Acessibilidade / Reportar erro

LncRNAs are Involved in the Process of Atherosclerosis at Diverse Levels

Abstract

Atherosclerosis is the most common cause of cardiovascular disease globally, associated with a high incidence of clinical events. Accumulating evidence has elucidated that long non-coding RNAs (lncRNAs) as a novel class of transcripts with critical roles in the pathophysiological processes of atherosclerosis. In this review, we summarize the recent progress of lncRNAs in the development of atherosclerosis. We mainly describe the diverse regulatory mechanisms of lncRNAs at the transcriptional and post-transcriptional levels. This study may provide helpful insights about lncRNAs as therapeutic targets or biomarkers for atherosclerosis treatment.

Keywords
LnRNAs; Emzymes; Enzyme Inhibitors; Endothelial Cells; Lipoproteins, VLDL; RNA Interference

Resumo

A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.

Palavras-chave
LncRNAs; Enzimas; Inibidores Enzimáticos; Inibidores; Aterosclerose; Doenças Cardiovasculares; Células Endoteliais; Lipoproteínas VLDL; Interferência de RNA

Introduction

Cardiovascular diseases (CVDs) are regarded as a global health problem that accounts for 17.9 million deaths every year.11 Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules. 2019;9(6):226. doi: 10.3390/biom9060226.
https://doi.org/10.3390/biom9060226...
Atherosclerosis (AS), the principal driver of CVDs worldwide, is a lipid-driven chronic inflammatory process with endothelial dysfunction, foam cells formation and final plaque buildup.22 Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;1209(1):13-22. doi: 10.1083/jcb.201412052.
https://doi.org/10.1083/jcb.201412052...
This process is accompanied by cells proliferation, apoptosis, and the release of pro-inflammatory factors33 Lusis AJ. Atherosclerosis. Nature. 2000;407(6801): 233-41. doi: 10.1038/35025203.
https://doi.org/10.1038/35025203...
(Figure 1). These can trigger plaque rupture and thrombosis formation, leading to acute clinical events, such as stroke and acute coronary syndrome.44 Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu, Y et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721-9. doi: 10.1038/35025203.
https://doi.org/10.1038/35025203...

Figure 1
The pathogenesis of atherosclerosis.

In the mammalian genome, the encoded protein RNAs are only < 3%.55 Uchida S. Dimmeler Long non-coding RNAs in cardiovascular diseases. Circulat Res. 2015;116(4):737-50. doi: 10.1161/CIRCRESAHA.116.302521.
https://doi.org/10.1161/CIRCRESAHA.116.3...
That fraction of the coding gene makes, therefore, hard to explain the complex regulatory mechanism of the organism. In recent years, accumulating studies have revealed the important role of non-coding protein RNAs in the pathophysiological processes of various diseases.66 Shigematsu M, Honda S, Kirino Y. Transfer RNA as a source of small functional RNA. J Mol Biol Mol Imaging.2014;1(2):8. PMID: 26389128,77 Guttman J, Rinn L. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482(7385):339-46. doi: 10.1038/nature10887.
https://doi.org/10.1038/nature10887...
According to the length, the non-coding RNAs (ncRNAs) can be divided into long non-coding RNA (lncRNA, >200 nucleotides) and small non-coding RNA (<200 nucleotides, such as miRNAs, piRNAs and siRNAs).88 Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet.2020;11:95. doi: 10.3389/fgene.2020.00095
https://doi.org/10.3389/fgene.2020.00095...
In many researches, some small ncRNAs’ regulatory functions and biological effects have been demonstrated.99 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Ver. Mol Cell Biol. 2012;13(4):239-50. doi: 10.1038/nrm3313.
https://doi.org/10.1038/nrm3313...
1111 Alexander-Bryant AA, Zhang H, Attaway CC, Pugh W, Eggart L, Sansevere RM, et al. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo. Oral Oncol. 2017;72: 123-31. doi: 10.1016/j.oraloncology.2017.07.004
https://doi.org/10.1016/j.oraloncology.2...
The function of many lncRNAs is unknown, but an increasing number of lncRNAs have been characterized.

The biosynthesis of lncRNA is similar to that of mRNA. LncRNAs are transcribed by RNA polymerase II but lack open reading frames, and they are in a lower expression than protein-coding genes.88 Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet.2020;11:95. doi: 10.3389/fgene.2020.00095
https://doi.org/10.3389/fgene.2020.00095...
LncRNAs are mainly located within the nucleus and cytoplasm.1212 Carlevaro-Fita J, Johnson R. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Mol Cell. 2019;79(5):869-83. doi: 10.1016/j.molcel.2019.02.008.
https://doi.org/10.1016/j.molcel.2019.02...
In the cytoplasm, lncRNAs can bind with ribosomes1313 Quinn J J, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nature reviews. Genetics. 2016; 117(1):47-62. doi: 10.1038/nrg.2015.10.
https://doi.org/10.1038/nrg.2015.10...
or originate from the mitochondrial genome.1414 Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A. Long non-coding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA (New York NY). 2011;17(12):2085-93. doi: 10.1261/rna.029405.111
https://doi.org/10.1261/rna.029405.111...
Early reports show that many lncRNAs can’t encode proteins because they lack open reading frames (ORFs) or contain few ORFs. But emerging evidence suggests that some lncRNAs contain small ORFs encoding small proteins or micropeptides, which are regarded as key regulators in various biological processes.88 Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet.2020;11:95. doi: 10.3389/fgene.2020.00095
https://doi.org/10.3389/fgene.2020.00095...
,1515 Hartford CCR, Lal A. When Long Noncoding Becomes Protein Coding. Mol Cell Biol. 2020;40(6):e519-28. doi: 10.1128/MCB.00528-19.
https://doi.org/10.1128/MCB.00528-19...
,1616 van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, E. Adami E, Faber AB, et al. The Translational Landscape of the Human Heart. Cell. 2019;178(1):242-60. doi: 10.1016/j.cell.2019.05.010.
https://doi.org/10.1016/j.cell.2019.05.0...
Studies demonstrate that lncRNAs play critical roles in the function of endothelial and vascular smooth muscle cells (VSMC), macrophage activation, lipid metabolism and inflammatory response.1717 Liu Y, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of long non-coding RNAs in atherosclerosis. Int J Cardiol. 2017;228:570-82. 570-82. doi: 10.1016/j.ijcard.2016.11.182.
https://doi.org/10.1016/j.ijcard.2016.11...
,1818 Pierce JB, Feinberg MW. Long Noncoding RNAs in Atherosclerosis and Vascular Injury: Pathobiology, Biomarkers, and Targets for Therapy. Arterioscler Thromb Vasc Biol. 2020;40(9):2002-17. doi: 10.1161/ATVBAHA.120.314222.
https://doi.org/10.1161/ATVBAHA.120.3142...
In this review, we mainly discuss the regulation of lncRNAs are involved in the pathophysiologic process of atherosclerosis at transcriptional and post-transcriptional levels.

The pathogenesis of atherosclerosis is accompanied by cell dysfunction, such as proliferation, apoptosis, and migration. The result is foam cells formation and plaque buildup.

