org/10.1016/j.indcrop.2020.113174
https://doi.org/https://doi.org/10.1016/...
). These results are related to the slow decomposition of the root system. Jabro et al. (2021Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., & Campbell, J. W. (2021). Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land, 10(202), 1-10. DOI: https://doi.org/10.3390/land10020202
https://doi.org/https://doi.org/10.3390/...
) observed that the roots of cover crops took four years to decompose and produce root canals and porous spaces in compacted soil. Furthermore, differences between cover crops may be more evident when the soil is compacted, possibly because root growth changes under these conditions (Grzesiak, Grzesiak, Hura, Marcińska, & Rzepka, 2013Grzesiak, S., Grzesiak, M. T., Hura, T., Marcińska, I., & Rzepka, A. (2013). Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environmental and Experimental Botany, 88, 2-10. DOI: https://doi.org/10.1016/j.envexpbot.2012.01.010
https://doi.org/https://doi.org/10.1016/...
).

Figure 1
Cover crops affecting bulk density (A) and total porosity (B). The bar indicates the LSD (0.05) significant differences between cover crops.

After four seasons, pigeon pea (0.96 Mg m-3) was more efficient in reducing bulk density than velvet bean (1.15 Mg m-3) and black oat + forage turnip (1.11 Mg m-3) in 2019-2020. Pigeon pea has tap roots that can develop in compacted soils and form biopores (Lynch & Wojciechowski, 2015Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany, 66(8), 2199-2210. DOI: https://doi.org/10.1093/jxb/eru508
https://doi.org/https://doi.org/10.1093/...
). In addition, pigeon peas promote an increase in organic carbon (Soares et al., 2021Soares, M. D. R., Souza, Z. M., Campos, M. C. C., Silva, R. B., Esteban, D. A. A., Noronha, R. L., ... Cunha, J. M. (2021). Land-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforest. Catena, 202, 1-7. DOI: https://doi.org/10.1016/j.catena.2021.105266
https://doi.org/https://doi.org/10.1016/...
), improving soil physical quality and allowing greater soil conservation. According to Bengough (2012Bengough, A. G. (2012). Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal, 11(2). DOI: https://doi.org/10.2136/vzj2011.0111
https://doi.org/https://doi.org/10.2136/...
), root diameter is an important characteristic for the formation of pores induced by roots, particularly in soils with high mechanical strength and compaction. However, according to Farias et al. (2013Farias, L. D. N., Bonfim-Silva, E. M., Pietro-Souza, W., Vilarinho, M. K., Silva, T. J., & Guimarães, S. L. (2013). Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(5), 497-503. DOI: https://doi.org/10.1590/S1415-43662013000500005
https://doi.org/https://doi.org/10.1590/...
), pigeon pea roots showed little growth in an oxisol under controlled conditions in compacted pots. Chen and Weil (2011Chen, G., & Weil, R. R. (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil and Tillage Research, 117, 17-27. DOI: https://doi.org/10.1016/j.still.2011.08.001
https://doi.org/https://doi.org/10.1016/...
) argued that taproots have a low tendency for soil laterality. Thick root systems predominantly increase soil macroporosity (Bodner, Leitner, & Kaul, 2014Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380(1), 133-151. DOI: https://doi.org/10.1007/s11104-014-2079-8
https://doi.org/https://doi.org/10.1007/...
). Blanco‐Canqui and Jasa (2019Blanco‐Canqui, H., & Jasa, P. J. (2019). Do grass and legume cover crops improve soil properties in the long term?. Soil Science Society of America Journal, 83(4), 1181-1187. DOI: https://doi.org/10.2136/sssaj2019.02.0055
https://doi.org/https://doi.org/10.2136/...
) observed that grass had a greater effect on soil properties than legumes after 12 years. Our findings showed that pigeon pea roots have the potential to reduce density in the compacted layer. The results possibly indicate that the roots decomposed and formed voids and biological channels after four seasons.

