Acessibilidade / Reportar erro

Gerontecnologias e internet das coisas para prevenção de quedas em idosos: revisão integrativa

Gerontecnologías y internet de las cosas para prevención de caídas en adultos mayores: revisión integradora

Resumo

Objetivo

Identificar na literatura as gerontecnologias Internet das Coisas desenvolvidas para prevenção de acidentes por quedas em idosos.

Métodos

Revisão integrativa, realizada de janeiro a maio de 2020. Foram critérios de inclusão artigos, sem restrição de período ou idioma com indivíduos de 60 anos ou mais, que abordem a utilização de gerontecnologia Internet das Coisas para prevenção de quedas. Excluíram-se artigos duplicados. A busca foi realizada pela estratégia PIE (População, Intervenção, Efeito/Avaliação), resultando na pergunta: “Quais as gerontecnologias Internet das Coisas desenvolvidas para prevenção de acidentes por quedas em idosos disponíveis na literatura?”. Foi realizada nas bases de dados MEDLINE/PubMed, LILACS, CINAHL, Scopus e Web of Science. Identificaram-se ano, tipo de estudo, país, profissionais envolvidos, desfecho, local de desenvolvimento e classificação em gerontecnologia Internet das Coisas e protótipos.

Resultados

Identificaram-se 23 gerontecnologias Internet das Coisas. Os anos de 2018 e 2019 apresentaram maiores números de publicações. Ocorreu predominância de estudos descritivos, por profissionais da ciência da computação e engenheiros e desenvolvidos na Europa, Ásia, América do Norte e Oceania. Encontraram-se oito gerontecnologias Internet das Coisas e 15 protótipos, sendo sete sensores, cinco dispositivos, três jogos sérios e sistemas, dois robôs e um exergames, realidade virtual e aplicativo. A maioria das gerontecnologias buscava melhora da mobilidade e equilíbrio, sendo cinco desenvolvidas em ambiente hospitalar e domiciliar, respectivamente.

Conclusão

As gerontecnologias Internet das Coisas podem ser utilizadas como recursos para auxiliar na prevenção de quedas e no fortalecimento da capacidade funcional. Todavia, fazem-se necessárias pesquisas futuras para analisar a eficácia deste tipo de tecnologia para prevenção de quedas em idosos.

Idoso; Internet das coisas; Tecnologia; Acidentes por quedas; Prevenção de acidentes

Resumen

Objetivo

Identificar en la literatura las gerontecnologías internet de las cosas desarrolladas para la prevención accidentes por caídas en adultos mayores.

Métodos

Revisión integradora, realizada de enero a mayo de 2020. Los criterios de inclusión fueron artículos, sin restricción de período o idioma, con individuos de 60 años o más, que abordaran la utilización de gerontecnologías internet de las cosas para la prevención de caídas. Se excluyeron artículos duplicados. La búsqueda fue realizada mediante la estrategia PIE (población, intervención, efecto/evaluación), que dio como resultado la pregunta “¿Cuáles son las gerontecnologías internet de las cosas desarrolladas para la prevención de accidentes por caídas en adultos mayores disponibles en la literatura?”. Se realizó en las bases de datos MEDLINE/PubMed, LILACS, CINAHL, Scopus y Web of Science. Se identificó el año, tipo de estudio, país, profesionales involucrados, resultado, lugar de desarrollo y clasificación en gerontecnologías internet de las cosas.

Resultados

Se identificaron 23 gerontecnologías internet de las cosas. Los años 2018 y 2019 presentaron mayores números de publicaciones. Hubo predominancia de estudios descriptivos, por profesionales de ciencias de la comunicación e ingenieros y desarrollados en Europa, Asia, América del Norte y Oceanía. Se encontraron ocho gerontecnologías internet de las cosas y 15 prototipos, de los cuales siete eran sensores, cinco dispositivos, tres juegos serios y sistemas, dos robots y un exergames, realidad virtual y aplicación. La mayoría de los gerontecnologías buscaba una mejora de la movilidad y el equilibrio, de las cuales cinco fueron desarrolladas en ambiente hospitalario y domiciliario.

Conclusión

Las gerontecnologías internet de las cosas pueden ser utilizadas como recurso para ayudar en la prevención de caídas y en el fortalecimiento de la capacidad funcional. Sin embargo, es necesario llevar a cabo estudios futuros para analizar la eficacia de este tipo de tecnología para la prevención de caídas en adultos mayores.

Anciano; Internet de las cosas; Tecnología; Accidentes por caídas; Prevención de accidentes

Abstract

Objective

To identify in the literature the Internet of Things gerontechnology developed to prevent accidents by falls in older adults.

Methods

This integrative review was carried out from January to May 2020. Articles without period or language restriction with individuals aged 60 years or older addressing the use of Internet of Things gerontechnology for fall prevention were included. Duplicate articles were excluded. The search was performed by the PIE strategy (Population, Intervention, Effect/Assessment), resulting in the question: “What Internet of Things gerontechnology developed for accident prevention by falls in older adults available in the literature?”. It was performed in the MEDLINE/PubMed, LILACS, CINAHL, Scopus and Web of Science databases. Year, type of study, country, professionals involved, outcome, development site and classification in Internet of Things gerontechnology and prototypes were identified.

Results

Twenty-three Internet of Things gerontechnology were identified. The years 2018 and 2019 had higher numbers of publications. There was a predominance of descriptive studies by computer science professionals and engineers and developed in Europe, Asia, North America and Oceania. Eight Internet of Things gerontechnology and 15 prototypes were found, seven sensors, five devices, three serious games and systems, two robots and one exergames, virtual reality and application. Most gerontechnology sought to improve mobility and balance, five of which were developed in the hospital and home environments, respectively.