The classifications and regulatory mechanism of LncRNAs

According to the correlation between the genomic location and protein-coding genes, lncRNAs can be divided into (1) intergenic lncRNAs (lincRNAs) that express protein-coding genes as an independent unit. (2) intronic lncRNAs that derive from the introns of protein-coding genes. (3) antisense lncRNAs transcribed from the opposite direction of protein-coding genes. (4) sense lncRNAs that overlap with exons of protein-coding genes on the same strand. (5) enhancers that originate in the enhancer of protein-coding genes. (6) bidirectional lncRNAs that are transcribed from the divergent bidirectional promoters.1919 Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics. 2018;8(13):3654-75. PMID: 30026873,2020 Lin J, Jiang Z, Liu C, Zhou D, Song J, Liao Y., et al. Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel, Switzerland). 2020; 10(8):131. doi: 10.3390/life10080131.
https://doi.org/10.3390/life10080131...
The criteria of classification also include the various functions in local gene regulation: cis- (regulating proximal genes expression) and trans- (regulating distant genes expression).2121 Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393-407. Besides, lncRNAs transcripts can also be categorized into linear or circular.2222 Holdt LM, Kohlmaier A, Teupser D. Long Noncoding RNAs of the Arterial Wall as Therapeutic Agents and Targets in Atherosclerosis. Thromb Haemost. 2019;119(8):1222-36. doi: 10.3390/life10080131.
https://doi.org/10.3390/life10080131...

The mechanism of lncRNAs functioning has not been completely elucidated, but it can be classified roughly into several groups: 1. transcriptional regulation is embodied in transcriptional interference, chromatin remodeling and promotion of transcription; 2. post-transcriptional levels manifest in mRNAs splicing regulation translational control and even as sponges for miRNAs; 3. Others contain protein localization, telomere replication, and RNA interference, etc. Furthermore, their targeting mechanisms for regulating gene expression are summarized as the following: signals, decoys, guides and scaffolds.2222 Holdt LM, Kohlmaier A, Teupser D. Long Noncoding RNAs of the Arterial Wall as Therapeutic Agents and Targets in Atherosclerosis. Thromb Haemost. 2019;119(8):1222-36. doi: 10.3390/life10080131.
https://doi.org/10.3390/life10080131...
,2323 Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting Non-coding RNA in Vascular Biology and Disease. Front Physiol. 2018;9: 1655. doi: 10.3389/fphys.2018.01655
https://doi.org/10.3389/fphys.2018.01655...

Transcriptional regulation

LncRNAs can exert their transcriptional regulation through cis-acting and trans-acting mechanisms. (Table 1) LncRNAs regulate neighboring genes expression in cis via transcriptional interference or chromatin remodeling.2424 Ma L, Bajic VB,Z. Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. doi: 10.4161/rna.24604.
https://doi.org/10.4161/rna.24604...
Trans-acting lncRNAs can interact with RNA polymerases and transcription elongation factors or serve as a scaffold for chromatin modification complexes to regulate the distant genes.2424 Ma L, Bajic VB,Z. Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. doi: 10.4161/rna.24604.
https://doi.org/10.4161/rna.24604...
,2525 Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long non-coding RNA as modular scaffold of histone modification complexes. Science (New York) 2010;329(5992):689-93. doi: 10.1126/science.1192002.
https://doi.org/10.1126/science.1192002...

Table 1
The role of lncRNAs in the pathologic process of atherosclerosis

The Wellcome Trust Case Control Consortium (WTCCC) study and the genome-wide association studies found that a region on chromosome 9p21 (Chr9p21) was strongly associated with coronary artery disease strongly.2626 Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. The N Engl J Med.2007;357(5):443-53. doi: 10.1056/NEJMoa072366
https://doi.org/10.1056/NEJMoa072366...
The region is adjacent to a lincRNA named antisense non-coding RNA in the INK4 locus (ANRIL, also known as CDKN2BAS).2727 Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, non-coding RNA, is an unexpected major hotspot in GWAS. FASEB. 2011;25(2):444-8. doi: 10.1096/fj.10-172452.
https://doi.org/10.1096/fj.10-172452...
Holdt LM et al.2828 Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30(3):620-7. doi: 10.1161/ATVBAHA.109.196832.
https://doi.org/10.1161/ATVBAHA.109.1968...
had revealed that ANRIL expression was correlated with atherosclerosis severity by affecting mRNAs’ transcription, and the ANRIL was also detected in atherosclerotic plaques in their study.2828 Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30(3):620-7. doi: 10.1161/ATVBAHA.109.196832.
https://doi.org/10.1161/ATVBAHA.109.1968...

Two protein-coding genes, cyclin-dependent kinase inhibitors(CDKN2A, CDKN2B) and the alternative reading frame (ARF) on chromosome 9p21, are tied to ANRIL inextricably, which are tumor suppressors.2727 Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, non-coding RNA, is an unexpected major hotspot in GWAS. FASEB. 2011;25(2):444-8. doi: 10.1096/fj.10-172452.
https://doi.org/10.1096/fj.10-172452...
The polycomb repressive complex-1 (PRC-1) and polycomb repressive complex-2 (PRC-2) are two kinds of polycomb group proteins involved in maintaining chromatin state.2929 Iwama A. Polycomb repressive complexes in hematological malignancies. Blood. 2017;30(1):23-9. doi: 10.1182/blood-2017-02-739490
https://doi.org/10.1182/blood-2017-02-73...
Their subunits CBX7 and SUZ12 bind ANRIL separately to silence CDKN2A/B locus through H3 lysine27 (K27H3) trimethylation.3030 Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science (New York). 2012;337(6097): 971-5. doi: 10.1126/science.1225237.
https://doi.org/10.1126/science.1225237...
,3131 Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the non-coding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell. 2010;38(5):662-74. doi: 10.1016/j.molcel.2010.03.021.
https://doi.org/10.1016/j.molcel.2010.03...
Yet, the repression of CDKN2A/B may be related to cell proliferation and apoptosis in the atherosclerosis process.3232 Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010;464(7287):409-12. doi: 10.1038/nature08801
https://doi.org/10.1038/nature08801...

Holdt et al.2828 Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30(3):620-7. doi: 10.1161/ATVBAHA.109.196832.
https://doi.org/10.1161/ATVBAHA.109.1968...
found that ANRIL was in a position to exert a regulatory function in distant gene expression in trans. Alu element, marking the promoter of the ANRIL trans-regulated genes, is decisive for linear ANRIL trans-regulation. PcG proteins, triggered by binding with ANRIL, were highly abundant downstream of the Alu motifs.3333 Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi: 10.1371/journal.pgen.1003588.
https://doi.org/10.1371/journal.pgen.100...
The recruitment of PcG proteins could regulate the expression of the target genes (TSC22D3, COL3A1) and attenuate ANRIL-mediated pro-atherogenic functions, such as cell adhesion, proliferation, and apoptosis.33 Lusis AJ. Atherosclerosis. Nature. 2000;407(6801): 233-41. doi: 10.1038/35025203.
https://doi.org/10.1038/35025203...
,3333 Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi: 10.1371/journal.pgen.1003588.
https://doi.org/10.1371/journal.pgen.100...
Furthermore, ANRIL plays a pivotal role in the inflammatory processes through TNF-α/NF-kB-ANRIL/YY1-IL6/8 pathway. PRC-associated proteins Yin Yang 1 (YY1), a transcriptional factor, form a functional complex with ANRIL.3333 Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi: 10.1371/journal.pgen.1003588.
https://doi.org/10.1371/journal.pgen.100...
ANRIL-YYI complex binds to IL6/8 promoter loci and stimulates their recruitment in the TNF-α/NF-κB signaling, leading to vascular inflammation.3434 Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. 2016;1(1):98-108. doi: 10.3892/mmr.2020.11203
https://doi.org/10.3892/mmr.2020.11203...