Cover crop mixtures may have bigger effects on soil properties than single species because of species diversity (Ruis et al., 2020Ruis, S. J., Blanco‐Canqui, H., Elmore, R. W., Proctor, C., Koehler‐Cole, K., Ferguson, R. B., ... Shapiro, C. A. (2020). Impacts of cover crop planting dates on soils after four years. Agronomy Journal, 112(3), 1649-1665. DOI: https://doi.org/10.1002/agj2.20143
https://doi.org/https://doi.org/10.1002/...
), which was not observed in the present study. Higher root diversity, such as the presence of both taproots and fibrous roots, can use resources more effectively (Smith, Atwood, & Warren, 2014Smith, R. G., Atwood, L. W., & Warren, N. D. (2014). Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE, 9(5), 1-8. DOI: https://doi.org/10.1371/journal.pone.0097351
https://doi.org/https://doi.org/10.1371/...
). For example, mixing a fibrous-rooted species with a tap-rooted species can reduce soil density compared to a single tap-rooted plant. This is because the roots of fibrous-rooted species may have better contact with the soil matrix, possibly promoting better aggregation (Stavi, Lal, Jones, & Reeder, 2012Stavi, I., Lal, R., Jones, S., & Reeder, R. C. (2012). Implications of cover crops for soil quality and geodiversity in a humid-temperate region in the Midwestern USA. Land Degradation & Development, 23(4), 322-330. DOI: https://doi.org/10.1002/ldr.2148
https://doi.org/https://doi.org/10.1002/...
), which was not verified in this study. Ruis et al. (2020Ruis, S. J., Blanco‐Canqui, H., Elmore, R. W., Proctor, C., Koehler‐Cole, K., Ferguson, R. B., ... Shapiro, C. A. (2020). Impacts of cover crop planting dates on soils after four years. Agronomy Journal, 112(3), 1649-1665. DOI: https://doi.org/10.1002/agj2.20143
https://doi.org/https://doi.org/10.1002/...
) showed that the effects of cover crop mixtures on soil properties are unclear.

In 2019-2020, it was found that pigeon pea growth provided higher values of soil porosity (59%) than velvet bean species (54%) (Figure 1B). Among the various cover crops used, pigeon pea species (14%) were more efficient in increasing soil macroporosity than black oat + forage turnip (14%) in the same season (Figure 2B). Macroporosity followed the soil density trend. Some studies have reported that macropores are reduced in compacted soils (Colombi et al., 2017Colombi, T., Braun, S., Keller, T., & Walter, A. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science of the Total Environment, 574, 1283-1293. DOI: https://doi.org/10.1016/j.scitotenv.2016.07.194
https://doi.org/https://doi.org/10.1016/...
; Feng, Wang, Liu, Bai, & Reading, 2019Feng, Y., Wang, J., Liu, T., Bai, Z., & Reading, L. (2019). Using computed tomography images to characterize the effects of soil compaction resulting from large machinery on three-dimensional pore characteristics in an opencast coal mine dump. Journal of Soils and Sediments, 19(3), 1467-1478. DOI: https://doi.org/10.1007/s11368-018-2130-0
https://doi.org/https://doi.org/10.1007/...
). Cover crops can influence the soil pore size distribution in several ways. Pores are created when the decaying organic components of roots and residues are less dense than the mineral constituents, decreasing the soil density (Silva et al., 2021Silva, R. F., Costa Severiano, E., Oliveira, G. C., Barbosa, S. M., Peixoto, D. S., Tassinari, D., ... Figueiredo, T. D. A. F. R. (2021). Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol. Soil and Tillage Research, 213, 1-8. DOI: https://doi.org/10.1016/j.still.2021.105127
https://doi.org/https://doi.org/10.1016/...
; Reichert et al., 2022Reichert, J. M., Corcini, A. L., Awe, G. O., Reinert, D. J., Albuquerque, J. A., Gallarreta, C. C. G., & Docampo, R. (2022). Onion-forage cropping systems on a Vertic Argiudoll in Uruguay: Onion yield and soil organic matter, aggregation, porosity and permeability. Soil and Tillage Research, 216, 1-7. DOI: https://doi.org/10.1016/j.still.2021.105229
https://doi.org/https://doi.org/10.1016/...
). Additionally, increasing organic matter (OM) increases straw aggregation and soil stability, resulting in greater root growth (Haruna et al., 2020Haruna, S. I., Anderson, S. H., Udawatta, R. P., Gantzer, C. J., Phillips, N. C., Cui, S., & Gao, Y. (2020). Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment, 3(1), 1-18. DOI: https://doi.org/10.1002/agg2.20105
https://doi.org/https://doi.org/10.1002/...
). A higher soil macroporosity indicates a better structural condition of the soil for plant growth, as it has large pores that facilitate water and air transport and improve root proliferation (Reichert, Rodrigues, Bervald, & Kato, 2016Reichert, J. M., Rodrigues, M. F., Bervald, C. M. P., & Kato, O. R. (2016). Fire‐free fallow management by mechanized chopping of biomass for sustainable agriculture in Eastern Amazon: Effects on soil compactness, porosity, and water retention and availability. Land Degradation & Development, 27(5), 1403-1412. DOI: https://doi.org/10.1002/ldr.2395
https://doi.org/https://doi.org/10.1002/...
; Calonego et al., 2017Calonego, J. C., Raphael, J. P., Rigon, J. P., Oliveira Neto, L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31-37. DOI: https://doi.org/10.1016/j.eja.2017.02.001
https://doi.org/https://doi.org/10.1016/...
; Panziera et al., 2022Panziera, W., Lima, C. L. R., Timm, L. C., Aquino, L. S., Barros, W. S., Stumpf, L., ... Pauletto, E. A. (2022). Investigating the relationships between soil and sugarcane attributes under different row spacing configurations and crop cycles using the state-space approach. Soil and Tillage Research, 217, 1-6. DOI: https://doi.org/10.1016/j.still.2021.105270
https://doi.org/https://doi.org/10.1016/...
). Consequently, root canals are left in the soil for subsequent crops, reducing the negative effects of soil compaction (Chen, Weil, & Hill, 2014Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. DOI: https://doi.org/10.1016/j.still.2013.09.004
https://doi.org/https://doi.org/10.1016/...
; Ajayi, Horn, Rostek, Uteau, & Peth, 2019Ajayi, A. E., Horn, R., Rostek, J., Uteau, D., & Peth, S. (2019). Evaluation of temporal changes in hydrostructural properties of regenerating permanent grassland soils based on shrinkage properties and μCT analysis. Soil and Tillage Research, 185, 102-112. DOI: https://doi.org/10.1016/j.still.2018.09.005
https://doi.org/https://doi.org/10.1016/...
).