Conclusion

The Internet of Things gerontechnology can be used as resources to assist in fall prevention and strengthening functional capacity. However, future research is needed to analyze the effectiveness of this type of technology for fall prevention in older adults.

Aged; Internet of things; Technology; Accidental falls; Accident prevention

Introdução

Com o envelhecimento da população mundial, a necessidade de suporte ao público idoso torna-se imperativa para apoiar as demandas inerentes ao processo de envelhecimento. Os dias atuais revelam profundas e constantes mudanças em que a tecnologia vem fazendo parte do cotidiano de todos.

Nesse sentido, o desenvolvimento de tecnologias voltadas especificamente para idosos tem seu maior expoente na Gerontecnologia, visto que esta procura fornecer respostas a duas principais tendências: o aumento da população idosa e o crescente avanço tecnológico.(11. De La Torre F, Morales D, Quiroz CP. Gerontecnología: rapid review y tendencias mundiales. Rev Mex Ing Biomed. 2015;36(3):171-9.) O termo gerontecnologia surgiu nos anos 70 e foi idealizado por engenheiros, designers e gerontólogos.(22. Piau A, Campo E, Rumeau P, Vellas B, Nourhashémi F. Aging society and gerontechnology: a solution for an independent living? J Nutr Health Aging. 2014;18(1):97-112. Review.) Conta com representação em âmbito internacional e nacional por meio da International Society for Gerontechnology e Sociedade Brasileira de Gerontecnologia, entidades que reúnem profissionais para o desenvolvimento de tecnologias voltadas à pessoa idosa.

A Gerontecnologia é o estudo da tecnologia associada ao envelhecimento para adequação dos recursos tecnológicos à saúde, moradia, mobilidade, comunicação, lazer, dentre outros, no intuito de manter nos idosos suas habilidades físicas e cognitivas, tornando-os mais autônomos e independentes, condições imprescindíveis para garantir sua capacidade funcional.(33. Ilha S, Santos SS, Backes DS, Barros EJ, Pelzer MT, Gautério-Abreu DP. Gerontechnologies used by families/caregivers of elderly people with Alzheimers: contribution to complex care. Texto Contexto Enferm. 2018; 27(4):e5210017.)

Como inovação tecnológica capaz de contribuir com a Gerontecnologia, tem-se a Internet das Coisas (IoT), uma vez que esta permite que objetos físicos vejam, ouçam, pensem, executem tarefas, compartilhem informações, processem dados, capturem variáveis ambientais e mudanças externas por meio de uma rede sem fio, que se comunica usando a Internet,(44. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor. 2015;17(4):2347-76.) incorporando dispositivos, sensores, sistemas, aplicativos, dentre outros, para prover um monitoramento mais completo e visando a um maior cuidado para os idosos.

A IoT pode ser utilizada em diversas áreas, todavia a área da saúde é apontada com uma das mais beneficiadas, pois soluções IoT podem ser aplicadas com dispositvos vestíveis (wearables) e dispositivos presentes no domicílio (smart home) com o objetivo de auxiliar no cuidados de saúde, o que possibilita o surgimento do Ambient Assisted Living (AAL).(55. Yang H, Lee W, Lee H. IoT smart home adoption: the importance of proper level automation. J Sensors. 2018;6464036:1-11.) Assim, a IoT pode revolucionar a prevenção de problemas e agravos que podem ser evitados com o monitoramento em tempo real.

Portanto, as gerontecnologias com solução IoT podem auxiliar na manutenção da saúde e na prevenção de agravos aos idosos. Destaca-se como agravo de maior relevância na população idosa os acidentes por quedas. Aproximadamente, um em cada três idosos cai uma vez ao ano(66. Almeida LM, Meucci RD, Dumith SC. Prevalence of falls in elderly people: a population based study. Rev Assoc Med Bras (1992). 2019;65(11):1397-403.) e a chance de cair aumenta com a idade, principalmente a partir dos 80 anos,(77. Gullich I, Cordova DD. Queda em idosos: estudo de base populacional. Rev Soc Bras Clin Med. 2017;15(4):230-4.,88. Alshammari SA, Alhassan AM, Aldawsari MA, Bazuhair FO, Alotaibi FK, Aldakhil AA, et al. Falls among elderly and its relation with their health problems and surrounding environmental factors in Riyadh. J Family Community Med. 2018;25(1):29-34.)caracterizando-se como uma das principais causas de morbidade e mortalidade de idosos no mundo.(99. James SL, Lucchesi LR, Bisignano C, Castle CD, Dingels ZV, Fox JT, et al. The global burden of falls: global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Inj Prev. 2020;26(Supp 1):i3-i11.)

A queda é definida como uma mudança inesperada de posição que leva o indivíduo a um nível inferior e resulta em risco de hospitalização ou até morte.(1010. Nascimento JS, Tavares DM. Prevalência e fatores associados a quedas em idosos. Texto Contexto Enferm. 2016;25(2):1-9.) Além do risco de hospitalizações ou até mesmo de mortes, as quedas têm alto custo econômico e impacto significativo na utilização de serviços de saúde.(1111. Pirrie M, Saini G, Angeles R, Marzanek F, Parascandalo J, Agarwal G. Risk of falls and fear of falling in older adults residing in public housing in Ontario, Canada: findings from a multisite observational study. BMC Geriatr. 2020;20(1):11.)