MALAT1, located on chromosome 11q13, is first described as lncRNA associated with metastasis of lung tumors.3535 Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-41. doi: 10.1038/sj.onc.1206928.
https://doi.org/10.1038/sj.onc.1206928...
MALAT1 expression is downregulated in atherosclerotic plaques in comparison to non-atherosclerotic arteries.3636 Arslan S, Berkan O, Lalem T, Özbilüm N, Göksel S, Korkmaz O, et al. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis. 2017;266:176-81. doi: 10.1016/j.atherosclerosis.2017.10.012.
https://doi.org/10.1016/j.atherosclerosi...
Michalik et al.3737 Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, T. Braun T, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res.2014;14(9):1389-97. doi: 10.1161/CIRCRESAHA.114.303265.
https://doi.org/10.1161/CIRCRESAHA.114.3...
found that silencing of MALAT1 inhibited a switch from a promigratory to a proliferative state of the endothelial cells, resulting in the reduction of vessel growth.3737 Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, T. Braun T, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res.2014;14(9):1389-97. doi: 10.1161/CIRCRESAHA.114.303265.
https://doi.org/10.1161/CIRCRESAHA.114.3...
And MALAT1 also acts as a molecular scaffold to interact with unmethylated Polycomb 2 (Pc2); the expression of Pc2 promotes E2F1 SUMOylation and regulates histone modifications to increase cell proliferation.3838 Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773-88. doi: 10.1016/j.cell.2011.08.054.
https://doi.org/10.1016/j.cell.2011.08.0...

In a control experiment, Gast et al.3939 Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res. 2019;115(12):302-14. doi: 10.1093/cvr/cvy202.
https://doi.org/10.1093/cvr/cvy202...
observed that the serum levels of TNF, IL-6, and IFN-γ were increased in the MALAT1-deficient ApoE-/- mice, causing immune dysfunction and aggravated atherosclerosis.3939 Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res. 2019;115(12):302-14. doi: 10.1093/cvr/cvy202.
https://doi.org/10.1093/cvr/cvy202...
MALAT1 may be involved in the LPS‐induced inflammatory response via LPS/TLR4/NF-κB signaling. MALAT1 interacts with NF-κB subunits p65/p50, inhibiting p65/p50 binding to target promoters such as TNF-α and IL-6, then attenuating an excessive inflammation.4040 Zhao G, Su Z, Song D, Mao Y, Mao X. The long non-coding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett. 2016;590(17): 2884-95. doi: 10.1002/1873-3468.12315
https://doi.org/10.1002/1873-3468.12315...

In lipid metabolism, MALAT1 may be upregulated in macrophages during ox-LDL stimulation.4141 Huangfu N, Xu Z, Zheng W, Wang Y, Cheng J, Chen X. LncRNA MALAT1 regulates oxLDL-induced CD36 expression via activating β-catenin. Bioch Biopohys Res Comm. 2018;3:2111-7. (ISSN: 1090-2104) CD36, a class B scavenger receptor, is required for lipid uptake of ox-LDL.4242 Nicholson AC. Expression of CD36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc Med. 2004;14(1):8-12. doi: 10.1016/j.tcm.2003.09.004.
https://doi.org/10.1016/j.tcm.2003.09.00...
MALAT1 overexpression induces the recruitment of β-catenin on the CD36 promoter to enhance CD36 transcription, promoting lipid uptake in macrophages and accelerating the foam cell formation in atherosclerotic plaques.4141 Huangfu N, Xu Z, Zheng W, Wang Y, Cheng J, Chen X. LncRNA MALAT1 regulates oxLDL-induced CD36 expression via activating β-catenin. Bioch Biopohys Res Comm. 2018;3:2111-7. (ISSN: 1090-2104)

NEAT1, an adjacent transcript of MALAT1, can enhance the paraspeckles formation in oxLDL-induced macrophage, which suppresses lipid uptake by binding CD36 mRNA to inhibit CD36 expression and stimulates inflammatory response via phosphorylating p65 to promote TNF-α secretion.4343 Huang-Fu N, Cheng JS, Wang Y, Li ZW, Wang SH. Neat1 regulates oxidized low-density lipoprotein-induced inflammation and lipid uptake in macrophages via paraspeckle formation. Mol Med Rep. 2018;17(2):3092-8. doi: 10.3892/mmr.2017.8211
https://doi.org/10.3892/mmr.2017.8211...
Besides, Ahmed ASI et al.4444 ASI Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, et al. NEAT1Long non-coding RNA (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc the Nat Acad Scienc (USA) 2018; 37: E8660-67. doi: 10.3892/mmr.2017.8211
https://doi.org/10.3892/mmr.2017.8211...
found that NEAT1 expression was upregulated in vascular smooth muscle cells (VSMCs) after vascular injury in vivo and in vitro, leading to an inactive chromatin state in SM-specific genes through binding with the chromatin modifier WDR5. The repression of SM-specific genes expression switched VSMCs to proliferative phenotype, promoting VSMCs proliferation and migration and thereby neointima formation.4444 ASI Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, et al. NEAT1Long non-coding RNA (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc the Nat Acad Scienc (USA) 2018; 37: E8660-67. doi: 10.3892/mmr.2017.8211
https://doi.org/10.3892/mmr.2017.8211...

The expression of lincRNA-p21 was downregulated in the atherosclerotic plaques. LincRNA-p21 decreased MDM2/p53 interaction and increased p300/p53 interaction to facilitate the transcriptional activity of p53, leading to the repression of neointimal formation, the inhibition of cell proliferation and the enhancement of apoptosis in VSMCs and mononuclear macrophage cells in vitro and vivo.4545 Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014; 130(17):1452-65. doi: 10.1161/CIRCULATIONAHA.114.011675
https://doi.org/10.1161/CIRCULATIONAHA.1...

