Acessibilidade / Reportar erro

Mathematical modeling of water flocculation process with high turbidity: studies and comparative analysis between methods and models

Modelagem matemática do processo de floculação de águas com turbidez elevada: estudos e análise comparativa entre métodos e modelos

Abstract

The quality of water used by a population is directly proportional to the efficiency of its treatment. Mathematical modeling appears in this context as a tool for optimizing processes in order to make them more efficient, economical and sustainable. This work analyzed and compared the effectiveness of phenomenological mathematical models used in flocculation kinetics in water treatment. The results were obtained by comparing the Argaman and Kaufman Model with the Bratby Method; the Aggregation and Rupture Equation Method - MEAR; and the Method of the First Partial Derivative in Relation to the Velocity Gradient in Flocculation - MPDPG and a model that includes a new term (KC) that contemplates a supposed process of irreversibility of floc. The mathematical modeling was validated and compared with experimental data. The coefficients of the models and methods were obtained using the Excel® solver® tool using spreadsheets from the same application. It was possible to identify that the Bratby Method, which obtained an average deviation of the order of 30%, was the least efficient, while the MEAR and MPDPG Methods, which obtained about 18% of average deviation and the Kc Model with a deviation of the order of 19%, proved to be efficient in describing the experimental data used.

Keywords:
flocculation; mathematical modeling; water treatments

Resumo

A qualidade da água utilizada por uma população é diretamente proporcional à eficiência de seu tratamento. A modelagem matemática surge nesse contexto como uma ferramenta para otimização dos processos com o intuito de torná-los mais eficientes, econômicos e sustentáveis. Este trabalho teve por objetivo analisar e comparar a eficácia dos modelos matemáticos fenomenológicos utilizados na cinética de floculação no tratamento de água. Os resultados foram obtidos por meio de uma comparação do modelo de Argaman e Kaufman com os métodos de Bratby; o Método da Equação de Agregação e Ruptura - MEAR; e o Método da Primeira Derivada Parcial em Relação ao Gradiente de Velocidade na Floculação - MPDPG e um modelo que inclui um novo termo que contempla um suposto processo de irreversibilidade dos flocos (KC). A modelação matemática foi validada e comparada com dados experimentais. Os coeficientes dos modelos e métodos foram obtidos utilizando a ferramenta solver® do Excel® com o uso de planilhas eletrônicas do mesmo aplicativo. Foi possível identificar que o método de Bratby, que obteve um desvio médio da ordem de 30%, mostrou-se o de menor eficácia, ao passo os métodos MEAR e MPDPG, que obtiveram cerca de 18% de desvio médio e o modelo KC com um desvio da ordem de 19%, mostraram-se eficientes em descrever os dados experimentais utilizados.

Palavras-chave:
floculação; modelagem matemática; tratamento de água

1. INTRODUCTION

Mathematical modeling transforms real-world problems into mathematical processes in order to seek concrete solutions (Bertone et al., 2014BERTONE, A. M. A.; BASSANEZI, R. C.; JAFELICE, R. S. M. Modelagem matemática. Uberlândia: UFU, 2014. 187p. ; De Lima et. al., 2022DE LIMA, E. J.; CINTRA, D. D.; CAMPOS, D. C.; DE MORAIS, D. V. Educação matemática crítica e modelagem matemática: uma proposta de atividade para sala de aula. Research, Society and Development, v. 11, n. 13, p. e154111335453-e154111335453, 2022. https://doi.org/10.33448/rsd-v11i13.35453
https://doi.org/10.33448/rsd-v11i13.3545...
). It can be used in flocculation systems for water treatment.

According to Di Bernardo et al., (2017)DI BERNARDO, L.; DANTAS, A. D. B.; VOLTAN, P. E. N. Métodos e técnicas de tratamento de água. 3. ed. São Carlos: LDiBe, 2017. 1246p., mathematical modeling in the flocculation process aims to evaluate the performance of flocculation, through the phenomena of aggregation and rupture.

In Water Treatment Plants (WTP), flocculation corresponds to a step in which conditions are met to provide contact and aggregation of previously coagulated particles, facilitating their removal by sedimentation, flotation or rapid filtration (Bratby 2016BRATBY, J. R. Coagulation and Flocculation in Water and Wastewater Treatment. 3rd ed. London: IWA Publishing, 2016. 538p. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
; Lopes et al., 2020LOPES, V. S.; SILVA, L. M. A.; MORUZZI, R. B.; OLIVEIRA, A. L. Estudo da coagulação/floculação de água com turbidez moderada na sedimentação e flotação por ar dissolvido. Engenharia Sanitária Ambiental, v. 25, n. 4, p. 567-572, 2020. https://doi.org/10.1590/S1413-41522020193514
https://doi.org/10.1590/S1413-4152202019...
; Li et al., 2021LI, C.; BUSQUETS, R.; MORUZZI, R. B.; CAMPOS, L. C. Preliminary study on low-density polystyrene microplastics bead removal from drinking water by coagulation-flocculation and sedimentation. Journal of Water Process Engineering, v. 44. p. 102346, 2021. https://doi.org/10.1016/j.jwpe.2021.102346
https://doi.org/10.1016/j.jwpe.2021.1023...
; Moruzzi and Oliveira, 2020MORUZZI, R. B.; OLIVEIRA, A. L. Avaliação da sensibilidade da função de distribuição de tamanho de partícula durante a floculação. Engenharia Sanitária e Ambiental, v. 25, p. 01-09, 2020. https://doi.org/10.1590/S1413-41522020169648
https://doi.org/10.1590/S1413-4152202016...
; Moruzzi et al., 2022MORUZZI, R. B.; GONÇALVES, J.; SPERANZA, L. G.; OLIVEIRA, A. L. D. Influência da ação combinada do transporte inercial e da sedimentação diferencial nos agregados após cessada a floculação mecanizada. Engenharia Sanitária e Ambiental, v. 27, p. 723-729, 2022. https://doi.org/10.1590/s1413-415220200291
https://doi.org/10.1590/s1413-4152202002...
). The efficiency of the flocculation unit depends on the performance of the rapid mixing unit, and is affected by the following factors: coagulant type, coagulant pH, water temperature, concentration and age of the coagulant solution, rapid mixing time and rate of change of color, types and form of coagulant and quality of raw water (Di Bernardo et al., 2017DI BERNARDO, L.; DANTAS, A. D. B.; VOLTAN, P. E. N. Métodos e técnicas de tratamento de água. 3. ed. São Carlos: LDiBe, 2017. 1246p.; Russo et al., 2020RUSSO, A. C.; PIMENTEL, M. A. D. S.; HEMSI, P. S. Emprego do monitoramento contínuo da floculação no controle de parâmetros de tratabilidade de água. Engenharia Sanitária e Ambiental, v. 25, p. 501-507, 2020. https://doi.org/10.1590/S1413-41522020184285
https://doi.org/10.1590/S1413-4152202018...
).

Argaman and Kaufman in 1970ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
analyzed a mathematical model that explains the kinetics of collisions between particles during flocculation. It combines aggregation and rupture coefficients (KA and KB, respectively) whose values ​​are determined through tests in pilot-scale continuous flow reactors. The experiments require costly equipment, so in 1981 Bratby, in the search for a low-cost experiment, adapted the method in order to improve the values ​​of the average flocculation velocity gradient in units with continuous flow based on tests carried out in static reactors with long settling time.