Assim, investigar as gerontecnologias IoT no intuito de conhecer as opções tecnológicas disponíveis para impedir ou reduzir o quadro recorrente de quedas é relevante e necessário. Essas tecnologias podem promover inovação, expansão e aprimoramento do cuidado em saúde, melhoria da qualidade de vida dos idosos, suas famílias e cuidadores, permitindo, ainda, transformações nas práticas dos profissionais de saúde, em especial de enfermeiros.

Nessa perspectiva, este estudo objetivou identificar na literatura as gerontecnologias IoT desenvolvidas para prevenção de acidentes por quedas em idosos.

Métodos

Trata-se de revisão integrativa, na qual foram adotadas as seguintes etapas: 1) Escolha da pergunta de pesquisa; 2) Definição dos critérios de inclusão e exclusão dos estudos; 3) Seleção da amostra; 4) Inclusão dos estudos selecionado; 5) Análise dos resultados, identificando diferenças e conflitos; 6) Discussão dos dados.(1212. Botelho LL, Cunha CC, Macedo M. O método da revisão integrativa nos estudos organizacionais. GeS. 2011;5(11):121-36.) Este estudo adotou as diretrizes da rede EQUATOR e seguiu as recomendações da estratégia Preferred Reporting Items for Systematic Reviews and Meta-Analyses Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).(1313. Galvão TF, Pansani TS, Harrad D. Principais itens para relatar revisões sistemáticas e meta-análises: a recomendação PRISMA. Epidemiol Serv Saúde. 2015;24(2):335-42.)

A busca foi definida por meio da estratégia PIE (1414. Easy as PIE. Nursing. 1999;29(4):25.)(População, Intervenção, Efeito/Avaliação). Dessa forma, a população de interesse são idosos, a intervenção gerontecnologias IoT e a avalição é prevenção de acidentes por quedas, resultando na seguinte pergunta: “Quais as gerontecnologias IoT desenvolvidas para prevenção de acidentes por quedas em idosos disponíveis na literatura?”.

Foram critérios de inclusão artigos sem restrição de período ou idioma com indivíduos de 60 anos ou mais, que abordem a utilização de gerontecnologia Internet das Coisas para prevenção de quedas. Excluíram-se artigos duplicados. O período de coleta foi de janeiro a maio de 2020. A busca nas bases de dados foi realizada pelo acesso online e de forma independente por dois pesquisadores.

A pesquisa foi realizada nas seguintes bases de dados: Medical Literature Analysis and Retrieval System Online/National Library of Medicine (MEDLINE/PubMed), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus e Web of Science.

Para ampliar a busca, adotaram-se termos da linguagem natural, descritores não controlados e descritores controlados da terminologia em saúde dos Descritores em Ciências da Saúde (DeCS). O quadro 1 traz os termos e estratégia de busca nas bases.

Quadro 1
Componentes da estratégia PIE, termos e estratégia de busca e bases de dados

Efetuou-se a leitura de título e resumo de todos os artigos rastreados; em seguida, realizou-se leitura minuciosa dos artigos selecionados e escolhidos aqueles para compor a amostra final, sendo elaborado um quadro síntese com as seguintes informações para a análise das tecnologias: autor, local de utilização, ano de publicação, país de desenvolvimento, tipo de estudo, principais conclusões, profissionais envolvidos, órgão de fomento, descrição, desfecho, especificação quanto a sensores, jogos sérios, exergames, dispositivos, realidade virtual, robôs, aplicativos e classificação em gerontecnologias IoT ou protótipos de gerontecnologia IoT.

Destaca-se que sensores são dispositivos sensíveis a alguma forma de interação com o ambiente que coletam informações sobre uma medida física que precisa ser mensurada. São classificados em térmicos, de pressão, vestíveis, de velocidade, de posição, de aceleração, dentre outros.(1515. Harshavardhan B, Reddy D, Joseph C. Sensor types and its applications. Intern J Pharm Technol. 2016;8(4):20172-80.)

Jogos sérios: jogos virtuais com a finalidade educacional e de promoção da saúde, mas podem possuir os princípios gerais dos jogos, como divertimento e entreterimento.(1616. Money AG, Atwal A, Boyce E, Gaber S, Windeatt S, Alexandrou K. Falls Sensei: a serious 3D exploration game to enable the detection of extrinsic home fall hazards for older adults. BMC Med Inform Decis Mak. 2019;19(1):85.)

Exergames: estes necessitam da movimentação do corpo inteiro do indivíduo associada ao exercício físico com videogame.(1717. Medeiros P, Capistrano R, Zequinão MA, Silva AS, Beltrame TS, Cardoso FL. Exergames as a tool for the acquisition and development of motor skills and abilities: a systematic review. Rev Paul Pediatr. 2017;35(4):464-71.)

Dispositivos: objetos que estão relacionados a um conjunto de regras, palavras que se relacionam entre si e podem influenciar na conduta das pessoas.(1818. Dodier N, Barbot J. A força dos dispositivos. Soc Estado. 2017;32(2):487-518.)

Realidade virtual: descrita como uma interface avançada do usuário, tendo como características a visualização e a movimentação em ambientes tridimensionais.(1919. Schiavoni JE. Realidade virtual e lógica do espaço. Galaxia (São Paulo). 2018;39:165-76.)

Robô: máquina que realiza tarefas de repetição e que exijem precisão elevada.(2020. Siqueira-Batista R, Souza CR, Maia PM, Siqueira SL. Robotic surgery: bioethical aspects. ABCD Arq Bras Cir Dig . 2016;29(4):287-90.)