Also, some other lncRNAs are involved in the AS process at the transcriptional level, but the descriptions are limited. The overexpression of lncRNA-MeXis in macrophages may facilitate macrophage reversing cholesterol transport via the LXR-MeXis-Abca1 axis, suggesting that lncRNA-MeXis plays a protective role in the development of atherosclerosis.4646 Sallam T, Jones M, Thomas BJ, Wu X, Gilliland T, Qian K, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long non-coding RNA. Nat Med. 2018;24(3):304-12. doi: 10.1038/nm.4479.
https://doi.org/10.1038/nm.4479...
Ectopic expression of lncRNA-HOTTIP, induced by TNF-α or platelet-derived growth factor (PDGFBB), increases proliferative markers cyclin D1 and PCNA expression through the Wnt/β-catenin pathway, subsequently prompting the endothelial cell proliferation and migration.4747 Liao B, Chen R, Lin F, Mai A, Chen J, Li H, et al. Long non-coding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/β-catenin pathway.J Cell Biochem. 2018;19(3):2797-805. doi: 10.1002/jcb.26448.
https://doi.org/10.1002/jcb.26448...
The O-GlcNAcylation modulates HAS2-AS1 promoter activation, HAS2-AS1 natural antisense transcript can regulate HAS2 transcription in cis through remodeling chromatin structure,4848 Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, et al. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem. 2014; 289(42):28816-26. doi: 10.1074/jbc.M114.597401.
https://doi.org/10.1074/jbc.M114.597401...
HAS2 may be related to VSMCs proliferation,4949 van den Boom M, Sarbia M, von Wnuck Lipinski K, Mann P, Meyer-Kirchrath J, Rauch BH, et al. Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis. Circ Res.2006;98(1):36-44. doi: 10.1161/01.RES.0000199263.67107.c0.
https://doi.org/10.1161/01.RES.000019926...
,5050 Viola M, Karousou E, D’Angelo ML, Moretto P, Caon I, Luca G, et al. Extracellular Matrix in Atherosclerosis: Hyaluronan and Proteoglycans Insights. Curr Med Chem. 2016;23(26):2958-71. doi: 10.2174/0929867323666160607104602.
https://doi.org/10.2174/0929867323666160...
macrophages recruitment,5050 Viola M, Karousou E, D’Angelo ML, Moretto P, Caon I, Luca G, et al. Extracellular Matrix in Atherosclerosis: Hyaluronan and Proteoglycans Insights. Curr Med Chem. 2016;23(26):2958-71. doi: 10.2174/0929867323666160607104602.
https://doi.org/10.2174/0929867323666160...
VSMCs migration and neointima formation,5151 Sussmann M, Sarbia M, Meyer-Kirchrath J, Nüsing RM, Schrör K, Fischer JW Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins. Circ Res. 2004;94(5):592-600. doi: 10.1161/01.RES.0000119169.87429.A0.
https://doi.org/10.1161/01.RES.000011916...
,5252 Kashima Y, Takahashi M, Shiba Y, Itano N, Izawa A, Koyama J, et al. Crucial role of hyaluronan in neointimal formation after vascular injury. PloS One. 2013;8(3):e58760. doi: 10.1371/journal.pone.005876
https://doi.org/10.1371/journal.pone.005...
inflammatory response.5050 Viola M, Karousou E, D’Angelo ML, Moretto P, Caon I, Luca G, et al. Extracellular Matrix in Atherosclerosis: Hyaluronan and Proteoglycans Insights. Curr Med Chem. 2016;23(26):2958-71. doi: 10.2174/0929867323666160607104602.
https://doi.org/10.2174/0929867323666160...
,5252 Kashima Y, Takahashi M, Shiba Y, Itano N, Izawa A, Koyama J, et al. Crucial role of hyaluronan in neointimal formation after vascular injury. PloS One. 2013;8(3):e58760. doi: 10.1371/journal.pone.005876
https://doi.org/10.1371/journal.pone.005...
The expression of lncRNA RP11-714G18.1 in atherosclerotic plaque is low. Still, it can upregulate nearby gene LRP2BP expression to impair cell migration, suppress the adhesion of ECs to monocytes, reduce the neoangiogenesis, decrease VSMCs apoptosis and promote nitric oxide production. Furthermore, the serum LRP2BP was positively related to high-density lipoprotein cholesterol.5353 Zhang Y, Zheng L, Xu BM, Tang WH, Ye ZD, Huang C, et al. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Imm cell Biol. 2018; 2:175-89. doi: 10.1016/j.eururo.2018.07.032.
https://doi.org/10.1016/j.eururo.2018.07...

HOXC-AS1 may suppress the cholesterol accumulation in macrophages via promoting HOXC6 expression at mRNA levels.5454 Huang C, Hu YW, Zhao JJ, Ma X, Zhang Y, Guo FX. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages. DNA Cell Biol. 2016; 11:722-9. doi: 10.1089/dna.2016.3422.
https://doi.org/10.1089/dna.2016.3422...
LEENE can improve endothelial function by enhancing eNOS initial RNA transcription.5555 Miao Y, Ajami NE, Huang TS, Lin FM, Lou CH, Wang YT, et al. Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Comm. 2019;1:292-8. doi: 10.1038/s41467-017-02113-y.
https://doi.org/10.1038/s41467-017-02113...
Lethe Lin et al.56 acts as a decoy lncRNA to interact with the NF-κB subunit RelA and inhibits RelA binding to target genes DNA, such as IL6, SOD2, IL8, attenuating the inflammatory response.5656 Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Life. 2013;2:e00762. doi: 10.7554/eLife.00762.
https://doi.org/10.7554/eLife.00762...
LncRNA-TSLP induces HOTAIR transcription through PI3K/AKT-IRF1 pathway, promoting endothelial cell proliferation and migration in atherosclerosis.5757 Peng Y, Meng K, Jiang L, Zongh Y, Yang Y, Lan Y, et al. Thymic stromal lymphopoietin-induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis. Biosc Rep.2017;37(4):R20170351. doi: 10.1042/BSR20170351.
https://doi.org/10.1042/BSR20170351...
Besides, ox-LDL induced TSLP may bind to dendritic cells (DCs) to activate the Th17 inflammation,5858 Lin J, Chang W, Dong J, Zhang F, Mohabeer N, Kushwaha KK, et al. Thymic stromal lymphopoietin over-expressed in human atherosclerosis: potential role in Th17 differentiation. Cellular physiology and biochemistry : Int J Exp Cell Phys Bioch Pharmacol. 2013;31(2-3): 305-18. doi: 10.1159/000343369
https://doi.org/10.1159/000343369...
which is related to the severity and progression of AS.5959 Smith E K, Prasad M, Butcher M, Dobrian A, Kolls JK, Ley K, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2010;121(15):1746-55. doi: 10.1161/CIRCULATIONAHA.109.924886.
https://doi.org/10.1161/CIRCULATIONAHA.1...

Post-transcriptional regulation

LncRNAs mainly act as competing endogenous RNAs (ceRNAs) or miRNAs “sponge” interacting with miRNAs in the process of atherosclerosis at the post-transcriptional regulation level. (Table 1) Furthermore, they are also involved in translational control, splicing regulation and small interfering RNA (siRNA) mechanism.2424 Ma L, Bajic VB,Z. Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. doi: 10.4161/rna.24604.
https://doi.org/10.4161/rna.24604...