Di Bernardo et al. (2005)DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
, emphasize studies carried out by Brito (1998)BRITO, S. A. Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação. 1998. 189f. Dissertação (Mestrado em engenharia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998., of methods to determine KA and KB, based on turbidity data and the number of remaining primary particles, considering the sedimentation velocity. The proposed methods were the aggregation and rupture equation - MEAR (Modification of the Bratby method of 1981BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
) and First Partial Derivative in Relation to the Flocculation Velocity Gradient (MPDPG).

Proposing an alternative method of flocculation kinetics, Argaman and Kaufman (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
, and Marques and Ferreira Filho (2016MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
https://doi.org/10.1080/09593330.2016.12...
; 2022MARQUES, R. O.; FERREIRA FILHO, S. S. Further investigation of the irreversible floc breakup in flocculation kinetics modelling. Water Science & Technology Water Supply, v. 22, n. 4, p. 3814-3823, 2022. https://doi.org/10.2166/ws.2022.023
https://doi.org/10.2166/ws.2022.023...
), included a third component in the modeling resulting in three kinetic constants that are named, KA (Aggregation Constant), KB (Rupture Constant) and Kc (Permanent Rupture Constant); these new terms would determine what they called the “irreversible floc breaking process”.

In the flocculation process, aggregation and rupture occur simultaneously, and these effects are promoted by agitation. Thus, an increase in agitation with an increase in the average velocity gradient with the flocs already formed occurs in a few seconds, with an increase in shear forces and their partial or total decrease; but if you return to the initial stage of agitation, there will be the possibility of regrowth of the flakes or re-flocculation (Voltan, 2007VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007; Ali and Chassagne, 2022ALI, W.; CHASSAGNE, C. Comparison between two analytical models to study the flocculation of mineral clay by polyelectrolytes. Continental Shelf Research, v. 250, p. 104864, 2022. https://doi.org/10.1016/j.csr.2022.104864
https://doi.org/10.1016/j.csr.2022.10486...
). According to Santos et al. (2012)SANTOS, V. R. S.; BOTARI, J. C.; BOTARI, A. Estudo e análise de recrescimento de flocos em função do comportamento hidrodinâmico. In: SAFETY, HEALTH AND ENVIRONMENT WORD CONGRESS, 12., 2012, São Paulo. Proceedings[…] COPEC, 2012., the size of the regrown flakes is limited. On the other hand, Marques and Ferreira Filho (2017)MARQUES, R. O.; FERREIRA FILHO, S. S. Modelagem matemática do processo de ruptura irreversível de flocos. In: CONGRESSO ABES / FENASAN, 2017, São Paulo. Anais[…] São Paulo: ABES; AESabesp, 2017. say that after the flake breaks there is an irreversibility. This work therefore aims to compare the methods and mathematical models used by these authors.

The main contribution of this work lies in the simulation of results in mathematical models and methods for flocculation in water treatment and their comparison. The models used in this research were the mechanistic models in the area of ​​flocculation in water treatment; obviously there are other methods and models (Oliveira and Donadel, 2019OLIVEIRA, D.; DONADEL, C. B. Mathematical modelling and analysis of the flocculation process in low retention time hydraulic flocculators. Water SA, v. 45, n. 1, p. 1-11, 2019. https://doi.org/10.4314/wsa.v45i1.01
https://doi.org/10.4314/wsa.v45i1.01...
; Moruzzi et al., 2022MORUZZI, R. B.; GONÇALVES, J.; SPERANZA, L. G.; OLIVEIRA, A. L. D. Influência da ação combinada do transporte inercial e da sedimentação diferencial nos agregados após cessada a floculação mecanizada. Engenharia Sanitária e Ambiental, v. 27, p. 723-729, 2022. https://doi.org/10.1590/s1413-415220200291
https://doi.org/10.1590/s1413-4152202002...
; Garcia-Gil et al.,2022GARCIA-GIL, A.; FENG, L.; MORENO-SAN SEGUNDO, J.; GIANNAKIS, S.; PULGARÍN, C.; MARUGÁN, J. Mechanistic modelling of solar disinfection (SODIS) kinetics of Escherichia coli, enhanced with H2O2-part 1: The dark side of peroxide. Chemical Engineering Journal, v. 439, p. 135709, 2022. https://doi.org/10.1016/j.cej.2022.135709
https://doi.org/10.1016/j.cej.2022.13570...
). Most are statistical/probabilistic models and not based on phenomenology (Al-Saati et al., 2019AL-SAATI, N.; HUSSEIN, T.; ABBAS, M.; HASHIM, K. S.; AL-SAATI, Z.; KOT, P. et al. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. Desalination and Water Treatment, v. 150, p. 406-412, 2019. http://dx.doi.org/10.5004/dwt.2019.23871
http://dx.doi.org/10.5004/dwt.2019.23871...
; Hernandez-Crespo et al., 2022HERNÁNDEZ-CRESPO, C.; FERNANDEZ-GONAZALYO, M. I.; MIGLIO, R. M.; MARTÍN, M. Escherichia coli removal in a treatment wetland-pond system: A mathematical modelling experience. Science of The Total Environment, v. 839, p. 156237, 2022. https://doi.org/10.1016/j.scitotenv.2022.156237
https://doi.org/10.1016/j.scitotenv.2022...
; Ezemagu et al., 2020EZEMAGU, I. G.; EJIMOFOR, M. I.; MENKITI, M. C. Turbidimetric study for the decontamination of paint effluent (PE) using mucuna seed coagulant (MSC): Statistical design and coag-flocculation modelling. Environmental Advances, v. 2, p. 100023, 2020. https://doi.org/10.1016/j.envadv.2020.100023
https://doi.org/10.1016/j.envadv.2020.10...
; Okey-Onyesolu et al., 2022OKEY-ONYESOLU, C. F.; CHUKWUMA, E. C.; OKOYE, C. C.; TAIWO, A. E. Application of synthesized Fish Scale Chito-Protein (FSC) for the treatment of abattoir wastewater: Coagulation-flocculation kinetics and equilibrium modeling. Scientific African, v. 17, p. e01367, 2022. https://doi.org/10.1016/j.sciaf.2022.e01367
https://doi.org/10.1016/j.sciaf.2022.e01...
). Phenomenological models can be useful tools in the design of water treatment plants.

1.1. Mathematical modeling

The use of mathematical modeling related to the kinetics of flocculation aims to estimate its performance considering the phenomena of aggregation and rupture. The correct understanding of flocculation mechanisms depends on the study of flocculation kinetics, whose efficiency is linked to several parameters, such as floc sedimentation speed, coagulant dosage, velocity gradient and concentration of primary particles, among others (Hespanhol and Ferreira Filho, 2016HESPANHOL, K. M. H.; FERREIRA FILHO, S. S. Influência da concentração de partículas primárias nas constantes de agregação e ruptura. In: CONGRESSO TÉCNICO CIENTÍFICO DA ENGENHARIA E DA AGRONOMIA, 2016, Foz do Iguaçu. Anais[…] Belo Horizonte: Confea, 2016.; Castamann et al., 2022CASTAMANN, G.; COLOMBO, W. L. R.; PALÁCIO, S. M.; GONÇALVES D. C. G.; BARBIERI, J. C. Z. Estudo da cinética de floculação de águas de frigorífico de peixes utilizando um modelo fenomenológico e técnicas de aprendizado de máquina. Research, Society and Development, v. 11, n. 11, p. e528111133976-e528111133976, 2022. https://doi.org/10.33448/rsd-v11i11.33976
https://doi.org/10.33448/rsd-v11i11.3397...
).