Figure 2
Cover crops affecting soil microporosity (A) and Macroporosity (B). The bar indicates the LSD (0.05) significant differences between cover crops.

The increase in total porosity can be attributed to increased macroporosity because the microporosity showed little change (Figure 2A). More evident differences were observed in macroporosity than in microporosity, which is in agreement with Awe, Reichert, and Fontanela (2020Awe, G. O., Reichert, J. M., & Fontanela, E. (2020). Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research, 196, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104447
https://doi.org/https://doi.org/10.1016/...
) and Lima et al. (2020Lima, R. P., Keller, T., Giarola, N. B., Tormena, C. A., da Silva, A. R., & Rolim, M. M. (2020). Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Research, 58, 62-72. DOI: https://doi.org/10.1071/SR19074
https://doi.org/https://doi.org/10.1071/...
). According to these authors, microporosity is not expected to change after subsequent harvests because of soil use and management. According to Lima et al. (2022Lima, R. P., Rolim, M. M., Toledo, M. P., Tormena, C. A., da Silva, A. R., Silva, I. A. C., & Pedrosa, E. M. (2022). Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil and Tillage Research, 215. DOI: https://doi.org/10.1016/j.still.2021.105215
https://doi.org/https://doi.org/10.1016/...
), micropores predominate in soils with a high silt and clay content and have low dependence on the degree of compactness. According to the authors, the total porosity and larger pores depend more on the compaction state than the micropores.

Ksat was affected (p < 0.05) by cover crops during the entire period of the experiment (2016-2017 to 2019-2020). Ksat increased as cover crops improved the soil's physical characteristics (Figure 3). Pigeon peas with taproots increased Ksat to 260 mm h-1, possibly due to improved soil porosity and bulk density. Yu et al. (2016Yu, Y., Loiskand, W., Kaul, H. P, Himmelbauer, M., Wei, W., Chen, L., & Bodner, G. (2016). Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology, 538, 667-676. DOI: https://doi.org/10.1016/j.jhydrol.2016.04.060
https://doi.org/https://doi.org/10.1016/...
) observed that taproots with a predominance of thick root shafts had the strongest effect on soil hydraulic conductivity, increasing thick pore channels. Owing to the increase in macroporosity generated by cover crops, Haruna, Anderson, Nkongolo, and Zaibon (2018Haruna, S. I., Anderson, S. H., Nkongolo, N. V., & Zaibon, S. (2018). Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere, 28(3), 430-442. DOI: https://doi.org/10.1016/S1002-0160(17)60387-4
https://doi.org/https://doi.org/10.1016/...
) reported that cover crops improved Ksat by approximately 32% in the 0-20 cm layer.