MALAT1 acts as ceRNA in ox-LDL-induced cells injury and plays a protective role in atherosclerosis disease. MALAT1 could compete with miR-22-3p for endogenous RNA and upregulate the target genes CXCR2 and AKT of miR-22-3p to inhibit endothelial cells apoptosis and promote the ECs migration and angiogenesis.6060 Tang Y, Jin X, Xiang Y, Chen Y, Shen CX, Zhang YC, et al. The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett. 2015;589(20Pt8):3189-96. doi: 10.1016/j.febslet.2015.08.046.
https://doi.org/10.1016/j.febslet.2015.0...
Cremer S et al.6161 Cremer S, Michalik KM, Fischer A,Jae N, Winter C. Hematopoietic Deficiency of the Long Non-coding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation. 2019;139(10):1320-34. doi: 10.1016/j.febslet.2015.08.046.
https://doi.org/10.1016/j.febslet.2015.0...
found that MALAT1 “sponged” miR-503 to reduce the release of pro-inflammatory cytokines, attenuating plaque inflammation.6161 Cremer S, Michalik KM, Fischer A,Jae N, Winter C. Hematopoietic Deficiency of the Long Non-coding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation. 2019;139(10):1320-34. doi: 10.1016/j.febslet.2015.08.046.
https://doi.org/10.1016/j.febslet.2015.0...
Besides, the suppressor of cytokine signaling 1 (SOCS1) is the target protein of miR-155 that negatively regulates Janus activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. MALAT1 could downregulate miR-155 and increase the expression of SOCS1 to alleviate the inflammation and apoptosis in atherosclerosis.6262 Li S, Sun Y, Zhong L, Xiao Z, Yang M, Chen M, et al. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metabol Cardiovasc Dis. 2018; 28(11): 1175-87. . doi: 10.1016/j.numecd.2018.06.017.
https://doi.org/10.1016/j.numecd.2018.06...
Thus, MALAT1 may play a protective role via interacting with miRNAs in the pathogenesis of atherosclerosis.

The expression of lncRNA H19 was up-regulated in ox-LDL treated macrophages. MiR-130b regulates the inflammatory response by decreasing the translational levels of TNF-α, Sp1, NF-κB with lipid stimulation6363 Zheng H, Dong X, Liu N, Xia W, Zhou L, Chen X, et al. Regulation and mechanism of mouse miR-130a/b in metabolism-related inflammation. Int J Biochem Cell Biol.2016;74:72-83. and inhibits adipogenesis by targeting PPAR-g.6464 Pan SD, Yang X, Jia Y, Li R, Zhao R. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol. 2014;229(5): 631-9. doi: 10.1002/jcp.24486.
https://doi.org/10.1002/jcp.24486...
Silencing of H19 significantly increases the expression of miR-130b, which ameliorates inflammation and lipid synthesis in ox-LDL-treated Raw264.7 cells.6565 Han Y, Ma J, Wang J, Wang L Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol.2018;93:107-14. doi: 10.1016/j.molimm.2017.11.017
https://doi.org/10.1016/j.molimm.2017.11...
H19 can accelerate proliferation and impede apoptosis in ox-LDL-stimulated VSMCs by directly suppressing miR-148b expression and enhancing miR-148b target gene WNT1 expression.6666 Zhang L, Cheng H, Yue Y, Li S, Zhang D,He R. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci.2018;25(1):11.. 2018; 1: 11. doi: 10.1186/s12929-018-0418-4.
https://doi.org/10.1186/s12929-018-0418-...

LncRNA-MIAT may be involved in atherosclerotic plaque progression. MIAT is mainly expressed in the macrophages of advanced atherosclerotic plaques. With the ox-LDL treatment, the expression of MIAT is upregulated. Anti-phagocytic molecule CD47, a target gene of miR-149-5p, is related to apoptotic cell clearance and necrotic cores.6767 Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86-90. doi: 10.1038/nature18935.
https://doi.org/10.1038/nature18935...
MIAT interferes with miR-149-5p pathways to increase the CD47 level in macrophages, promoting plaque vulnerability.6868 Ye ZM, Yang S, Xia YP, Hu RT, Chen S, BW, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019;10(2):138. doi: 10.1038/s41419-019-1409-4.
https://doi.org/10.1038/s41419-019-1409-...
The formation of the MIAT/miR-181b/STAT3 axis plays a critical role in ox-LDL induced human aorta vascular smooth muscle cells (HA-VSMCs) and human mononuclear cells (U937). MIAT up-regulates signal transducer and activator of transcription 3 (STAT3) protein level through sequestering miR-181b, subsequently promoting proliferation, facilitating cell cycle arrest and inhibiting apoptosis in HA-VSMCs and U937 cells.6969 Zhong X, Ma X, Zhang L, Li Y, He R. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother Biomed.2018;97: 1078-85. doi: 10.1016/j.biopha.2017.11.052.
https://doi.org/10.1016/j.biopha.2017.11...

NEAT1 was also involved in the atherosclerotic process as ceRNA except for remodeling chromatin at the transcriptional level. Lei Wang et al.7070 Wang L, Xia JW, Ke ZP, Zhang H. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol.2019;234(4): 5319-26. doi: 10.1002/jcp.27340.
https://doi.org/10.1002/jcp.27340...
found that NEAT1 was significantly upregulated in the presence of ox-LDL and served as a sponge to repress the expression of miR-342-3p, increasing the serum level of IL-6, IL-1β, COX-2, and total cholesterol leading to accelerating inflammation process and the formation of foam cells.7070 Wang L, Xia JW, Ke ZP, Zhang H. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol.2019;234(4): 5319-26. doi: 10.1002/jcp.27340.
https://doi.org/10.1002/jcp.27340...
LncRNA-TUG1 could down-regulate the expression of miR-26a and increase the mRNA and protein level of TRPC6 to facilitate the endothelial cells apoptosis.7171 Chen C, Cheng G, Yang X, Li C, Shi R, Zhao N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am J TRanslat Res.2016;8(7):2981-91. PMID: 27508018 Lei Zhang et al.7272 Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol. 2018;33: 6-15. doi: 10.1016/j.carpath.2017.11.004.
https://doi.org/10.1016/j.carpath.2017.1...
revealed that TUG1 sponged miR-133a and up-regulated fibroblast growth factor 1 (FGF1) expression, resulting in increased hyperlipidemia and excessive inflammatory response aggravated atherosclerotic lesion.7272 Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol. 2018;33: 6-15. doi: 10.1016/j.carpath.2017.11.004.
https://doi.org/10.1016/j.carpath.2017.1...