The velocity gradient is considered of paramount importance in the design of flocculation units and is related to the variation of the velocity profile in space, including turbulence mechanisms for the transport of destabilized particles. The models proposed for the study of the kinetics of the flocculation process, are mostly based on experiments carried out in batch mode. After these tests, the results obtained are often extrapolated to the projects of continuous systems with quantities of one or more flocculation chambers in series (Moruzzi and Oliveira, 2010MORUZZI, R. B.; OLIVEIRA, S. C. Modelagem matemática e análise do processo de floculação em câmaras em série. In: BRAZILIAN CONFERENCE ON DYNAMICS, CONTROL AND THEIR APPLICATIONS, 9., 2010, Serra Negra. Anais[…] São Carlos: SBMAC, 2010.).

1.2. Aggregation and disruption

During flocculation, the kinetics of the encounters between the particles promotes two effects simultaneously: aggregation and rupture (Moruzzi and Silva, 2018MORUZZI, R. B.; SILVA, P. A. G. Reversibility of Al-kaolin and Al-humic aggregates monitored by stable diameter and size distribution. Brazilian Journal of Chemical Engineering, v. 35, n. 3, p. 1029-1038, 2018. https://doi.org/10.1590/0104-6632.20180353s20170098
https://doi.org/10.1590/0104-6632.201803...
). Aggregation is the result of the encounter of chemically destabilized particles, by the action of the coagulant, where its agitation promotes conjoining with each other, forming the flakes (Rau et al., 2018RAU, M. J.; ACKLESON, S. G.; SMITH, G. B. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment. Plos One, v. 13, n. 12, p. 1-28, 2018. https://doi.org/10.1371/journal.pone.0207809
https://doi.org/10.1371/journal.pone.020...
; Pawignya et al., 2019PAWIGNYA, H.; KUSWORO, T. D.; PRAMUDONO, B. Kinetic Modeling of Flocculation and Coalescence in the System Emulsion of Water-Xylene-Terbutyl Oleyl Glycosides. Bulletin of Chemical Reaction Engineering & Catalysis, v. 14, n. 1, p. 60-68, 2019. https://doi.org/10.9767/bcrec.14.1.2594.60-68
https://doi.org/10.9767/bcrec.14.1.2594....
). Breakage is the breakage of flocs by shearing forces, which can occur over a long time of flocculation or by intense agitation (Voltan, 2007VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007; Seneda et al., 2021SENEDA, R. M.; GARCIA, G. F.; REIS, A. G. Cinética da floculação: um estudo comparativo no uso do cloreto de polialumínio com alta e baixa basicidade e o sulfato de alumínio. Engenharia Sanitária e Ambiental, v. 26, p. 283-290, 2021. https://doi.org/10.1590/S1413-415220190297
https://doi.org/10.1590/S1413-4152201902...
).

According to Oliveira and Teixeira (2014)OLIVEIRA, D. E.; TEIXEIRA, D. E. Avaliação da Eficiência de Remoção de Turbidez em Função de Variações na Concentração Inicial de Sólidos em Floculadores Tubulares Helicoidais. In: SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 12., 2014, Natal. Anais[…] Vitória: UFES, 2014., high velocities can generate the formation of velocity gradients, which, before their removal, allow the breakage and fragmentation of the flocs. Thus, according to the authors (Santos et al., 2014SANTOS, V. R. S.; BOTARI, J. C.; BOTARI, A. Análise e modelação matemática do recrescimento de flocos em água com turbidez elevada. In: SAFETY, HEALTH AND ENVIRONMENT WORD CONGRESS, 14., 2014, Cubatão. Proceedings[…] COPEC, 2014. https://dx.doi.org/10.14684/SHEWC.14.2014.359-364
https://dx.doi.org/10.14684/SHEWC.14.201...
; Voltan, 2007VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007), when returning to the initial conditions of agitation the flakes grow again; this effect is called “refloculation”. In the aforementioned studies, the effects of rupture and reflocculation on floc size in static reactors were verified, and that reflocculation depends on the stirring time and the rupture velocity gradient (Oliveira and Teixeira, 2014OLIVEIRA, D. E.; TEIXEIRA, D. E. Avaliação da Eficiência de Remoção de Turbidez em Função de Variações na Concentração Inicial de Sólidos em Floculadores Tubulares Helicoidais. In: SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 12., 2014, Natal. Anais[…] Vitória: UFES, 2014.; Santos, et al., 2012SANTOS, V. R. S.; BOTARI, J. C.; BOTARI, A. Estudo e análise de recrescimento de flocos em função do comportamento hidrodinâmico. In: SAFETY, HEALTH AND ENVIRONMENT WORD CONGRESS, 12., 2012, São Paulo. Proceedings[…] COPEC, 2012.).

Two mechanisms are responsible for the breakdown: surface erosion of primary particles present in the flocs and floc fragmentation. The first is caused by the drag of water acting through the shear forces on the surface of the flakes, with turbulent flow, while the second occurs as a function of dynamic pressure differences on opposite sides of the flakes, deforming and fragmenting them (Di Bernardo et al., 2005DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
).

Aggregation and disruption (disaggregation) during flocculation results in the formation of a stable floc size defined by Equation 1, (Di Bernardo, 2002DI BERNARDO, L.; DI BERNARDO, A.; CENTURIONE, P. L. F. Ensaios de Tratabilidade de Água e dos Resíduos Gerados em Estações de Tratamento de Água. São Carlos: RiMa, 2002. 248 p.).

d f e s = K f e s G m e d k f e s (1)

Where, dfes represents the size of the stable flake (cm), k fes the coefficient related to the strength of the stable flake (cm.skfes ) and k fes (dimensionless coefficient), the coefficient that depends on the way in which the flake rupture occurs and the size of the eddies causing this rupture, while Gmed is the mean velocity gradient (s-1). When there is erosion of flocs larger than ƞ (Kolmogorov turbulence microscale - [cm]), k fes = 2 is obtained and, for flocs smaller than h, k fes = 1 results. When the predominant action is fragmentation, it has k fes = 0.5 for the two floc size conditions with respect to h. Results of some experiments with k fes = 1 indicate that the maximum floc size is inversely proportional to Gmed (Di Bernardo, 2017DI BERNARDO, L.; DANTAS, A. D. B.; VOLTAN, P. E. N. Métodos e técnicas de tratamento de água. 3. ed. São Carlos: LDiBe, 2017. 1246p.).

According to Di Bernardo et al. (2005)DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
, previous research on flocculation suggested the following relationships between d 𝑓𝑒𝑠 and Gmed to obtain a stable floc size, with the kfes coefficient encompassing erosion and fragmentation actions, which can be observed in Equations 2 and 3:

d f e s α G m e d - 0,65 a 0,76 t o d f e s < < < n (2)

d f e s α G m e d - 0,65 a 0,76 t o d f e s < < < n (3)

Still on the mathematical modeling of flocculation, aggregation and rupture, Di Bernardo et al. (2005)DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
, present and detail Equations 4, 5, 6 and 7:

Equation 4 expresses the primary particle production rate due to floc rupture, dn1/dt.

d n 1 d t = K B n 0 G m e d k e s (4)

Where: KB is the breakage (rupture) coefficient (s), n0 is the number of particles per unit volume at time t = 0 (m-3), and the coefficient kes, is equal to 4 for flocs with d > n, and equal to 2, for flakes with d < n.