Figure 3
Cover crops affecting Ksat. The bar indicates the LSD (0.05) significant differences between cover crops.

The root canals made by cover crops increase the connectivity between pores (Soracco et al., 2019Soracco, C. G., Villarreal, R., Melani, E. M., Oderiz, J. A., Salazar, M. P., Otero, M. F., ... Lozano, L. A. (2019). Hydraulic conductivity and pore connectivity. Effects of conventional and no-till systems determined using a simple laboratory device. Geoderma, 337, 1236-1244. DOI: https://doi.org/10.1016/j.geoderma.2018.10.045
https://doi.org/https://doi.org/10.1016/...
), which may explain Ksat changes. Soil Ksat is a vital physical property that determines the rate of water infiltration, internal drainage, and other hydrological processes (Jafari, Sheikh, Hossein-Alizadeh, & Rezaii-Moghadam, 2017Jafari, R., Sheikh, V., Hossein-Alizadeh, M., & Rezaii-Moghadam, H. (2017). Effect of soil sample size on saturated soil hydraulic conductivity. Communications in Soil Science and Plant Analysis, 48(8), 908-919. DOI: https://doi.org/10.1080/00103624.2017.1323086
https://doi.org/https://doi.org/10.1080/...
). Cover crop roots promote changes in soil pore space, which affects Ksat (Carminati et al., 2016Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., & Holz, M. (2016). Biophysical rhizosphere processes affecting root water uptake. Annals of Botany, 118(4), 561-571. DOI: https://doi.org/10.1093/aob/mcw113
https://doi.org/https://doi.org/10.1093/...
). Çerçioğlu, Anderson, Udawatta, and Alagele (2019Çerçioğlu, M., Anderson, S. H., Udawatta, R. P., & Alagele, S. (2019). Effect of cover crop management on soil hydraulic properties. Geoderma, 343, 247-253. DOI: https://doi.org/10.1016/j.geoderma.2019.02.027
https://doi.org/https://doi.org/10.1016/...
) also noted that the highest Ksat values were observed five seasons after establishing cover crops, compared to soil samples from the first and second seasons. These differences may be due to better soil structure, lower bulk density, and the proportion of macropores and large mesopores that help water move quickly through the soil (Çerçioğlu et al., 2019Çerçioğlu, M., Anderson, S. H., Udawatta, R. P., & Alagele, S. (2019). Effect of cover crop management on soil hydraulic properties. Geoderma, 343, 247-253. DOI: https://doi.org/10.1016/j.geoderma.2019.02.027
https://doi.org/https://doi.org/10.1016/...
). In addition, macropores and fissures were responsible for rapid water transport through the soil profile. In addition to the effects of root growth on improving density and porosity, the biomass remaining in the soil is important for alleviating soil compaction and improving Ksat. OM and straw exert a traffic dampening effect by partially dissipating the impact energy applied to the ground by machines (Reichert et al., 2018Reichert, J. M., Mentges, M. I., Rodrigues, M. F., Cavalli, J. P., Awe, G. O., & Mentges, L. R. (2018). Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena, 165, 345-357. DOI: https://doi.org/10.1016/j.catena.2018.02.014
https://doi.org/https://doi.org/10.1016/...
).

Conclusion

In this study, ten single or mixed cover crops were cultivated in mechanically compacted soils. Pigeon pea could reduce bulk density and increase porosity and Ksat in compacted soils. Ksat increased as cover crops improved soil physical characteristics. Mixing cover crops did not improve the physical properties of the soil. The selection of cover crops with characteristics that improve the physical properties of soil is crucial for compacted areas.