In addition, more and more studies have demonstrated that plenty of atherosclerosis-related lncRNAs plays a crucial role in the pathogenesis of AS by interacting with miRNAs at the post-transcriptional level. LINC00305 acts as an endogenous sponge for miR-136 and inhibits miR-136 expression to suppress the vascular endothelial cells proliferation and enhance apoptosis.7373 Zhang BY, Jin Z, Zhao Z. Long intergenic non-coding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother. 2017;94:238-43. doi: 10.1016/j.carpath.2017.11.004
https://doi.org/10.1016/j.carpath.2017.1...
LincRNA-p21 functions as ceRNA to promote ECs apoptosis and induces cell cycle progression by targeting the miR-130b.7474 He C, Ding JW, Li S, Wu H, Jiang YR, Yang W, et al. The Role of Long Intergenic Noncoding RNA p21 in Vascular Endothelial Cells. DNA Cell Biol. 2015;34(11):677-83. doi: 10.1089/dna.2015.2966.
https://doi.org/10.1089/dna.2015.2966...
LncRNA-GAS5 negatively regulates miR-21 expression to enhance programmed cell death 4 (PDCD4) expression, suppressing ECs proliferation and triggering ECs apoptosis.7575 Shen Z, She Q. Association Between the Deletion Allele of Ins/Del Polymorphism (Rs145204276) in the Promoter Region of GAS5 with the risk of atherosclerosis. Cell Physiol Biochem. 2018;49(4):1431-43. doi: 10.1159/000493447
https://doi.org/10.1159/000493447...

Others

LncRNAs may function through protein localization, telomere replication and RNA interference in some processes,2424 Ma L, Bajic VB,Z. Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. doi: 10.4161/rna.24604.
https://doi.org/10.4161/rna.24604...
such as localizing RNP particles in legume plants, extending telomere during DNA replication in eukaryote,7676 Campalans A, Kondorosi A, Crespi M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell. 2004;16(4): 1047-59. doi: 10.1105/tpc.019406.
https://doi.org/10.1105/tpc.019406...
reducing Dicer-generated siRNA and affecting the expression of Dicer-regulated genes.7777 Hellwig S, Bass BL. A starvation-induced non-coding RNA modulates expression of Dicer-regulated genes. Proc Natl Acad Sci. 2008;105(35):1289-902. doi: 10.1073/pnas.0805118105
https://doi.org/10.1073/pnas.0805118105...
While their underlying molecular mechanism related to the development of atherosclerosis remains unknown.

Conclusion and Perspective

Taken together, lncRNAs can be involved in several processes associated with atherosclerosis, including inflammatory response, lipid metabolism and cells function. They regulate the pathology of atherosclerosis at epigenetic, transcriptional and post-transcriptional levels, such as chromatin remodeling, promotion of transcription and competing endogenous for miRNAs. Therefore, lncRNAs may serve as promising novel diagnostic markers and therapeutic targets for atherosclerosis and vascular diseases. Moreover, all of these possible roles in physiopathologic processes have opened venues to decipher the function and mechanism of lncRNAs in cardiovascular diseases and other diseases, such as tumors, renal diseases and nervous diseases.

  • Sources of Funding
    This study was funded by the “Thirteenth Five-Year Plan” of Guangdong Province Educational Science (No. 2020GXJK441), the Project of Traditional Chinese Medicine Bureau of Guangdong Province (CN) (No. 20191228 to ZY), the Science and Technology Planning Project of Tianhe District, Guangzhou City (No.201704KW011), the Young Plants Project, Hospital scientific research fund of the People's Hospital of Huadu District, Guangzhou (NO.2020C03)
  • Study Association
    This study is not associated with any thesis or dissertation work.
  • Ethics approval and consent to participate
    This article does not contain any studies with human participants or animals performed by any of the authors.