Aplicativos: conjunto de ferramentas delineado para executar ações específicas.(2121. Banos O, Villalonga C, Garcia R, Saez A, Damas M, Holgado-Terriza JA, et al. Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomed Eng Online. 2015;14(Suppl 2):S6.)

Para a classificação das gerontecnologias IoT e protótipos de gerontecnologia IoT, levou-se em consideração os seguintes elementos essencias para a funcionalidade de uma IoT: conectividade, sensoriamento e processamento.(44. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor. 2015;17(4):2347-76.) Portanto, estudos que apresentavam os três elementos foram considerados gerontecnologias IoT e estudos que apresentavam pelo menos um desses elementos, protótipos de gerontecnologias IoT. Protótipo pode ser caracterizado como uma versão preliminar de um novo produto desenvolvido.(2222. Canuto da Silva G, Kaminski PC. Selection of virtual and physical prototypes in the product development process. Int J Adv Manuf Technol. 2016;84:1513-30.)

As informações dos estudos foram sistematizadas, categorizadas e analisadas.

Resultados

Identificaram-se 1873 artigos e, após a leitura dos títulos e resumos, excluíram-se 1563 artigos, restando 310 para a etapa seguinte. Nessa etapa, realizou-se leitura completa, após a qual foram excluídos 287. Por fim, a amostra final desta revisão foi constituída por 23 estudos. A figura 1 apresenta o processo de seleção desta pesquisa de acordo com o fluxograma PRISMA.

Figura 1
Fluxograma do Processo de Seleção dos Artigos

As gerontecnologias IoT disponíveis na literatura para prevenção de acidentes por quedas foram publicadas entre 2008 e 2020, a maioria nos anos de 2018 e 2019, nos seguintes países: Austrália (3),(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.

24. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
-2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.)Estados Unidos da América (3),(2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.

27. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.
-2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
)Tailândia (2),(2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.)Alemanha (2),(3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.) Aústria (1),(3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.) Suécia (1),(3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.)Argélia (1),(3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
)Canadá (1),(3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.)Coreia do Sul (1),(3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.)Finlândia (1),(3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
)Japão (1),(3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.) Portugal (1),(4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
) Reino Unido (1),(4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.)Itália (1),(4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.)Sérvia (1),(4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
)Suíça (1)(4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.) e Taiwan (1).(4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.)

Das 23 gerontecnologias Iot identificadas, seis eram estudos descritivos,(2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.,3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
)três estudos experimentais,(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.) um ensaio clínico randomizado,(4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.) um quase-experimental(3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.) e doze não relataram a metodologia utilizada.(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...

44. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.
-4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.)

No que se refere à autoria dos estudos por categoria profissional, destacam-se ciência da computação (7),(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
)engenheiros (4),(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
)enfermeiros (1)(3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.) e 12 artigos não informaram a formação dos autores.(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...

41. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.
-4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.,4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.)

Quanto à instituição de fomento das gerontecnologias IoT, dez foram financiadas por instituições governamentais,(2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.,3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...

44. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.
-4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) duas por organização não governamental(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.) e duas por universidades.(3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.) As demais não citaram.(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.)

No tocante aos desfechos das gerontecnologias IoT, oito eram voltadas para mobilidade,(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.

43. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
-4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.)seis para equilíbrio,(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
) quatro para os movimentos,(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.) três para detecção de objetos(2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) e uma para capacidade física.(3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
) Todavia, um artigo não relatou para qual desfecho a gerontecnologia era destinada.(3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.)

Quanto ao local de desenvolvimento, cinco foram desenvolvidas em ambiente hospitalar(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.

32. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.
-3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.) e domiciliar, respectivamente(3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
) duas em instituições de atendimento ao idoso(4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.,4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.) e onze não mencionaram.(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.

28. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
-2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.

37. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.

38. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
-3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.)

O quadro 2 traz as especificações dos estudos referentes às gerontotecnologias do tipo IoT (oito)(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.

32. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.

33. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.

34. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.
-3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
,4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.) e protótipo de gerontecnologias (15),(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.

28. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...

29. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.
-3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.

37. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.

38. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...

39. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.

40. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...

41. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.

42. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.
-4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) sendo sete sensores,(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.-3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.)cinco dispositivos,(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.,4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) três jogos sérios(2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
)e sistemas,(3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
) dois robôs(2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.) e um exergame,(3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
) realidade virtual(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
) e aplicativo.(2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
)

Quadro 2
Gerontecnologias IoT e protótipos de Gerontotecnologia IoT para prevenção de acidentes por quedas

Discussão

Nesta pesquisa, destaca-se o desenvolvimento de gerontecnologias IoT para prevenção de acidentes por quedas, publicadas, em sua maioria, nos últimos dois anos,(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.

30. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.
-3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.,3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.

35. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...

36. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.

37. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.
-3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
) ratificando o quão atual é o tema. A predominância de estudos, por engenheiros(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
,2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
) e profissionais da ciência da computação,(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.

32. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.

33. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.

34. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.
-3535. Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
https://doi.org/10.1109/LT.2018.8368503...
)em países da Europa,(3131. Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.

32. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.

33. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.
-3434. Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.,3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...

41. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.

42. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.

43. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
-4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.)América do Norte,(2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.

27. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.
-2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.) Ásia(2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) e Oceania,(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.

24. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
-2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.) comprova a seriedade do assunto em âmbito mundial e reforça a tendência de maior investimento tecnológico em países desenvolvidos.

Nesse sentido, a Austrália(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.

24. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
-2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.) e Estados Unidos(2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.

27. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.
-2828. Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
https://doi.org/10.1109/CSCI.2015.82...
) apresentaram maiores produtividade de gerontecnologias IoT, o que pode ser entendido como uma resposta do país a esse agravo, já que as quedas são as principais causas externas de morte para idosos com mais de 85 anos nesse país. Buscar estratégias para prevenção de quedas são indispensáveis, visto que as ações de prevenção podem proporcionar redução de 66% na sua incidência.(4646. Mackenzie L, Clifford A. Perceptions of the elderly in Ireland and Australia on the use of technology to combat fall prevention. Ageing Soc. 2020;40(2):369-88.)

Apesar desta revisão não apresentar estudos brasileiros, os dados sobre quedas em idosos são alarmantes. Em 2018, ocorreram 123.774 internações hospitalares no país por quedas.(4747. Brasil. Ministério da Saúde. Datasus. Informações de Saúde (TABNET). Brasília (DF): Ministério da Saúde; 2019 [citado 2020 Jul 20]. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0205
http://www2.datasus.gov.br/DATASUS/index...
) A taxa de ocorrência de quedas varia de 10,7 a 59,3% em idosos residentes na comunidade e de 32,5 a 66,7% em residentes de Instituições de Longa Permanência para Idosos.(4848. Leitão SM, Oliveira SC, Rolim LR, Carvalho RP, Coelho Filho JM, Peixoto Junior AA. Epidemiology of falls in older adults in Brazil: an integrative literature review. Geriatr Gerontol Aging. 2018;12(3):172-9.)

A partir dos resultados deste estudo, espera-se que profissionais de saúde, engenheiros e pesquisadores se motivem e busquem desenvolver pesquisas envolvendo gerontecnologias IoT destinadas à prevenção de quedas e divulguem seus resultados. As instituições de pesquisas, universidades, organizações governamentais e não governamentais e iniciativa privada precisam investir no desenvolvimento de tecnologias voltadas à população idosa, uma vez que o aumento dessa população exige ações, estratégias e mudanças nas políticas públicas, além de financiamento com editais e projetos específicos.

Destaca-se, ainda, que para incremento nessa área temática, faz-se necessário o estabelecimento de parcerias entre centros tecnológicos e profissionais de saúde, ressaltando a participação de enfermeiros nesse processo. Nesta revisão, a participação de enfermeiros foi escassa. No entanto, sabe-se que sua expertise no cuidado poderá agregar ao aparato tecnológico o desenvolvimento de tecnologias mais sensíveis às necessidades dos idosos.(4949. Olympio PC, Alvim NA. Board games: gerotechnology in nursing care practice. Rev Bras Enferm. 2018;71(2):818-26.)

Observou-se, neste estudo, quanto às gerontecnologias IoT produzidas em diferentes ambientes, que cerca de 30% das quedas estão relacionadas ao ambiente físico.(5050. Mahmoodabad SS, Zareipour M, Askarishahi M, Beigomi A. Effect of the living environment on falls among the elderly in Urmia. Open Access Maced J Med Sci. 2018;6(11):2233-8.) As gerontecnologias produzidas que se voltaram à detecção precoce de anormalidades no movimento dos idosos e ao declínio de suas habilidades biomecânicas são possíveis para identificar comprometimentos da locomoção que podem levar a quedas. Nesse sentido, gerontecnologias IoT específicas voltadas às limitações funcionais já existentes podem possibilitar melhora contínua da capacidade funcional, reduzindo as consequências da falta de equilíbrio no idoso.(5151. Khanuja K, Joki J, Bachmann G, Cuccurullo S. Gait and balance in the aging population: fall prevention using innovation and technology. Maturitas. 2018;110:51-6. Review.)

As gerontecnologias IoT atuam de forma mais eficaz no acompanhamento e monitoramento de idosos.(5252. Borelli E, Paolini G, Antoniazzi F, Barbiroli M, Benassi F, Chesani F, et al. Habitat: an IoT solution for independent elderly. Sensors. 2019;19(5):1258.) As aplicações clínicas das gerontecnologias IoT na saúde de idosos incluem monitorização, diagnóstico, previsão de agravos e tratamento. Por exemplo, por meio da gerotecnologia IoT, o sistema ou um dispositivo pode detectar sinais de alerta de risco referente aos idosos e enviar um sinal ou mensagem para cuidadores e profissionais da saúde. Dessa forma, pode acompanhar remotamente e em tempo real seu estado de saúde.(5353. Pasluosta CF, Gassner H, Winkler J, Klucken J, Eskofier BM. An emerging age in Parkinson’s disease management: wearable technologies and the internet of things. IEEE J Biomed Health Inform. 2015;19:1873-81.)

Destaca-se que para a construção de soluções IoT são necessárias outras tecnologias,(5454. da Costa CA, Pasluosta CF, Eskofier B, da Silva DB, da Rosa Righi R. Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018;89:61-9. Review.) necessitando, assim, de mão de obra especializada, investimentos e parcerias no intuito de produzir tecnologias de acordo com as demandas necessárias.

A arquitetura de soluções IoT deve abranger elementos complexos, como conectividade, sensoriamento e processamento, o que se torna um desafio para o seu desenvolvimento e implementação. Dada a heterogeneidade dos objetos, a dificuldade na transmissão de dados em tempo real, análise instantânea de dados realizada no pré-processamento, inteligência local em sistemas embarcados de baixa potência, interação entre usuários no local, interfaces complexas, portabilidade e vestibilidade,(3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.) muitos produtos são desenvolvidos abrangendo um ou mais elementos citados, configurando-se, assim, como protótipos.