Considering the phenomenon of aggregation:

d n d t = - 4 α n Φ f n G m e d = - K a g Φ f n G m e d (5)

In Equation 5, Kag is an empirical coefficient that depends on the chemical characteristics of the system and the physical characteristics of the mixture; Ф is the volumetric fraction of the flocs and n is the number of particles per unit volume (m-3).

That is, KA =KagΦf:

d n 1 d t = - K A n 1 G m e d (6)

Where n1 is the number of particles per unit volume at time t (m-3). Combining Equations 4 and 6, the general flocculation Equation 7 results:

d n 1 d t = K B n 0 G m e d k e s - K A n 1 G m e d (7)

Argaman and Kaufman (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
, setting kes = 2, applied Equation 7 to a flocculation unit consisting of “m” completely mixed (constant Gf) chambers (reactors), in series, resulting in Equation 8:

n 1 m n 1 0 = 1 + K B G f 2 T d m 1 = 0 m - 1 1 + K A G f T d m i 1 + K A G f T d m m (8)

Where: n10:: Number of primary particles per volume unit present at the beginning of flocculation (m-3); n1m: Number of primary particles per unit volume present at the exit of the m-th (m-3); Gf: Mean flocculation velocity gradient (s-1); m: Number of Chambers; Td: Total flocculation time (s); KA: Aggregation coefficient; KB: Breakage coefficient (s).

Argaman et al. (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
, exposed a model that contemplated the variation of velocity gradients in different flocculation chambers in series, according to Equation 9:

n 1 i - 1 n 1 i = 1 + K A G f T d m 1 + n 1 0 n 1 i - 1 K B G f 2 T d m (9)

In Equation 9, ni-1n1i is the ratio between the number of primary particles (or turbidity) effluent and influent from flocculation chambers in sequence.

For Di Bernardo et al. (2005)DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
, the determination of the values ​​of the coefficients KA and KB can be obtained by carrying out tests in pilot installations with continuous flow. This fact made it difficult to use the model due to the cost involved and also the relatively long time required to carry out the tests. As KA and KB remain constant in Equation 8 for complete series mixing chambers, according to Bratby et al. (1977)BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977. such coefficients theoretically should not be changed if the number of chambers tends to infinity, that is, for piston-type or static-reactor flow.

The equation to describe the kinetics of flocculation in a static reactor is similar to Equation 7, presented by Equation 10, (Bratby et al., 1977BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977.).

d n 1 d t = - K A n t 1 G f + K B n 0 1 G f 2 (10)

Where: n01: Number of primary particles per unit volume at time t = 0 (m-3); nt1: Number of primary particles per unit volume at time t (m-3); dn1dt: Variation of particles per unit volume with respect to time (s-1.m-3).

Integrating Equation 10 and rearranging the terms, Equation 11 is obtained:

n 0 1 n T f 1 = K B K A G f + 1 - K B K A G f e - K A G f T f - 1 (11)

Where nTf1 represents the number of primary particles after the flocculation time Tf. The coefficients KA and KB, determined by using Equations 10 and 11, can be used in a system of several complete mixing chambers in series, with Gf values ​​smaller than 100 s-1.

The settling time used in the assay should be relatively long, so that the supernatant would present only primary particles, and also so that the remaining turbidity values ​​could be used to relate them to the number of primary particles in the supernatant (Bratby et al.,1977BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977.).

When questioning the validity of the data found, Pádua (1994)PÁDUA, V. L. Metodologia para determinação dos gradientes de velocidade médios em unidades de floculação de mistura completa com câmaras em série e escoamento contínuo a partir de ensaios em reatores estáticos. 1994. 74f. Dissertação (Mestrado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1994., contested this methodology, because with a long settling time, there is a corresponding very low settling velocity, different from what actually happens in water treatment plants, in which there are sedimentation velocity values ​​in the decanters of the order of 1 to 5 cm.min-1.

Bratby et al. (1977)BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977., considering that the number of primary particles is equal to the remaining turbidity, when integrating Equation 10, resulted in Equation 12 below:

N 0 N 1 = K B K A G f + 1 - K B K A G f e - K A G f T f - 1 (12)

Where: N0: Initial turbidity of the supernatant (uT) and N1: Final turbidity of the supernatant after long sedimentation time (uT).

1.3. Aggregation Model and Rupture and Irreversible Rupture

Marques and Ferreira Filho (2016)MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
https://doi.org/10.1080/09593330.2016.12...
, presented a proposed amendment to the classic model of Argaman and Kaufman, including a new term that contemplates a supposed process of irreversibility of the flakes. This inclusion would result in the appearance of particles that cannot be removed by sedimentation, and that will not form a floc again. The mathematical model proposed by the authors is demonstrated by Equations 13, 14 and 15:

N t = K B K A . G . N 0 + N 0 - K B K A . G . N 0 . e - K A G . t (13)

F t = K A . G . N 0 - K B . G 2 . N 0 K C . G - K A . G . e - K A G . t - e - K C G . t (14)

T t = K C . G 2 . N 0 . ( K A - K B . G ) K C . G - K A . G . e - K C G . t K C . G - 1 K C . G - e - K A G . t K A . G + 1 K A . G (15)

Where: N(t) = turbidity resulting from the presence of primary particles N at time t (uT); F(t) = turbidity resulting from the presence of F particles at time t (uT); T(t) = turbidity resulting from the presence of T particles at time t (uT); KA = aggregation constant (s); KB = Breakage constant (s); Kc = irreversible rupture constant (s); G = mean velocity gradient (s-1); t = time (s); N0 = initial turbidity resulting from the presence of primary particles (uT).

2. MATERIAL AND METHODS

The experimental data used for the validation of models and methods in the development of the methodology proposed in this work were obtained by Voltan (2007)VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007, who studied water with the following characteristics: pH from 7.50 to 7.55, turbidity between 99 and 103 uT, apparent color between 420 to 440 uC, true color 2 uC, alkalinity from 25.6 to 26.2 mg. CaCO3 L-1; conductivity of 46.5 µS.cm-1 and hardness of 17 to 18 mg.L-1 of CaCO3. For this validation, an average flocculation velocity gradient was used (G = 25, 30, 35, 40, and 60 s-1), with sedimentation velocities (Vs = 1.0; 2.5 and 5.0 cm-min), and flocculation time (Tf = 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500; 1500; 1500; 1800; 2100; 2400 s).

For the comparison of methods and models, experimental data from Dantas et al. (2000)DANTAS, A. D. B.; DI BERNARDO, A. S.; DI BERNARDO, L.; FROLLINI, E. Influência do Tempo de Aplicação de Polímeros na Eficiência da Floculação/Sedimentação. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2000, Porto Alegre. Resumos[…] Porto Alegre: ABRH, 2000., Voltan (2007)VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007, Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008. and Brito et al. (2016)BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016. were used. Waters with the following characteristics were studied: Dantas et al. (2000)DANTAS, A. D. B.; DI BERNARDO, A. S.; DI BERNARDO, L.; FROLLINI, E. Influência do Tempo de Aplicação de Polímeros na Eficiência da Floculação/Sedimentação. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2000, Porto Alegre. Resumos[…] Porto Alegre: ABRH, 2000., pH from 7.35 to 7.55, turbidity between 24 and 28 uT, apparent color between 175 and 215 uC, alkalinity from 23 to 27 mg.L of CaCO3; conductivity of 45.9 µS.cm; Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008., pH from 5.8 to 6.2, turbidity between 4 and 6 uT, apparent color between 100 and 150 uH, alkalinity from 14 to 18 mg.L of CaCO3; conductivity of 78.5 µS.cm; Brito et al. 2016BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016., pH from 6.9 to 7.5, turbidity between 458 and 633.67 uT, apparent color between 720 and 750 uH, alkalinity from 42 to 43 mg.L-1 of CaCO3; conductivity of 106.67 µS.cm-1.