References

  • Ajayi, A. E., Horn, R., Rostek, J., Uteau, D., & Peth, S. (2019). Evaluation of temporal changes in hydrostructural properties of regenerating permanent grassland soils based on shrinkage properties and μCT analysis. Soil and Tillage Research, 185, 102-112. DOI: https://doi.org/10.1016/j.still.2018.09.005
    » https://doi.org/https://doi.org/10.1016/j.still.2018.09.005
  • Awe, G. O., Reichert, J. M., & Fontanela, E. (2020). Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research, 196, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104447
    » https://doi.org/https://doi.org/10.1016/j.still.2019.104447
  • Blanco‐Canqui, H., & Jasa, P. J. (2019). Do grass and legume cover crops improve soil properties in the long term?. Soil Science Society of America Journal, 83(4), 1181-1187. DOI: https://doi.org/10.2136/sssaj2019.02.0055
    » https://doi.org/https://doi.org/10.2136/sssaj2019.02.0055
  • Blanco‐Canqui, H., & Ruis, S. J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5), 1527-1576. DOI: https://doi.org/10.1002/saj2.20129
    » https://doi.org/https://doi.org/10.1002/saj2.20129
  • Bengough, A. G. (2012). Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal, 11(2). DOI: https://doi.org/10.2136/vzj2011.0111
    » https://doi.org/https://doi.org/10.2136/vzj2011.0111
  • Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380(1), 133-151. DOI: https://doi.org/10.1007/s11104-014-2079-8
    » https://doi.org/https://doi.org/10.1007/s11104-014-2079-8
  • Calonego, J. C., & Rosolem, C. A. (2010). Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy, 33(3), 242-249. DOI: http://doi.org/10.1016/j.eja.2010.06.002
    » https://doi.org/http://doi.org/10.1016/j.eja.2010.06.002
  • Calonego, J. C., Gomes, T. C., Santos, C. H., & Tiritan, C. S. (2011). Cover crops growth in compacted soil. Bioscience Journal, 27(2), 289-296.
  • Calonego, J. C., Raphael, J. P., Rigon, J. P., Oliveira Neto, L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31-37. DOI: https://doi.org/10.1016/j.eja.2017.02.001
    » https://doi.org/https://doi.org/10.1016/j.eja.2017.02.001
  • Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., & Holz, M. (2016). Biophysical rhizosphere processes affecting root water uptake. Annals of Botany, 118(4), 561-571. DOI: https://doi.org/10.1093/aob/mcw113
    » https://doi.org/https://doi.org/10.1093/aob/mcw113
  • Çerçioğlu, M., Anderson, S. H., Udawatta, R. P., & Alagele, S. (2019). Effect of cover crop management on soil hydraulic properties. Geoderma, 343, 247-253. DOI: https://doi.org/10.1016/j.geoderma.2019.02.027
    » https://doi.org/https://doi.org/10.1016/j.geoderma.2019.02.027
  • Chen, G., & Weil, R. R. (2010). Penetration of cover crop roots through compacted soils. Plant and Soil, 331(1), 31-43. DOI: https://doi.org/10.1007/s11104-009-0223-7
    » https://doi.org/https://doi.org/10.1007/s11104-009-0223-7
  • Chen, G., & Weil, R. R. (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil and Tillage Research, 117, 17-27. DOI: https://doi.org/10.1016/j.still.2011.08.001
    » https://doi.org/https://doi.org/10.1016/j.still.2011.08.001
  • Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. DOI: https://doi.org/10.1016/j.still.2013.09.004
    » https://doi.org/https://doi.org/10.1016/j.still.2013.09.004
  • Colombi, T., Braun, S., Keller, T., & Walter, A. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science of the Total Environment, 574, 1283-1293. DOI: https://doi.org/10.1016/j.scitotenv.2016.07.194
    » https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.07.194
  • Dechen, S. C. F., Telles, T. S., Guimarães, M. D. F., & Maria, I. C. D. (2015). Losses and costs associated with water erosion according to soil cover rate. Bragantia, 74(2), 224-233. DOI: https://doi.org/10.1590/1678-4499.0363
    » https://doi.org/https://doi.org/10.1590/1678-4499.0363
  • Drescher, M. S., Reinert, D. J., Denardin, J. E., Gubiani, P. I., Faganello, A., Silva, B. R. D., & Zardin, M. C. (2017). Fertilizer shanks to promote soil decompaction in the seeding operation. Ciência Rural, 47(3), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20160026