Destaca-se a grande quantidade de gerontecnologias IoT com a utilização de sensores(2323. Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.,2626. Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.,3232. Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.,3333. Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.,3636. Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.,3737. Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.,4141. Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.)e dispositivos.(2525. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.,3939. Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.,4242. Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.,4444. Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.,4545. Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.) O uso de sistemas de acionamento de alertas baseados em sensores é uma abordagem promissora que pode informar à equipe de enfermagem, familiares e cuidadores quando um paciente tenta sair da cama.(5555. Alam MF, Katsikas S, Beltramello O, Hadjiefthymiades S. Augmented and virtual reality based monitoring and safety system: a prototype IoT platform. J Netw Comput Appl. 2017;89(1):109–19.) Sensores eletrônicos de detecção para prevenção de quedas de pacientes relacionados à cama estão se tornando cada vez mais comuns e são projetados para detectar pacientes que saem da cama sem assistência, sendo capazes de evitar situações perigosas.(5656. Mileski M, Brooks M, Topinka JB, Hamilton G, Land C, Mitchell T, et al. Alarming and/or alerting device effectiveness in reducing falls in long-term care (LTC) facilities? A systematic review. Healthcare (Basel). 2019;7(1):51.) Os sensores dessa natureza são de baixo custo e de fácil aquisição, pois podem ser utilizados sensores de presença comuns, disponíveis em lojas de eletrônicos, por exemplo.

Nesta revisão, os dispositivos foram projetados com o intuito de melhorar a estabilidade postural e consequentemente prevenir quedas. Os dispositivos também podem fornecer uma alternativa eficaz e de baixo custo para a redução da oscilação postural e avaliação da marcha em pessoas idosas.(5757. Poier PP, Godke F, Foggiatto JA, Ulbricht L. Development and evaluation of low cost walker with trunk support for the elderly. Rev Esc Enferm USP. 2017;51:e03252.)

As gerontotecnologias IoT que utilizaram robôs,(2727. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.,3030. Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.) jogos sérios,(2929. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.,4040. Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
https://doi.org/10.1109/CISTI.2015.71704...
,4343. Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
https://doi.org/10.1109/BIBE.2015.736763...
) realidade virtual(2424. Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
https://doi.org/10.1109/SeGAH.2018.84013...
) e exergames(3838. Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
https://doi.org/10.1109/SeGAH.2019.88824...
) apareceram em menor número, talvez por seu desenvolvimento envolver maior tempo e custos mais elevados, contudo possuem diversas possibilidades de utilização na atenção e cuidado à pessoa idosa. Os jogos, por exemplo, oferecem uma maneira atraente e divertida de aprender, além de auxilar no entendimento que a tecnologia pode melhorar a autonomia e a segurança, avaliar o risco e ajudar a prevenir possíveis quedas, contribuindo, dessa forma, para o envelhecimento saudável.(1515. Harshavardhan B, Reddy D, Joseph C. Sensor types and its applications. Intern J Pharm Technol. 2016;8(4):20172-80.)

Assim, as gerontecnologias IoT podem ser utilizadas como ferramentas importantes para auxiliar na prevenção de quedas e no fortalecimento da capacidade funcional. Os resultados da revisão reforçam a necessidade de práticas interprofissionais para melhor atender às necessidades da população idosa.

Salienta-se a originalidade do estudo por se tratar de uma temática atual e pouco explorada no cenário brasileiro. O método adotado possibilita a seleção de diferentes tipos de estudos, o que por um lado enriquece os achados, todavia restringe os detalhamentos dos mesmos, pois não há exigência de critérios quanto a qualidade e força das evidências, impossibilitando, assim, informações mais aprofundadas quanto ao desenvolvimento da gerontecnologia IoT, limitando a oportunidade de replicação por outros pesquisadores.

Conclusão

Evidenciou-se que o período de 2018 e 2019 apresentou maior número de publicações, destacando-se a produção na Austrália. Ressalta-se a predominância de estudos descritivos, engenheiros e profissionais da ciência da computação como os que mais produziram. Para prevenção de quedas, salienta-se as gerontecnologias IoT voltadas a mobilidade e equilíbrio. Encontraram-se gerontecnologias IoT que abordavam sistemas, sensores, dispositivos, jogos sérios, exergames, robôs, realidade virtual e aplicativos. Por ser um tema ainda em desenvolvimento, fazem-se necessárias pesquisas futuras que busquem analisar a eficácia das gerontecnologias IoT para prevenção de quedas, estudos que fomentem discussões sobre avaliação de custos e aplicabilidade na população. Além da necessidade de estabelecimento de parcerias entre centros tecnológicos e profissionais de saúde.