The comparison of models and methods (Bratby, MEAR, MPDPG and Kc - See Figure 1) was performed using an electronic spreadsheet in the Microsoft Excel 201 program for each test performed. The values ​​of KA and KB and KC were determined in electronic tables and expressed in graphical form.

Argaman and Kaufman of 1970ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
gave rise to the Bratby methods of 1981BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
; MEAR and MPDPG from 1998, proposed by Brito (1998)BRITO, S. A. Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação. 1998. 189f. Dissertação (Mestrado em engenharia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998.. In 2016, Marques and Ferreira Filho published a new Model of Aggregation and Rupture and Irreversible Rupture, which in this work was named the Kc Model. Despite the innovative model of Marques and Ferreira Filho, it is based on the model of Argaman and Kaufman from 1970.

Figure 1.
Models and mathematical methods for water treatment optimization.

2.1. Aggregation and disruption coefficients

2.1.1. Bratby method

For Bratby et al. (1977)BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977., the determination of the aggregation and breakage (rupture) coefficients in the jar test equipment, coagulation, flocculation and sedimentation tests are carried out (rest time greater than or equal to 2 h) for optimized conditions of rapid mixing, together with different times of agitation and of flocculation velocity gradient, and constructed N0/N1 figures as a function of flocculation time, for each velocity gradient studied. Rearranging Equation (16):

K A = 1 G f T f l n 1 - K B K A G f 1 N 0 N 1 - K B K A G f (16)

Assuming that no further aggregation or disaggregation of primary floc particles occurs, after a relatively long settling period in the jars of the jar test equipment, Equation 10 can be set to zero, resulting in Equation 17, (Bratby et al.,1977BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977.).

K B K A = 1 G f N 0 N 1 (17)

According to Di Bernardo et al. (2005)DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
https://doi.org/10.1590/S1413-4152200500...
, from the horizontal portion of the best-fit curve of all experimental data (the tests must be conducted until a significant horizontal portion is produced), the value of N0/N1 is obtained for each value of Gf, obtaining the values ​​of KB / KA. Using Equation 16 and with the values ​​of KB / KA for each Gf (eq. 17), KA and KB are calculated. A curve is then constructed on which the values ​​of KB are plotted in ordinates and ln(Gf) in the abscissa axis. According to Bratby (1981)BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
, the value of KB for any value of Gf is given by Equation 18:

K B = k 1 b l n G f + k 2 b (18)

Where: k1b , k2b are dimensionless coefficients inherent to the water under study.

2.1.2. Aggregation and Rupture Equation Method - MEAR and First Partial Derivative Method with Relation to Gf ​​- MPDPG

Brito (1998)BRITO, S. A. Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação. 1998. 189f. Dissertação (Mestrado em engenharia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998. studied two methods to determine KA and KB, from turbidity data and the number of remaining primary particles, considering the effect of sedimentation velocity:

• The Aggregation and Rupture Equation - MEAR (modification of the method by Bratby, 1981BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
), which considers the maximum ratio of N0/N1 for each value of Gf, equivalent to the shortest flocculation time in which that maximum efficiency is obtained. In this proposal, Equations 12, 16, 17 and 18 are used, considering variation in the values ​​of the KA and KB coefficients for different sedimentation and Gf velocities.

• Method of the First Partial Derivative with respect to Gf ​​- MPDPG, this method employs the first partial derivative of Equation 12 with respect to the parameter Gf (optimal value with maximum efficiency for Tf), equated to zero, giving Equation 19:

K B = K A 2 T f e - K A G f T f 1 + K A G f T f e - K A G f T f - e - K A G f T f (19)

To obtain Equation 19, the derivative was performed according to Equation 20, and the equation was multiplied by KA and -1, with KB in evidence:

d y d G f = K B - 1 K A - K A G f T f e - K A G f T f K A + e - K A G f T f K A + K A T f e - K A G f T f K B K A G f + e - K A G f T f - K B K A G f e - K A G f T f 2 (20)

2.2. Aggregation and Rupture Model and Irreversible Rupture - KC Model

Marques and Ferreira Filho (2016)MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
https://doi.org/10.1080/09593330.2016.12...
, included a new term that determines the process of irreversible rupture of the flakes, resulting in the kinetic constants KA, KB and KC. The method used to solve this model was based on Equation 14 and, when integrating this equation, Equation 21 was obtained:

N N 0 = ( K A . G - K B . G 2 K C . G - K A . G ) . ( e - K A . G . t - e - K C . G . t ) (21)

Where: KA and KC are different from zero; and KA ≠ KC.

To obtain the values ​​of KA, KB and KC, the “Solver” function was applied (convergence method “GRG Nonlinear”), selecting the option to minimize the value of the cell in question, varying the values ​​initially arbitrated for the KA constants, KB and KC.

3. RESULTS AND DISCUSSION

The results were obtained through simulation and compared the model of Argaman and Kaufman with the methods of Bratby; the Aggregation and Breakdown Equation method - MEAR; the Partial First Derivative method in relation to the Flocculation Velocity Gradient - MPDPG and the model KC.

3.1. Bratby method

In the Bratby method, the values ​​of KB in ordinates and ln (Gf) in abscissa axis were plotted, using Equation 16 and the values ​​of KB / KA for each GfEquation 17, thus determining the values ​​of KA and KB.

In obtaining the values ​​of KA and KB as a function of Gf (s-1), as seen in Figures 2-A, 2-B and 2-C, it is observed that there is a little fluctuation, and although it shows a slight tendency logarithmic for KB values, the same is not true for KA values.

Figure 2.
Graphs of validation of models and methods: obtaining of KA and KB values ​​by the methods of BRATBY (A, B and C), MEAR (D, E and F), MPDPG (G, H and I) - Methods from the Model by Argaman and Kaufman (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
, and the values ​​of KA, KB e Kc by the Model KC (J, K and L) - Model by Marques and Ferreira Filho (2016)MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
https://doi.org/10.1080/09593330.2016.12...
. Continue...

Figure 2.
Continued.

3.2. MEAR method

For the MEAR method, a routine was implemented in Excel, using Equations 12 and 17 through an iterative method, provided by the Solver tool of the Microsoft Excel program. The “Solver” function was then applied (convergence method “Nonlinear GRG”) in the control cell (corresponding to the difference between the experimental and theoretical efficiency), selecting the option to minimize the value of the cell in question. In terms of restrictions, a condition of 10-4 was assigned, making the difference between experimental and theoretical efficiency greater than or equal to the condition in question, and the values ​​of KA and KB restricted to positive values. Assigning an initial value of KA between 10-1 e 10-20, through the solver function, the values ​​of KA and KB were obtained.