Referências

  • 1
    Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules. 2019;9(6):226. doi: 10.3390/biom9060226.
    » https://doi.org/10.3390/biom9060226
  • 2
    Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;1209(1):13-22. doi: 10.1083/jcb.201412052.
    » https://doi.org/10.1083/jcb.201412052
  • 3
    Lusis AJ. Atherosclerosis. Nature. 2000;407(6801): 233-41. doi: 10.1038/35025203.
    » https://doi.org/10.1038/35025203
  • 4
    Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu, Y et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721-9. doi: 10.1038/35025203.
    » https://doi.org/10.1038/35025203
  • 5
    Uchida S. Dimmeler Long non-coding RNAs in cardiovascular diseases. Circulat Res. 2015;116(4):737-50. doi: 10.1161/CIRCRESAHA.116.302521.
    » https://doi.org/10.1161/CIRCRESAHA.116.302521
  • 6
    Shigematsu M, Honda S, Kirino Y. Transfer RNA as a source of small functional RNA. J Mol Biol Mol Imaging.2014;1(2):8. PMID: 26389128
  • 7
    Guttman J, Rinn L. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482(7385):339-46. doi: 10.1038/nature10887.
    » https://doi.org/10.1038/nature10887
  • 8
    Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet.2020;11:95. doi: 10.3389/fgene.2020.00095
    » https://doi.org/10.3389/fgene.2020.00095
  • 9
    Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Ver. Mol Cell Biol. 2012;13(4):239-50. doi: 10.1038/nrm3313.
    » https://doi.org/10.1038/nrm3313
  • 10
    Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J.2021;42(2):178-88. doi: 10.1093/eurheartj/ehaa898.
    » https://doi.org/10.1093/eurheartj/ehaa898
  • 11
    Alexander-Bryant AA, Zhang H, Attaway CC, Pugh W, Eggart L, Sansevere RM, et al. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo. Oral Oncol. 2017;72: 123-31. doi: 10.1016/j.oraloncology.2017.07.004
    » https://doi.org/10.1016/j.oraloncology.2017.07.004
  • 12
    Carlevaro-Fita J, Johnson R. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Mol Cell. 2019;79(5):869-83. doi: 10.1016/j.molcel.2019.02.008.
    » https://doi.org/10.1016/j.molcel.2019.02.008
  • 13
    Quinn J J, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nature reviews. Genetics. 2016; 117(1):47-62. doi: 10.1038/nrg.2015.10.
    » https://doi.org/10.1038/nrg.2015.10
  • 14
    Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A. Long non-coding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA (New York NY). 2011;17(12):2085-93. doi: 10.1261/rna.029405.111
    » https://doi.org/10.1261/rna.029405.111
  • 15
    Hartford CCR, Lal A. When Long Noncoding Becomes Protein Coding. Mol Cell Biol. 2020;40(6):e519-28. doi: 10.1128/MCB.00528-19.
    » https://doi.org/10.1128/MCB.00528-19
  • 16
    van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, E. Adami E, Faber AB, et al. The Translational Landscape of the Human Heart. Cell. 2019;178(1):242-60. doi: 10.1016/j.cell.2019.05.010.
    » https://doi.org/10.1016/j.cell.2019.05.010
  • 17
    Liu Y, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of long non-coding RNAs in atherosclerosis. Int J Cardiol. 2017;228:570-82. 570-82. doi: 10.1016/j.ijcard.2016.11.182.
    » https://doi.org/10.1016/j.ijcard.2016.11.182
  • 18
    Pierce JB, Feinberg MW. Long Noncoding RNAs in Atherosclerosis and Vascular Injury: Pathobiology, Biomarkers, and Targets for Therapy. Arterioscler Thromb Vasc Biol. 2020;40(9):2002-17. doi: 10.1161/ATVBAHA.120.314222.
    » https://doi.org/10.1161/ATVBAHA.120.314222
  • 19
    Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics. 2018;8(13):3654-75. PMID: 30026873
  • 20
    Lin J, Jiang Z, Liu C, Zhou D, Song J, Liao Y., et al. Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel, Switzerland). 2020; 10(8):131. doi: 10.3390/life10080131.
    » https://doi.org/10.3390/life10080131
  • 21
    Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393-407.
  • 22
    Holdt LM, Kohlmaier A, Teupser D. Long Noncoding RNAs of the Arterial Wall as Therapeutic Agents and Targets in Atherosclerosis. Thromb Haemost. 2019;119(8):1222-36. doi: 10.3390/life10080131.
    » https://doi.org/10.3390/life10080131
  • 23
    Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting Non-coding RNA in Vascular Biology and Disease. Front Physiol. 2018;9: 1655. doi: 10.3389/fphys.2018.01655
    » https://doi.org/10.3389/fphys.2018.01655
  • 24
    Ma L, Bajic VB,Z. Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. doi: 10.4161/rna.24604.
    » https://doi.org/10.4161/rna.24604
  • 25
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long non-coding RNA as modular scaffold of histone modification complexes. Science (New York) 2010;329(5992):689-93. doi: 10.1126/science.1192002.
    » https://doi.org/10.1126/science.1192002
  • 26
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. The N Engl J Med.2007;357(5):443-53. doi: 10.1056/NEJMoa072366
    » https://doi.org/10.1056/NEJMoa072366
  • 27
    Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, non-coding RNA, is an unexpected major hotspot in GWAS. FASEB. 2011;25(2):444-8. doi: 10.1096/fj.10-172452.
    » https://doi.org/10.1096/fj.10-172452
  • 28
    Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30(3):620-7. doi: 10.1161/ATVBAHA.109.196832.
    » https://doi.org/10.1161/ATVBAHA.109.196832
  • 29
    Iwama A. Polycomb repressive complexes in hematological malignancies. Blood. 2017;30(1):23-9. doi: 10.1182/blood-2017-02-739490
    » https://doi.org/10.1182/blood-2017-02-739490
  • 30
    Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science (New York). 2012;337(6097): 971-5. doi: 10.1126/science.1225237.
    » https://doi.org/10.1126/science.1225237
  • 31
    Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the non-coding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell. 2010;38(5):662-74. doi: 10.1016/j.molcel.2010.03.021.
    » https://doi.org/10.1016/j.molcel.2010.03.021
  • 32
    Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010;464(7287):409-12. doi: 10.1038/nature08801
    » https://doi.org/10.1038/nature08801
  • 33
    Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi: 10.1371/journal.pgen.1003588.
    » https://doi.org/10.1371/journal.pgen.1003588
  • 34
    Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. 2016;1(1):98-108. doi: 10.3892/mmr.2020.11203
    » https://doi.org/10.3892/mmr.2020.11203
  • 35
    Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-41. doi: 10.1038/sj.onc.1206928.
    » https://doi.org/10.1038/sj.onc.1206928
  • 36
    Arslan S, Berkan O, Lalem T, Özbilüm N, Göksel S, Korkmaz O, et al. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis. 2017;266:176-81. doi: 10.1016/j.atherosclerosis.2017.10.012.
    » https://doi.org/10.1016/j.atherosclerosis.2017.10.012
  • 37
    Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, T. Braun T, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res.2014;14(9):1389-97. doi: 10.1161/CIRCRESAHA.114.303265.
    » https://doi.org/10.1161/CIRCRESAHA.114.303265
  • 38
    Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773-88. doi: 10.1016/j.cell.2011.08.054.
    » https://doi.org/10.1016/j.cell.2011.08.054
  • 39
    Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res. 2019;115(12):302-14. doi: 10.1093/cvr/cvy202.
    » https://doi.org/10.1093/cvr/cvy202
  • 40
    Zhao G, Su Z, Song D, Mao Y, Mao X. The long non-coding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett. 2016;590(17): 2884-95. doi: 10.1002/1873-3468.12315
    » https://doi.org/10.1002/1873-3468.12315
  • 41
    Huangfu N, Xu Z, Zheng W, Wang Y, Cheng J, Chen X. LncRNA MALAT1 regulates oxLDL-induced CD36 expression via activating β-catenin. Bioch Biopohys Res Comm. 2018;3:2111-7. (ISSN: 1090-2104)
  • 42
    Nicholson AC. Expression of CD36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc Med. 2004;14(1):8-12. doi: 10.1016/j.tcm.2003.09.004.
    » https://doi.org/10.1016/j.tcm.2003.09.004
  • 43
    Huang-Fu N, Cheng JS, Wang Y, Li ZW, Wang SH. Neat1 regulates oxidized low-density lipoprotein-induced inflammation and lipid uptake in macrophages via paraspeckle formation. Mol Med Rep. 2018;17(2):3092-8. doi: 10.3892/mmr.2017.8211