    » https://doi.org/https://doi.org/10.1590/0103-8478cr20160026
  • Farias, L. D. N., Bonfim-Silva, E. M., Pietro-Souza, W., Vilarinho, M. K., Silva, T. J., & Guimarães, S. L. (2013). Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(5), 497-503. DOI: https://doi.org/10.1590/S1415-43662013000500005
    » https://doi.org/https://doi.org/10.1590/S1415-43662013000500005
  • Feng, Y., Wang, J., Liu, T., Bai, Z., & Reading, L. (2019). Using computed tomography images to characterize the effects of soil compaction resulting from large machinery on three-dimensional pore characteristics in an opencast coal mine dump. Journal of Soils and Sediments, 19(3), 1467-1478. DOI: https://doi.org/10.1007/s11368-018-2130-0
    » https://doi.org/https://doi.org/10.1007/s11368-018-2130-0
  • Ferreira, C. J. B., Tormena, C. A., Severiano, E. D. C., Zotarelli, L., & Betioli Júnior, E. (2021). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 67(3), 383-396. DOI: https://doi.org/10.1080/03650340.2020.1733535
    » https://doi.org/https://doi.org/10.1080/03650340.2020.1733535
  • Fuentes-Llanillo, R., Telles, T. S., Junior, D. S., Melo, T. R., Friedrich, T., & Kassam, A. (2021). Expansion of no-tillage practice in conservation agriculture in Brazil. Soil and Tillage Research, 208, 1-28. DOI: https://doi.org/10.1016/j.still.2020.104877
    » https://doi.org/https://doi.org/10.1016/j.still.2020.104877
  • Garbelini, L. G., Franchini, J. C., Debiasi, H., Balbinot Junior, A. A., Betioli Junior, E., & Telles, T. S. (2020). Profitability of soybean production models with diversified crops in the autumn winter. Agronomy Journal, 112(5), 4092-4103. DOI: https://doi.org/10.1002/agj2.20308
    » https://doi.org/https://doi.org/10.1002/agj2.20308
  • Grzesiak, S., Grzesiak, M. T., Hura, T., Marcińska, I., & Rzepka, A. (2013). Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environmental and Experimental Botany, 88, 2-10. DOI: https://doi.org/10.1016/j.envexpbot.2012.01.010
    » https://doi.org/https://doi.org/10.1016/j.envexpbot.2012.01.010
  • Gubiani, P. I., Reinert, D. J., Reichert, J. M., Gelain, N. S., & Minella, J. P. G. (2010). Permeâmetro de carga decrescente associado a programa computacional para a determinação da condutividade hidráulica do solo saturado. Revista Brasileira de Ciência do Solo, 34(3), 993-997. DOI: https://doi.org/10.1590/S0100-06832010000300041
    » https://doi.org/https://doi.org/10.1590/S0100-06832010000300041
  • Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. DOI: http://dx.doi.org/10.1016/j.still.2004.08.009
    » https://doi.org/http://dx.doi.org/10.1016/j.still.2004.08.009
  • Haruna, S. I., Anderson, S. H., Nkongolo, N. V., & Zaibon, S. (2018). Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere, 28(3), 430-442. DOI: https://doi.org/10.1016/S1002-0160(17)60387-4
    » https://doi.org/https://doi.org/10.1016/S1002-0160(17)60387-4
  • Haruna, S. I., Anderson, S. H., Udawatta, R. P., Gantzer, C. J., Phillips, N. C., Cui, S., & Gao, Y. (2020). Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment, 3(1), 1-18. DOI: https://doi.org/10.1002/agg2.20105
    » https://doi.org/https://doi.org/10.1002/agg2.20105
  • Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait‐based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73(1), 1-16. DOI: https://doi.org/10.1111/ejss.13147
    » https://doi.org/https://doi.org/10.1111/ejss.13147
  • Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., & Campbell, J. W. (2021). Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land, 10(202), 1-10. DOI: https://doi.org/10.3390/land10020202
    » https://doi.org/https://doi.org/10.3390/land10020202
  • Jafari, R., Sheikh, V., Hossein-Alizadeh, M., & Rezaii-Moghadam, H. (2017). Effect of soil sample size on saturated soil hydraulic conductivity. Communications in Soil Science and Plant Analysis, 48(8), 908-919. DOI: https://doi.org/10.1080/00103624.2017.1323086
    » https://doi.org/https://doi.org/10.1080/00103624.2017.1323086
  • Lima, R. P., Keller, T., Giarola, N. B., Tormena, C. A., da Silva, A. R., & Rolim, M. M. (2020). Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Research, 58, 62-72. DOI: https://doi.org/10.1071/SR19074