In determining the values ​​of KA and KB as a function of flocculation time, it is possible to observe a logarithmic trend in almost all experiments, as shown in figures 2-D, 2-E and 2-F, with sedimentation velocity (Vs) of 1,0 cm.min-1; 2,5 cm.min-1 and 5,0 cm.min-1.

3.3. MPDPG method

In the MPDPG method, the “Solver” function (Non-Linear GRG convergence method) was applied to the control cell (corresponding to the difference between the experimental efficiency and the experimental efficiency), selecting the “value equal to zero” option of the cell in question, varying the values ​​initially arbitrated for the constants KA, KB. In terms of restrictions, the values ​​of KA and KB were restricted to necessarily positive values. Assigning an initial value of KA between 10-1 and 10-20, through the solver function, the values ​​of KA and KB were obtained.

When analyzing the values ​​obtained for KA and KB as a function of flocculation time, a logarithmic trend is observed with rare exceptions as shown in Figure 2-H and 2-I, where the KA dropped below the KB when the flocculation time was at approximately 400 Tf (s) and ascending again when the flocculation time was close to 500 Tf (s).

3.4. Kc model

For the KC model, the "Solver" function (convergence method "Nonlinear GRG") was applied to the control cell (corresponding to the difference between the experimental and theoretical efficiency), selecting the option to minimize the value of the cell in question, varying the values ​​initially arbitrated for the constants KA, KB and KC are used.

Differently from what was observed in this model, in obtaining the values of the constants KA, KB e KC, at least visually there is no clear trend, as shown in Figures 2-J, 2-K and 2-L.

In terms of constraints, a condition of 10-10 was assigned, making the difference between experimental and theoretical efficiency greater than or equal to the condition in question, and the values ​​of KA, KB and KC restricted to positive values. Assigning an initial value of KA, KB and KC between 10-1 and 10-20, through the solver function, the values ​​of KA, KB and KC were obtained.

3.5. Comparison between methods and models

After validating the models and methods, the methods of Bratby, MEAR, MPDPG and KC model were modeled and compared in Figure 3, as well as for the authors listed in Tables 1 and 2. It can be identified in Figure 3-A, with Vs = 1.0 cm min-1, in 3-B, with Vs = 2.5 cm min-1 and in figure 3-C, with Vs = 5.0 cm min-1 that only the Bratby Model oscillates in relation to the experimental data, emphasizing that in this experiment Voltan used aluminum sulfate as coagulant.

Figure 3.
Comparative analysis between the methods and models simulated for different sedimentation velocities in relation to the respective experimental data of the referenced authors. Continue...

Figure 3.
Continued.

In Figure 3-D, with Vs = 1.0 cm min-1, in 3-E, with Vs = 1.5 cm min-1 and in Figure 3-F, with Vs = 3.0 cm min-1, which evidences the experimental data of Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008., although he used ferric chloride as a coagulant and a different sedimentation rate from the study by Voltan (2007)VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007, it was possible to observe similar results in relation to the compared models.

The experimental data from Dantas et al. (2000)DANTAS, A. D. B.; DI BERNARDO, A. S.; DI BERNARDO, L.; FROLLINI, E. Influência do Tempo de Aplicação de Polímeros na Eficiência da Floculação/Sedimentação. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2000, Porto Alegre. Resumos[…] Porto Alegre: ABRH, 2000., Voltan (2007)VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007, Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008. and Brito et al. (2016)BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016. were simulated by the MEAR, MPDPG and KC - Marques and Ferreira Filho Models. Table 1 presents the values ​​with their respective deviations (errors), difference between experimental and theoretical efficiency. Table 2 presents the deviations obtained by the Bratby Method.

The optimal experimental values ​​considered by the aforementioned authors for flocculation time (Tf) and velocity gradient (Gf) were used: Dantas et al. (2000)DANTAS, A. D. B.; DI BERNARDO, A. S.; DI BERNARDO, L.; FROLLINI, E. Influência do Tempo de Aplicação de Polímeros na Eficiência da Floculação/Sedimentação. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2000, Porto Alegre. Resumos[…] Porto Alegre: ABRH, 2000.: Tf = 1440 s and Gf = 25 s-1 for the Vs of (7.2 ; 3.95; 1.89 cm.min-1), Voltan (2007)VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007: Tf = 1200 s and Gf = 25 s-1 for Vs of (7.0; 3.3; 2.07; 1.45; 0 .9 cm.min-1), Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008.: Tf = 1500 s and Gf = 10s-1 for Vs of (4.67; 2.2; 1.38; 0.97; 0.6; 0.42 cm .min-1) for these data used the coagulant ferric chloride. For the aluminum sulfate coagulant, Constantino 2008CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008. considered a Tf = 900 s and Gf = 10 s-1 for the same Vs and Brito et al. (2016)BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016. considered a Tf = 900 s and Gf = 30 s-1 for Vs of (1 .0; 1.5; 2.0 cm.min-1) for PAC coagulant and Aluminum Sulfate.

In Table 1, it is possible to verify that the MEAR and MPDPG Methods have an average of approximately 18% error deviation in relation to the experimental values ​​of their respective references, while the Kc Model has 19% error deviation. However, when analyzing the different sedimentation velocities, it is possible to verify that there are also high error deviations, as in Constantino (2008)CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008. with a sedimentation velocity of 4.67 (using aluminum sulfate as coagulant) whose error deviation was approximately 127% for MEAR and MPDPG, while for the Kc Model it was 56%. In another situation, analyzing Brito et al. (2016)BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016. (which used the PAC coagulant and with Vs = 2.0 cm min-1) the error deviation for the Kc Model was approximately 178%, while the other analyzed methods had a deviation of 64%; that is, there is times when the Kc Model has very high deviations in relation to the MEAR and MPDPG Methods and in other circumstances the opposite occurs.

Table 1.
Performance of the modeling methods and models in relation to the experimental data of the cited references).

Table 2.
Average Percentage of Error Deviation of the Bratby Method in relation to the experimental data of the cited references.

The Bratby Method uses a very high flocculation time for the different Gf values, and it is not possible to apply it in the references used in Table 1. As a result, the analysis was performed separately, using other samples, with sufficiently high flocculation and very low velocity gradients for the application of this particular method, as shown in Table 2. It is worth noting that such gradients and sedimentation velocities are not commonly applied in ETA's or in academic works. It is observed that the average error deviation of the Bratby Method is approximately 32%, much higher than the MEAR and MPDPG methods and the Kc Model presented in Table 1.

Although the MEAR and MPDPG methods and the KC Model present a lower mean deviation as shown in Table 1, there is a very high standard deviation of approximately 27%, 27% and 35%, respectively. Although Bratby's Method has a lower standard deviation, it has a high mean deviation compared to the others (Table 2).

4. CONCLUSION

The MEAR and MPDPG Methods and the Model Kc, compared with the references used in this study, and using as base the mathematical model of Argaman and Kaufman (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
, modeled well, while the method of Bratby did not obtain favorable results in the studied comparisons.

The Bratby Method presents greater consistency in relation to the other methods and models; however, it has a greater systematic error, since it is already part of an average of around 30% of error. However, the MEAR and MPDPG Methods and the KC Model manage to reach an average of smaller deviations; however, they lead to deviations that can reach a high inconsistency, obtaining almost twice the average value, as identified in the KC Model.