Referências

  • 1
    De La Torre F, Morales D, Quiroz CP. Gerontecnología: rapid review y tendencias mundiales. Rev Mex Ing Biomed. 2015;36(3):171-9.
  • 2
    Piau A, Campo E, Rumeau P, Vellas B, Nourhashémi F. Aging society and gerontechnology: a solution for an independent living? J Nutr Health Aging. 2014;18(1):97-112. Review.
  • 3
    Ilha S, Santos SS, Backes DS, Barros EJ, Pelzer MT, Gautério-Abreu DP. Gerontechnologies used by families/caregivers of elderly people with Alzheimers: contribution to complex care. Texto Contexto Enferm. 2018; 27(4):e5210017.
  • 4
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor. 2015;17(4):2347-76.
  • 5
    Yang H, Lee W, Lee H. IoT smart home adoption: the importance of proper level automation. J Sensors. 2018;6464036:1-11.
  • 6
    Almeida LM, Meucci RD, Dumith SC. Prevalence of falls in elderly people: a population based study. Rev Assoc Med Bras (1992). 2019;65(11):1397-403.
  • 7
    Gullich I, Cordova DD. Queda em idosos: estudo de base populacional. Rev Soc Bras Clin Med. 2017;15(4):230-4.
  • 8
    Alshammari SA, Alhassan AM, Aldawsari MA, Bazuhair FO, Alotaibi FK, Aldakhil AA, et al. Falls among elderly and its relation with their health problems and surrounding environmental factors in Riyadh. J Family Community Med. 2018;25(1):29-34.
  • 9
    James SL, Lucchesi LR, Bisignano C, Castle CD, Dingels ZV, Fox JT, et al. The global burden of falls: global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Inj Prev. 2020;26(Supp 1):i3-i11.
  • 10
    Nascimento JS, Tavares DM. Prevalência e fatores associados a quedas em idosos. Texto Contexto Enferm. 2016;25(2):1-9.
  • 11
    Pirrie M, Saini G, Angeles R, Marzanek F, Parascandalo J, Agarwal G. Risk of falls and fear of falling in older adults residing in public housing in Ontario, Canada: findings from a multisite observational study. BMC Geriatr. 2020;20(1):11.
  • 12
    Botelho LL, Cunha CC, Macedo M. O método da revisão integrativa nos estudos organizacionais. GeS. 2011;5(11):121-36.
  • 13
    Galvão TF, Pansani TS, Harrad D. Principais itens para relatar revisões sistemáticas e meta-análises: a recomendação PRISMA. Epidemiol Serv Saúde. 2015;24(2):335-42.
  • 14
    Easy as PIE. Nursing. 1999;29(4):25.
  • 15
    Harshavardhan B, Reddy D, Joseph C. Sensor types and its applications. Intern J Pharm Technol. 2016;8(4):20172-80.
  • 16
    Money AG, Atwal A, Boyce E, Gaber S, Windeatt S, Alexandrou K. Falls Sensei: a serious 3D exploration game to enable the detection of extrinsic home fall hazards for older adults. BMC Med Inform Decis Mak. 2019;19(1):85.
  • 17
    Medeiros P, Capistrano R, Zequinão MA, Silva AS, Beltrame TS, Cardoso FL. Exergames as a tool for the acquisition and development of motor skills and abilities: a systematic review. Rev Paul Pediatr. 2017;35(4):464-71.
  • 18
    Dodier N, Barbot J. A força dos dispositivos. Soc Estado. 2017;32(2):487-518.
  • 19
    Schiavoni JE. Realidade virtual e lógica do espaço. Galaxia (São Paulo). 2018;39:165-76.
  • 20
    Siqueira-Batista R, Souza CR, Maia PM, Siqueira SL. Robotic surgery: bioethical aspects. ABCD Arq Bras Cir Dig . 2016;29(4):287-90.
  • 21
    Banos O, Villalonga C, Garcia R, Saez A, Damas M, Holgado-Terriza JA, et al. Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomed Eng Online. 2015;14(Suppl 2):S6.
  • 22
    Canuto da Silva G, Kaminski PC. Selection of virtual and physical prototypes in the product development process. Int J Adv Manuf Technol. 2016;84:1513-30.
  • 23
    Torres RL, Visvanathan R, Hoskins S, van den Hengel A, Ranasinghe DC. Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors (Basel). 2016;16(4):546.
  • 24
    Raffe WL, Garcia JA. Combining skeletal tracking and virtual reality for game-based fall prevention training for the elderly. 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). Vienna: IEEE; 2018. p. 1-7. doi: 10.1109/SeGAH.2018.8401371.
    » https://doi.org/10.1109/SeGAH.2018.8401371
  • 25
    Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, et al. Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One. 2013;8(12):e83309.
  • 26
    Ranasinghe DC, Shinmoto Torres RL, Sample AP, Smith JR, Hill K, Visvanathan R. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6402-5.
  • 27
    Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131-9.
  • 28
    Goulding T, Deligiannidis L. Sparrow: a smart device for fall prevention. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA): IEEE; 2015. p. 797-9. doi: 10.1109/CSCI.2015.82.
    » https://doi.org/10.1109/CSCI.2015.82
  • 29
    Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124.
  • 30
    Maneeprom N, Taneepanichskul S, Panza A, Suputtitada A. Effectiveness of robotics fall prevention program among elderly in senior housings, Bangkok, Thailand: a quasi-experimental study. Clin Interv Aging. 2019;14:335-46. Review.
  • 31
    Jähne-Raden N, Kulau U, Marschollek M, Wolf KH. INBED: a highly specialized system for bed-exit-detection and fall prevention on a geriatric ward. Sensors (Basel). 2019;19(5):1017.
  • 32
    Wolf KH, Hetzer K, Zu Schwabedissen HM, Wiese B, Marschollek M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z Gerontol Geriatr. 2013;46(8):727-33.
  • 33
    Hilbe J, Schulc E, Linder B, Them C. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Int J Med Inform. 2010;79(3):173-80.