    » https://doi.org/https://doi.org/10.1071/SR19074
  • Lima, L. B., Petter, F. A. & Leandro, W. M. (2015). Desempenho de plantas de cobertura sob níveis de compactação em Latossolo Vermelho de Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1064-1071. DOI: http://dx.doi.org/10.1590/18071929/agriambi.v19n11p1064-1071
    » https://doi.org/http://dx.doi.org/10.1590/18071929/agriambi.v19n11p1064-1071
  • Lima, R. P., Rolim, M. M., Toledo, M. P., Tormena, C. A., da Silva, A. R., Silva, I. A. C., & Pedrosa, E. M. (2022). Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil and Tillage Research, 215 DOI: https://doi.org/10.1016/j.still.2021.105215
    » https://doi.org/https://doi.org/10.1016/j.still.2021.105215
  • Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany, 66(8), 2199-2210. DOI: https://doi.org/10.1093/jxb/eru508
    » https://doi.org/https://doi.org/10.1093/jxb/eru508
  • Panziera, W., Lima, C. L. R., Timm, L. C., Aquino, L. S., Barros, W. S., Stumpf, L., ... Pauletto, E. A. (2022). Investigating the relationships between soil and sugarcane attributes under different row spacing configurations and crop cycles using the state-space approach. Soil and Tillage Research, 217, 1-6. DOI: https://doi.org/10.1016/j.still.2021.105270
    » https://doi.org/https://doi.org/10.1016/j.still.2021.105270
  • Peixoto, D. S., Silva, B. M., Oliveira, G. C., Moreira, S. G., Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, 194, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104307
    » https://doi.org/https://doi.org/10.1016/j.still.2019.104307
  • Ramos, M. F., Silva Almeida, W. R., Amaral, R. D. L., & Suzuki, L. E. A. S. (2022). Degree of compactness and soil quality of peach orchards with different production ages. Soil and Tillage Research, 219, 1-7. DOI: https://doi.org/10.1016/j.still.2022.105324
    » https://doi.org/https://doi.org/10.1016/j.still.2022.105324
  • Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Hakansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. DOI: https://doi.org/10.1016/j.still.2008.07.002
    » https://doi.org/https://doi.org/10.1016/j.still.2008.07.002
  • Reichert, J. M., Rodrigues, M. F., Bervald, C. M. P., & Kato, O. R. (2016). Fire‐free fallow management by mechanized chopping of biomass for sustainable agriculture in Eastern Amazon: Effects on soil compactness, porosity, and water retention and availability. Land Degradation & Development, 27(5), 1403-1412. DOI: https://doi.org/10.1002/ldr.2395
    » https://doi.org/https://doi.org/10.1002/ldr.2395
  • Reichert, J. M., Corcini, A. L., Awe, G. O., Reinert, D. J., Albuquerque, J. A., Gallarreta, C. C. G., & Docampo, R. (2022). Onion-forage cropping systems on a Vertic Argiudoll in Uruguay: Onion yield and soil organic matter, aggregation, porosity and permeability. Soil and Tillage Research, 216, 1-7. DOI: https://doi.org/10.1016/j.still.2021.105229
    » https://doi.org/https://doi.org/10.1016/j.still.2021.105229
  • Reichert, J. M., Mentges, M. I., Rodrigues, M. F., Cavalli, J. P., Awe, G. O., & Mentges, L. R. (2018). Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena, 165, 345-357. DOI: https://doi.org/10.1016/j.catena.2018.02.014
    » https://doi.org/https://doi.org/10.1016/j.catena.2018.02.014
  • Reinert, D. J., Albuquerque, J. A., Reichert, J. M., Aita, C., & Andrada, M. M. C. (2008). Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002
    » https://doi.org/https://doi.org/10.1590/S0100-06832008000500002
  • Reinert, D. J., & Reichert, J. M. (2006). Coluna de areia para medir a retenção de água no solo: protótipos e teste. Ciência Rural, 36(6), 1931-1935. DOI: https://doi.org/10.1590/S0103-84782006000600044
    » https://doi.org/https://doi.org/10.1590/S0103-84782006000600044
  • Ren, L., Nest, T. V., Ruysschaert, G., D’Hose, T., & Cornelis, W. M. (2019). Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil and Tillage Research, 192, 76-86. DOI: https://doi.org/10.1016/j.still.2019.04.026
    » https://doi.org/https://doi.org/10.1016/j.still.2019.04.026