This is unlike the Bratby (1981)BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
https://doi.org/10.1002/j.1551-8833.1981...
Method, which says that for each water sample there is a KA and a KB, and that they are evaluated for very large Tf values ​​and for very low settling rates. On the other hand, the MEAR and MPDPG methods proved to be more feasible, with the reality of the experimental data used in present work. Brito (1998)BRITO, S. A. Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação. 1998. 189f. Dissertação (Mestrado em engenharia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998., when developing the MEAR method, said that there is a KA and a KB for each Gf and that it will change depending on sedimentation rate.

Thus, when analyzing the results of the mathematical methods of MEAR and Bratby, it was possible to identify that the MEAR Method follows a logarithmic trend for KA and KB, while Bratby did not obtain the same results. This trend is also identified in the MPDPG Method.

As for the Marques and Ferreira Filho (2016)MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
https://doi.org/10.1080/09593330.2016.12...
Model, it may be an innovation, however, it did not represent a significant improvement in effectively describing the flocculation process in water treatment in terms of the mathematical model. It must be considered that the premise that the flocs can be broken in an “irreversible” way, as designated by the authors, can be confused with primary particles that were not even destabilized and presented efficiency similar to the MEAR and MPDPG Methods based on the Argaman and Kaufman Model (1970)ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
https://doi.org/10.1061/JSEDAI.0001073...
.

This work does not exhaust the options for studies on the models and methods discussed, but it advances understanding of their relevance and a comparison between them, considering the references used here. The results obtained in this work provide insights for the design of flocculation units in water treatment plant projects.

5. ACKNOWLEDGMENTS

The authors thank the Graduate Program in Sustainability (PSU) for their financial support.