  • 34
    Aidemark J, Askenäs L. Fall Prevention as personal learning and changing behaviors: systems and technologies. Procedia Computer Science. 2019;164:498-507.
  • 35
    Aljahdali M, Abokhamees R, Bensenouci A, Brahimi T, Bensenouci M. IoT based assistive walker device for frail &visually impaired people. 2018 15th Learning and Technology Conference (L&T). Saudi Arabia: IEEE; 2018. p. 171-7. doi: 10.1109/LT.2018.8368503.
    » https://doi.org/10.1109/LT.2018.8368503
  • 36
    Wu AY, Munteanu C. Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. Conference Human Factors Computing Systems. 2018;119:1–13.
  • 37
    Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8:16349.
  • 38
    Merilampi S, Mulholland K, Ihanakangas V, Ojala J, Valo P, Virkki J. A smart chair physiotherapy exergame for fall prevention – user experience study. 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH). Japan: IEEE; 2019. p. 1-5. doi: 10.1109/SeGAH.2019.8882482.
    » https://doi.org/10.1109/SeGAH.2019.8882482
  • 39
    Di P, Hasegawa Y, Nakagawa S, Sekiyama K, Fukuda T, Huang J, et al. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Transactions Mechatronics. 2016;21(2):625-37.
  • 40
    Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of balance and fall prevention. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). Portugal: IEEE; 2015. p. 1-6. Doi: 10.1109/CISTI.2015.7170473.
    » https://doi.org/10.1109/CISTI.2015.7170473
  • 41
    Viriyavit W, Sornlertlamvanich V. Bed position classification by a neural network and bayesian network using noninvasive sensors for fall prevention. J Sensors. 2020;5689860:1-14.
  • 42
    Verrusio W, Gianturco V, Cacciafesta M, Marigliano V, Troisi G, Ripani M. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial. Aging Clin Exp Res. 2017;29(2):207-14.
  • 43
    Kouris I, Tsirbas C, Tagaris T, Vellidou E, Vartholomeos P, Rizou S, et al. KINOPTIM: The medical business intelligence module for fall prevention of the elderly. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE; 2015. p. 1-4. doi: 10.1109/BIBE.2015.7367637.
    » https://doi.org/10.1109/BIBE.2015.7367637
  • 44
    Moufawad El Achkar C, Lenoble-Hoskovec C, Major K, Paraschiv-Ionescu A, Büla C, et al. Instrumented shoes for real-time activity monitoring applications. Stud Health Technol Inform. 2016;225:663-7.
  • 45
    Tzung-Han L, Chi-Yun Y, Wen-Pin S. Fall prevention shoes using camera-based line-laser obstacle detection system. J Healthc Eng. 2017;8264071:1-11.
  • 46
    Mackenzie L, Clifford A. Perceptions of the elderly in Ireland and Australia on the use of technology to combat fall prevention. Ageing Soc. 2020;40(2):369-88.
  • 47
    Brasil. Ministério da Saúde. Datasus. Informações de Saúde (TABNET). Brasília (DF): Ministério da Saúde; 2019 [citado 2020 Jul 20]. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0205
    » http://www2.datasus.gov.br/DATASUS/index.php?area=0205
  • 48
    Leitão SM, Oliveira SC, Rolim LR, Carvalho RP, Coelho Filho JM, Peixoto Junior AA. Epidemiology of falls in older adults in Brazil: an integrative literature review. Geriatr Gerontol Aging. 2018;12(3):172-9.
  • 49
    Olympio PC, Alvim NA. Board games: gerotechnology in nursing care practice. Rev Bras Enferm. 2018;71(2):818-26.
  • 50
    Mahmoodabad SS, Zareipour M, Askarishahi M, Beigomi A. Effect of the living environment on falls among the elderly in Urmia. Open Access Maced J Med Sci. 2018;6(11):2233-8.
  • 51
    Khanuja K, Joki J, Bachmann G, Cuccurullo S. Gait and balance in the aging population: fall prevention using innovation and technology. Maturitas. 2018;110:51-6. Review.
  • 52
    Borelli E, Paolini G, Antoniazzi F, Barbiroli M, Benassi F, Chesani F, et al. Habitat: an IoT solution for independent elderly. Sensors. 2019;19(5):1258.
  • 53
    Pasluosta CF, Gassner H, Winkler J, Klucken J, Eskofier BM. An emerging age in Parkinson’s disease management: wearable technologies and the internet of things. IEEE J Biomed Health Inform. 2015;19:1873-81.
  • 54
    da Costa CA, Pasluosta CF, Eskofier B, da Silva DB, da Rosa Righi R. Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018;89:61-9. Review.
  • 55
    Alam MF, Katsikas S, Beltramello O, Hadjiefthymiades S. Augmented and virtual reality based monitoring and safety system: a prototype IoT platform. J Netw Comput Appl. 2017;89(1):109–19.
  • 56
    Mileski M, Brooks M, Topinka JB, Hamilton G, Land C, Mitchell T, et al. Alarming and/or alerting device effectiveness in reducing falls in long-term care (LTC) facilities? A systematic review. Healthcare (Basel). 2019;7(1):51.
  • 57
    Poier PP, Godke F, Foggiatto JA, Ulbricht L. Development and evaluation of low cost walker with trunk support for the elderly. Rev Esc Enferm USP. 2017;51:e03252.

Editado por

Editor Associado (Avaliação pelos pares): Ana Lucia de Moraes Horta (https://orcid.org/0000-0001-5643-3321) Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo, SP, Brasil

Datas de Publicação

  • Publicação nesta coleção
    07 Mar 2022
  • Data do Fascículo
    2022

Histórico

  • Recebido
    18 Out 2020
  • Aceito
    26 Maio 2021
Escola Paulista de Enfermagem, Universidade Federal de São Paulo R. Napoleão de Barros, 754, 04024-002 São Paulo - SP/Brasil, Tel./Fax: (55 11) 5576 4430 - São Paulo - SP - Brazil
E-mail: actapaulista@unifesp.br