  • Rosolem, C. A., Foloni, J. S. S., & Tiritan, C. S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research, 65(1), 109-115. DOI: http://dx.doi.org/10.1016/S0167-1987(01)00286-0
    » https://doi.org/http://dx.doi.org/10.1016/S0167-1987(01)00286-0
  • Ruis, S. J., Blanco‐Canqui, H., Elmore, R. W., Proctor, C., Koehler‐Cole, K., Ferguson, R. B., ... Shapiro, C. A. (2020). Impacts of cover crop planting dates on soils after four years. Agronomy Journal, 112(3), 1649-1665. DOI: https://doi.org/10.1002/agj2.20143
    » https://doi.org/https://doi.org/10.1002/agj2.20143
  • Scarpare, F. V., van Lier, Q. D. J., Camargo, L., Pires, R. C. M., Ruiz-Correa, S. T., Bezerra, A. H. F., ... Dias, C. T. D. S. (2019). Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil and Tillage Research, 187, 110-118. DOI: https://doi.org/10.1016/j.still.2018.12.005
    » https://doi.org/https://doi.org/10.1016/j.still.2018.12.005
  • Secco, D., Bassegio, D., Villa, B., Marins, A. C., Junior, L. A. Z., Silva, T. R. B., & Souza, S. N. M. (2021). Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling. Industrial Crops and Products, 161, 1-6. DOI: https://doi.org/10.1016/j.indcrop.2020.113174
    » https://doi.org/https://doi.org/10.1016/j.indcrop.2020.113174
  • Silva, R. F., Costa Severiano, E., Oliveira, G. C., Barbosa, S. M., Peixoto, D. S., Tassinari, D., ... Figueiredo, T. D. A. F. R. (2021). Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol. Soil and Tillage Research, 213, 1-8. DOI: https://doi.org/10.1016/j.still.2021.105127
    » https://doi.org/https://doi.org/10.1016/j.still.2021.105127
  • Soares, M. D. R., Souza, Z. M., Campos, M. C. C., Silva, R. B., Esteban, D. A. A., Noronha, R. L., ... Cunha, J. M. (2021). Land-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforest. Catena, 202, 1-7. DOI: https://doi.org/10.1016/j.catena.2021.105266
    » https://doi.org/https://doi.org/10.1016/j.catena.2021.105266
  • Soil Survey Staff. (2010). Keys to soil taxonomy (11th ed.). Washingthon, DC: USDA-Natural Resources Conservation Service.
  • Soracco, C. G., Villarreal, R., Melani, E. M., Oderiz, J. A., Salazar, M. P., Otero, M. F., ... Lozano, L. A. (2019). Hydraulic conductivity and pore connectivity. Effects of conventional and no-till systems determined using a simple laboratory device. Geoderma, 337, 1236-1244. DOI: https://doi.org/10.1016/j.geoderma.2018.10.045
    » https://doi.org/https://doi.org/10.1016/j.geoderma.2018.10.045
  • Smith, R. G., Atwood, L. W., & Warren, N. D. (2014). Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE, 9(5), 1-8. DOI: https://doi.org/10.1371/journal.pone.0097351
    » https://doi.org/https://doi.org/10.1371/journal.pone.0097351
  • Stavi, I., Lal, R., Jones, S., & Reeder, R. C. (2012). Implications of cover crops for soil quality and geodiversity in a humid-temperate region in the Midwestern USA. Land Degradation & Development, 23(4), 322-330. DOI: https://doi.org/10.1002/ldr.2148
    » https://doi.org/https://doi.org/10.1002/ldr.2148
  • Tormena, C. A., Karlen, D. L., Logsdon, S., & Cherubin, M. R. (2017). Corn stover harvest and tillage impacts on near-surface soil physical quality. Soil and Tillage Research, 166, 122-130. DOI: https://doi.org/10.1016/j.still.2016.09.015
    » https://doi.org/https://doi.org/10.1016/j.still.2016.09.015
  • Yu, Y., Loiskand, W., Kaul, H. P, Himmelbauer, M., Wei, W., Chen, L., & Bodner, G. (2016). Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology, 538, 667-676. DOI: https://doi.org/10.1016/j.jhydrol.2016.04.060
    » https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.04.060
  • Vujić, S., Krstić, D., Mačkić, K., Čabilovski, R., Radanović, Z., Zhan, A., & Ćupina, B. (2021). Effect of winter cover crops on water soil storage, total forage production, and quality of silage maize. European Journal of Agronomy, 130, 1-7. DOI: https://doi.org/10.1016/j.eja.2021.126366
    » https://doi.org/https://doi.org/10.1016/j.eja.2021.126366

Publication Dates

  • Publication in this collection
    09 Oct 2023
  • Date of issue
    2023

History

  • Received
    07 Feb 2022
  • Accepted
    01 June 2022
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br