6. REFERENCES

  • ALI, W.; CHASSAGNE, C. Comparison between two analytical models to study the flocculation of mineral clay by polyelectrolytes. Continental Shelf Research, v. 250, p. 104864, 2022. https://doi.org/10.1016/j.csr.2022.104864
    » https://doi.org/10.1016/j.csr.2022.104864
  • AL-SAATI, N.; HUSSEIN, T.; ABBAS, M.; HASHIM, K. S.; AL-SAATI, Z.; KOT, P. et al. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. Desalination and Water Treatment, v. 150, p. 406-412, 2019. http://dx.doi.org/10.5004/dwt.2019.23871
    » http://dx.doi.org/10.5004/dwt.2019.23871
  • ARGAMAN, Y.; KAUFMAN, W. J. Turbulence and flocculation. Journal of Sanitary Engineering Division, n. 96, p. 223-241,1970. https://doi.org/10.1061/JSEDAI.0001073
    » https://doi.org/10.1061/JSEDAI.0001073
  • BERTONE, A. M. A.; BASSANEZI, R. C.; JAFELICE, R. S. M. Modelagem matemática. Uberlândia: UFU, 2014. 187p.
  • BRATBY, J. R.; MILLER, M. W.; MARAIS, G. V. R. Design of Flocculation Systems from Batch Test Data. Water SA, v. 3, n. 4. p. 173-178, 1977.
  • BRATBY, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. Journal of American Water Works Association, n. 73, p. 318-325, 1981. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
    » https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
  • BRATBY, J. R. Coagulation and Flocculation in Water and Wastewater Treatment. 3rd ed. London: IWA Publishing, 2016. 538p. https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
    » https://doi.org/10.1002/j.1551-8833.1981.tb04721.x
  • BRITO, I. P.; ANDRADE, E. L.; CAMPOS, V. Avaliação do desempenho de coagulantes a base de alumínio em processos de coagulação-floculação-sedimentação. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNESP, 28., 2016, Sorocaba. Anais[…] Sorocaba: UNESP, 2016.
  • BRITO, S. A. Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação. 1998. 189f. Dissertação (Mestrado em engenharia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998.
  • CASTAMANN, G.; COLOMBO, W. L. R.; PALÁCIO, S. M.; GONÇALVES D. C. G.; BARBIERI, J. C. Z. Estudo da cinética de floculação de águas de frigorífico de peixes utilizando um modelo fenomenológico e técnicas de aprendizado de máquina. Research, Society and Development, v. 11, n. 11, p. e528111133976-e528111133976, 2022. https://doi.org/10.33448/rsd-v11i11.33976
    » https://doi.org/10.33448/rsd-v11i11.33976
  • CONSTANTINO, L. T. Ruptura e recrescimento de flocos em água com substâncias húmicas aquáticas coagulada com sulfato de alumínio e cloreto férrico. 2008, 164f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2008.
  • DANTAS, A. D. B.; DI BERNARDO, A. S.; DI BERNARDO, L.; FROLLINI, E. Influência do Tempo de Aplicação de Polímeros na Eficiência da Floculação/Sedimentação. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2000, Porto Alegre. Resumos[…] Porto Alegre: ABRH, 2000.
  • DE LIMA, E. J.; CINTRA, D. D.; CAMPOS, D. C.; DE MORAIS, D. V. Educação matemática crítica e modelagem matemática: uma proposta de atividade para sala de aula. Research, Society and Development, v. 11, n. 13, p. e154111335453-e154111335453, 2022. https://doi.org/10.33448/rsd-v11i13.35453
    » https://doi.org/10.33448/rsd-v11i13.35453
  • DI BERNARDO, L. D.; BOTARI, A.; PAZ, L. P. S. Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, v. 10, n. 1, p. 82-90, 2005. https://doi.org/10.1590/S1413-41522005000100010
    » https://doi.org/10.1590/S1413-41522005000100010
  • DI BERNARDO, L.; DANTAS, A. D. B.; VOLTAN, P. E. N. Métodos e técnicas de tratamento de água. 3. ed. São Carlos: LDiBe, 2017. 1246p.
  • DI BERNARDO, L.; DI BERNARDO, A.; CENTURIONE, P. L. F. Ensaios de Tratabilidade de Água e dos Resíduos Gerados em Estações de Tratamento de Água. São Carlos: RiMa, 2002. 248 p.
  • EZEMAGU, I. G.; EJIMOFOR, M. I.; MENKITI, M. C. Turbidimetric study for the decontamination of paint effluent (PE) using mucuna seed coagulant (MSC): Statistical design and coag-flocculation modelling. Environmental Advances, v. 2, p. 100023, 2020. https://doi.org/10.1016/j.envadv.2020.100023
    » https://doi.org/10.1016/j.envadv.2020.100023
  • GARCIA-GIL, A.; FENG, L.; MORENO-SAN SEGUNDO, J.; GIANNAKIS, S.; PULGARÍN, C.; MARUGÁN, J. Mechanistic modelling of solar disinfection (SODIS) kinetics of Escherichia coli, enhanced with H2O2-part 1: The dark side of peroxide. Chemical Engineering Journal, v. 439, p. 135709, 2022. https://doi.org/10.1016/j.cej.2022.135709
    » https://doi.org/10.1016/j.cej.2022.135709
  • HERNÁNDEZ-CRESPO, C.; FERNANDEZ-GONAZALYO, M. I.; MIGLIO, R. M.; MARTÍN, M. Escherichia coli removal in a treatment wetland-pond system: A mathematical modelling experience. Science of The Total Environment, v. 839, p. 156237, 2022. https://doi.org/10.1016/j.scitotenv.2022.156237
    » https://doi.org/10.1016/j.scitotenv.2022.156237
  • HESPANHOL, K. M. H.; FERREIRA FILHO, S. S. Influência da concentração de partículas primárias nas constantes de agregação e ruptura. In: CONGRESSO TÉCNICO CIENTÍFICO DA ENGENHARIA E DA AGRONOMIA, 2016, Foz do Iguaçu. Anais[…] Belo Horizonte: Confea, 2016.
  • LI, C.; BUSQUETS, R.; MORUZZI, R. B.; CAMPOS, L. C. Preliminary study on low-density polystyrene microplastics bead removal from drinking water by coagulation-flocculation and sedimentation. Journal of Water Process Engineering, v. 44. p. 102346, 2021. https://doi.org/10.1016/j.jwpe.2021.102346
    » https://doi.org/10.1016/j.jwpe.2021.102346
  • LOPES, V. S.; SILVA, L. M. A.; MORUZZI, R. B.; OLIVEIRA, A. L. Estudo da coagulação/floculação de água com turbidez moderada na sedimentação e flotação por ar dissolvido. Engenharia Sanitária Ambiental, v. 25, n. 4, p. 567-572, 2020. https://doi.org/10.1590/S1413-41522020193514
    » https://doi.org/10.1590/S1413-41522020193514
  • MARQUES, R. O.; FERREIRA FILHO, S. S. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process. Environmental Technology, v. 38, n. 7, p. 901-910, 2016. https://doi.org/10.1080/09593330.2016.1236149
    » https://doi.org/10.1080/09593330.2016.1236149
  • MARQUES, R. O.; FERREIRA FILHO, S. S. Modelagem matemática do processo de ruptura irreversível de flocos. In: CONGRESSO ABES / FENASAN, 2017, São Paulo. Anais[…] São Paulo: ABES; AESabesp, 2017.
  • MARQUES, R. O.; FERREIRA FILHO, S. S. Further investigation of the irreversible floc breakup in flocculation kinetics modelling. Water Science & Technology Water Supply, v. 22, n. 4, p. 3814-3823, 2022. https://doi.org/10.2166/ws.2022.023
    » https://doi.org/10.2166/ws.2022.023
  • MORUZZI, R. B.; OLIVEIRA, S. C. Modelagem matemática e análise do processo de floculação em câmaras em série. In: BRAZILIAN CONFERENCE ON DYNAMICS, CONTROL AND THEIR APPLICATIONS, 9., 2010, Serra Negra. Anais[…] São Carlos: SBMAC, 2010.
  • MORUZZI, R. B.; SILVA, P. A. G. Reversibility of Al-kaolin and Al-humic aggregates monitored by stable diameter and size distribution. Brazilian Journal of Chemical Engineering, v. 35, n. 3, p. 1029-1038, 2018. https://doi.org/10.1590/0104-6632.20180353s20170098
    » https://doi.org/10.1590/0104-6632.20180353s20170098
  • MORUZZI, R. B.; OLIVEIRA, A. L. Avaliação da sensibilidade da função de distribuição de tamanho de partícula durante a floculação. Engenharia Sanitária e Ambiental, v. 25, p. 01-09, 2020. https://doi.org/10.1590/S1413-41522020169648
    » https://doi.org/10.1590/S1413-41522020169648
  • MORUZZI, R. B.; GONÇALVES, J.; SPERANZA, L. G.; OLIVEIRA, A. L. D. Influência da ação combinada do transporte inercial e da sedimentação diferencial nos agregados após cessada a floculação mecanizada. Engenharia Sanitária e Ambiental, v. 27, p. 723-729, 2022. https://doi.org/10.1590/s1413-415220200291
    » https://doi.org/10.1590/s1413-415220200291
  • OKEY-ONYESOLU, C. F.; CHUKWUMA, E. C.; OKOYE, C. C.; TAIWO, A. E. Application of synthesized Fish Scale Chito-Protein (FSC) for the treatment of abattoir wastewater: Coagulation-flocculation kinetics and equilibrium modeling. Scientific African, v. 17, p. e01367, 2022. https://doi.org/10.1016/j.sciaf.2022.e01367
    » https://doi.org/10.1016/j.sciaf.2022.e01367
  • OLIVEIRA, D.; DONADEL, C. B. Mathematical modelling and analysis of the flocculation process in low retention time hydraulic flocculators. Water SA, v. 45, n. 1, p. 1-11, 2019. https://doi.org/10.4314/wsa.v45i1.01
    » https://doi.org/10.4314/wsa.v45i1.01
  • OLIVEIRA, D. E.; TEIXEIRA, D. E. Avaliação da Eficiência de Remoção de Turbidez em Função de Variações na Concentração Inicial de Sólidos em Floculadores Tubulares Helicoidais. In: SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 12., 2014, Natal. Anais[…] Vitória: UFES, 2014.
  • PÁDUA, V. L. Metodologia para determinação dos gradientes de velocidade médios em unidades de floculação de mistura completa com câmaras em série e escoamento contínuo a partir de ensaios em reatores estáticos. 1994. 74f. Dissertação (Mestrado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1994.
  • PAWIGNYA, H.; KUSWORO, T. D.; PRAMUDONO, B. Kinetic Modeling of Flocculation and Coalescence in the System Emulsion of Water-Xylene-Terbutyl Oleyl Glycosides. Bulletin of Chemical Reaction Engineering & Catalysis, v. 14, n. 1, p. 60-68, 2019. https://doi.org/10.9767/bcrec.14.1.2594.60-68
    » https://doi.org/10.9767/bcrec.14.1.2594.60-68
  • RAU, M. J.; ACKLESON, S. G.; SMITH, G. B. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment. Plos One, v. 13, n. 12, p. 1-28, 2018. https://doi.org/10.1371/journal.pone.0207809
    » https://doi.org/10.1371/journal.pone.0207809
  • RUSSO, A. C.; PIMENTEL, M. A. D. S.; HEMSI, P. S. Emprego do monitoramento contínuo da floculação no controle de parâmetros de tratabilidade de água. Engenharia Sanitária e Ambiental, v. 25, p. 501-507, 2020. https://doi.org/10.1590/S1413-41522020184285
    » https://doi.org/10.1590/S1413-41522020184285
  • SANTOS, V. R. S.; BOTARI, J. C.; BOTARI, A. Análise e modelação matemática do recrescimento de flocos em água com turbidez elevada. In: SAFETY, HEALTH AND ENVIRONMENT WORD CONGRESS, 14., 2014, Cubatão. Proceedings[…] COPEC, 2014. https://dx.doi.org/10.14684/SHEWC.14.2014.359-364
    » https://dx.doi.org/10.14684/SHEWC.14.2014.359-364
  • SANTOS, V. R. S.; BOTARI, J. C.; BOTARI, A. Estudo e análise de recrescimento de flocos em função do comportamento hidrodinâmico. In: SAFETY, HEALTH AND ENVIRONMENT WORD CONGRESS, 12., 2012, São Paulo. Proceedings[…] COPEC, 2012.
  • SENEDA, R. M.; GARCIA, G. F.; REIS, A. G. Cinética da floculação: um estudo comparativo no uso do cloreto de polialumínio com alta e baixa basicidade e o sulfato de alumínio. Engenharia Sanitária e Ambiental, v. 26, p. 283-290, 2021. https://doi.org/10.1590/S1413-415220190297
    » https://doi.org/10.1590/S1413-415220190297
  • VOLTAN, P. E. N. Avaliação da ruptura e do recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. 2007. 113f. Dissertação (Mestrado em Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007

Publication Dates

  • Publication in this collection
    08 Mar 2024
  • Date of issue
    2023

History

  • Received
    14 Sept 2022
  • Accepted
    10 Mar 2023
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com