    » https://doi.org/10.3892/mmr.2017.8211
  • 44
    ASI Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, et al. NEAT1Long non-coding RNA (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc the Nat Acad Scienc (USA) 2018; 37: E8660-67. doi: 10.3892/mmr.2017.8211
    » https://doi.org/10.3892/mmr.2017.8211
  • 45
    Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014; 130(17):1452-65. doi: 10.1161/CIRCULATIONAHA.114.011675
    » https://doi.org/10.1161/CIRCULATIONAHA.114.011675
  • 46
    Sallam T, Jones M, Thomas BJ, Wu X, Gilliland T, Qian K, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long non-coding RNA. Nat Med. 2018;24(3):304-12. doi: 10.1038/nm.4479.
    » https://doi.org/10.1038/nm.4479
  • 47
    Liao B, Chen R, Lin F, Mai A, Chen J, Li H, et al. Long non-coding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/β-catenin pathway.J Cell Biochem. 2018;19(3):2797-805. doi: 10.1002/jcb.26448.
    » https://doi.org/10.1002/jcb.26448
  • 48
    Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, et al. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem. 2014; 289(42):28816-26. doi: 10.1074/jbc.M114.597401.
    » https://doi.org/10.1074/jbc.M114.597401
  • 49
    van den Boom M, Sarbia M, von Wnuck Lipinski K, Mann P, Meyer-Kirchrath J, Rauch BH, et al. Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis. Circ Res.2006;98(1):36-44. doi: 10.1161/01.RES.0000199263.67107.c0.
    » https://doi.org/10.1161/01.RES.0000199263.67107.c0
  • 50
    Viola M, Karousou E, D’Angelo ML, Moretto P, Caon I, Luca G, et al. Extracellular Matrix in Atherosclerosis: Hyaluronan and Proteoglycans Insights. Curr Med Chem. 2016;23(26):2958-71. doi: 10.2174/0929867323666160607104602.
    » https://doi.org/10.2174/0929867323666160607104602
  • 51
    Sussmann M, Sarbia M, Meyer-Kirchrath J, Nüsing RM, Schrör K, Fischer JW Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins. Circ Res. 2004;94(5):592-600. doi: 10.1161/01.RES.0000119169.87429.A0.
    » https://doi.org/10.1161/01.RES.0000119169.87429.A0
  • 52
    Kashima Y, Takahashi M, Shiba Y, Itano N, Izawa A, Koyama J, et al. Crucial role of hyaluronan in neointimal formation after vascular injury. PloS One. 2013;8(3):e58760. doi: 10.1371/journal.pone.005876
    » https://doi.org/10.1371/journal.pone.005876
  • 53
    Zhang Y, Zheng L, Xu BM, Tang WH, Ye ZD, Huang C, et al. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Imm cell Biol. 2018; 2:175-89. doi: 10.1016/j.eururo.2018.07.032.
    » https://doi.org/10.1016/j.eururo.2018.07.032
  • 54
    Huang C, Hu YW, Zhao JJ, Ma X, Zhang Y, Guo FX. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages. DNA Cell Biol. 2016; 11:722-9. doi: 10.1089/dna.2016.3422.
    » https://doi.org/10.1089/dna.2016.3422
  • 55
    Miao Y, Ajami NE, Huang TS, Lin FM, Lou CH, Wang YT, et al. Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Comm. 2019;1:292-8. doi: 10.1038/s41467-017-02113-y.
    » https://doi.org/10.1038/s41467-017-02113-y
  • 56
    Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Life. 2013;2:e00762. doi: 10.7554/eLife.00762.
    » https://doi.org/10.7554/eLife.00762
  • 57
    Peng Y, Meng K, Jiang L, Zongh Y, Yang Y, Lan Y, et al. Thymic stromal lymphopoietin-induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis. Biosc Rep.2017;37(4):R20170351. doi: 10.1042/BSR20170351.
    » https://doi.org/10.1042/BSR20170351
  • 58
    Lin J, Chang W, Dong J, Zhang F, Mohabeer N, Kushwaha KK, et al. Thymic stromal lymphopoietin over-expressed in human atherosclerosis: potential role in Th17 differentiation. Cellular physiology and biochemistry : Int J Exp Cell Phys Bioch Pharmacol. 2013;31(2-3): 305-18. doi: 10.1159/000343369
    » https://doi.org/10.1159/000343369
  • 59
    Smith E K, Prasad M, Butcher M, Dobrian A, Kolls JK, Ley K, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2010;121(15):1746-55. doi: 10.1161/CIRCULATIONAHA.109.924886.
    » https://doi.org/10.1161/CIRCULATIONAHA.109.924886
  • 60
    Tang Y, Jin X, Xiang Y, Chen Y, Shen CX, Zhang YC, et al. The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett. 2015;589(20Pt8):3189-96. doi: 10.1016/j.febslet.2015.08.046.
    » https://doi.org/10.1016/j.febslet.2015.08.046
  • 61
    Cremer S, Michalik KM, Fischer A,Jae N, Winter C. Hematopoietic Deficiency of the Long Non-coding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation. 2019;139(10):1320-34. doi: 10.1016/j.febslet.2015.08.046.
    » https://doi.org/10.1016/j.febslet.2015.08.046
  • 62
    Li S, Sun Y, Zhong L, Xiao Z, Yang M, Chen M, et al. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metabol Cardiovasc Dis. 2018; 28(11): 1175-87. . doi: 10.1016/j.numecd.2018.06.017.
    » https://doi.org/10.1016/j.numecd.2018.06.017
  • 63
    Zheng H, Dong X, Liu N, Xia W, Zhou L, Chen X, et al. Regulation and mechanism of mouse miR-130a/b in metabolism-related inflammation. Int J Biochem Cell Biol.2016;74:72-83.
  • 64
    Pan SD, Yang X, Jia Y, Li R, Zhao R. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol. 2014;229(5): 631-9. doi: 10.1002/jcp.24486.
    » https://doi.org/10.1002/jcp.24486
  • 65
    Han Y, Ma J, Wang J, Wang L Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol.2018;93:107-14. doi: 10.1016/j.molimm.2017.11.017
    » https://doi.org/10.1016/j.molimm.2017.11.017
  • 66
    Zhang L, Cheng H, Yue Y, Li S, Zhang D,He R. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci.2018;25(1):11.. 2018; 1: 11. doi: 10.1186/s12929-018-0418-4.
    » https://doi.org/10.1186/s12929-018-0418-4
  • 67
    Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86-90. doi: 10.1038/nature18935.
    » https://doi.org/10.1038/nature18935
  • 68
    Ye ZM, Yang S, Xia YP, Hu RT, Chen S, BW, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019;10(2):138. doi: 10.1038/s41419-019-1409-4.
    » https://doi.org/10.1038/s41419-019-1409-4
  • 69
    Zhong X, Ma X, Zhang L, Li Y, He R. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother Biomed.2018;97: 1078-85. doi: 10.1016/j.biopha.2017.11.052.
    » https://doi.org/10.1016/j.biopha.2017.11.052
  • 70
    Wang L, Xia JW, Ke ZP, Zhang H. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol.2019;234(4): 5319-26. doi: 10.1002/jcp.27340.
    » https://doi.org/10.1002/jcp.27340
  • 71
    Chen C, Cheng G, Yang X, Li C, Shi R, Zhao N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am J TRanslat Res.2016;8(7):2981-91. PMID: 27508018
  • 72
    Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol. 2018;33: 6-15. doi: 10.1016/j.carpath.2017.11.004.
    » https://doi.org/10.1016/j.carpath.2017.11.004
  • 73
    Zhang BY, Jin Z, Zhao Z. Long intergenic non-coding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother. 2017;94:238-43. doi: 10.1016/j.carpath.2017.11.004
    » https://doi.org/10.1016/j.carpath.2017.11.004
  • 74
    He C, Ding JW, Li S, Wu H, Jiang YR, Yang W, et al. The Role of Long Intergenic Noncoding RNA p21 in Vascular Endothelial Cells. DNA Cell Biol. 2015;34(11):677-83. doi: 10.1089/dna.2015.2966.
    » https://doi.org/10.1089/dna.2015.2966
  • 75
    Shen Z, She Q. Association Between the Deletion Allele of Ins/Del Polymorphism (Rs145204276) in the Promoter Region of GAS5 with the risk of atherosclerosis. Cell Physiol Biochem. 2018;49(4):1431-43. doi: 10.1159/000493447
    » https://doi.org/10.1159/000493447
  • 76
    Campalans A, Kondorosi A, Crespi M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell. 2004;16(4): 1047-59. doi: 10.1105/tpc.019406.
    » https://doi.org/10.1105/tpc.019406
  • 77
    Hellwig S, Bass BL. A starvation-induced non-coding RNA modulates expression of Dicer-regulated genes. Proc Natl Acad Sci. 2008;105(35):1289-902. doi: 10.1073/pnas.0805118105
    » https://doi.org/10.1073/pnas.0805118105

Publication Dates

  • Publication in this collection
    10 June 2022
  • Date of issue
    2022

History

  • Received
    15 Aug 2020
  • Reviewed
    14 Apr 2021
  • Accepted
    09 June 2021
Sociedade Brasileira de Cardiologia - SBC Avenida Marechal Câmara, 160, sala: 330, Centro, CEP: 20020-907, (21) 3478-2700 - Rio de Janeiro - RJ - Brazil, Fax: +55 21 3478-2770 - São Paulo - SP - Brazil
E-mail: revista@cardiol.br