Acessibilidade / Reportar erro

Abundance, distribution, and associated forage losses of pest grasshoppers (Orthoptera: Acrididae) in the Argentine Pampas

Abstract

The goal of this study was to assess the status of Dichroplus elongatus and Borellia bruneri as actual agricultural pests in the Argentine Pampas by determining their abundance, distribution, and associated forage loss. The study was conducted in Laprida and Tandil, two counties in Buenos Aires province. In each county 20 sampling sites were established and monitored from 2012 to 2018. B. bruneri was more abundant and with a wider distribution in Laprida (91.4% of the sites) than in Tandil (42.1% of the sites) while D. elongatus abundance was significantly higher from 2012 to 2016 in Tandil than in Laprida and its distribution was wide in Laprida (75% of the sites) and very wide in Tandil (77.14%). Under field-cage conditions forage loss caused at three different densities (8, 16, and 32 ind/m2) of D. elongatus and B. bruneri adults on a pasture of Festuca arundinacea was estimated. Forage loss caused by D. elongatus was significantly higher than that caused by B. bruneri. Dichroplus elongatus caused a significant decrease in biomass at the three densities respect to the control, while B. bruneri only caused a significant decrease at the highest density. Our study suggests that although the gomphocerine B. bruneri is an abundant and widely-distributed species capable of doing some damage in the grasslands of the southern Pampas, it is comparatively much less harmful than the melanopline D. elongatus.

Key words
Borellia bruneri; Dichroplus elongatus; Dichroplus maculipennis; Festuca arundinacea; Gomphocerinae; Melanoplinae

INTRODUCTION

Grasshoppers constitute one of the most conspicuous groups of insects in grassland ecosystems. They play a significant ecological role as primary consumers and components of trophic chains, and in the cycling of nutrients and energy (Belovsky 2000BELOVSKY GE. 2000. Do grasshoppers diminish grassland productivity? A new perspective for control based on conservation. In: Lockwood JA, Latchininsky AV & Sergeev G (eds) Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster. Boston: Kluwer Academic, p. 7-29., Guo et al. 2006GUO Z, LI HC & GAN YL. 2006. Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Sci 13: 221-227., Song et al. 2018SONG H, MARIÑO-PÉREZ R, WOLLER DA & CIGLIANO MM. 2018. Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). System Div 2(4): 3.). However, some species of grasshoppers are considered harmful to agriculture and during outbreak years can destroy crops and compete with livestock for available forage (Branson et al. 2006BRANSON DH, JOERN A & SWORD GA. 2006. Sustainable Management of Insect Herbivores in Grassland Ecosystems: New Perspectives in Grasshopper Control. Bioscience 56(9): 743-755., Mariottini et al. 2012MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2012. Variación temporal de la riqueza, composición y densidad de acridios (Orthoptera: Acridoidea) en diferentes comunidades vegetales del Sur de la provincia de Buenos Aires. Rev Soc Entomol Argent 71: 275-288.).

Of the 204 grasshopper species known in Argentina, 19 are considered of economic importance for agriculture (Cigliano et al. 2014CIGLIANO MM, POCCO ME & LANGE CE. 2014. Acridoideos (Orthoptera) de importancia agroeconómica (Acridoids: Orthoptera). In: ROIG-JUÑENT S, CLAPS LE & MORRONE JJ (Eds), Biodiversidad de Artrópodos Argentinos. La Plata: Sociedad Entomológica, p. 1-26.). Two of them are Dichroplus elongatus (Acrididae: Melanoplinae) and Borellia bruneri (Acrididae: Gomphocerinae). The melanopline D. elongatus is the most widely distributed species of the genus Dichroplus and occurs in almost all of Argentina except Tierra del Fuego, in the center and North of Chile, Uruguay, and southernmost Brazil (Carbonell et al. 2017CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/.
http://163.10.203.2/ACRIDOMORPH/...
). It is usually the dominant species in grasshopper communities of almost all grassland habitats of the Pampas region (Cigliano et al. 2000CIGLIANO MM, DE WYSIECKI ML & LANGE CE. 2000. Grasshopper (Orthoptera, Acrididae) species diversity in the pampas, Argentina. Divers Distrib 6: 81-91., Cigliano et al. 2014CIGLIANO MM, POCCO ME & LANGE CE. 2014. Acridoideos (Orthoptera) de importancia agroeconómica (Acridoids: Orthoptera). In: ROIG-JUÑENT S, CLAPS LE & MORRONE JJ (Eds), Biodiversidad de Artrópodos Argentinos. La Plata: Sociedad Entomológica, p. 1-26., Lange & Cigliano 2019LANGE CE & CIGLIANO MM. 2019. Elongated grasshopper, Dichroplus elongatus Giglio-Tos, 1894 (Orthoptera: Acrididae). In: LECOQ ML & ZHANG (Eds), Encyclopedia of Pest Orthoptera of the World.Pekin, China Agricultural University Publisher, China, p. 79-82.). Borellia bruneri is one of the most common species of gomphocerines inhabiting the Pampas grasslands of both Argentina and Uruguay (COPR 1982COPR - CENTRE FOR OVERSEAS PEST RESEARCH. 1982. The locust and grasshopper agricultural manual. London: COPR, p. 690., Mariottini et al. 2012MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2012. Variación temporal de la riqueza, composición y densidad de acridios (Orthoptera: Acridoidea) en diferentes comunidades vegetales del Sur de la provincia de Buenos Aires. Rev Soc Entomol Argent 71: 275-288., Miguel et al. 2014MIGUEL L, LORIER E & ZERBINO S. 2014. Caracterización y descripción de los estadios ninfales de Borellia bruneri (Rhen, 1906) (Orthoptera: Gomphocerinae). Agrociencia Uruguay 18(2).). It shows a wide geographic distribution, also occurring in southernmost Brazil, much of Argentina, Chile, and Uruguay (Cigliano et al. 2014CIGLIANO MM, POCCO ME & LANGE CE. 2014. Acridoideos (Orthoptera) de importancia agroeconómica (Acridoids: Orthoptera). In: ROIG-JUÑENT S, CLAPS LE & MORRONE JJ (Eds), Biodiversidad de Artrópodos Argentinos. La Plata: Sociedad Entomológica, p. 1-26., Carbonell et al. 2017CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/.
http://163.10.203.2/ACRIDOMORPH/...
). Both D. elongatus and B. bruneri undergo obligatory embryonic diapause in their life cycles and hence are univoltine (Bardi & Lange 2011BARDI CE & LANGE CE. 2011. Voltinism in the melanopline grasshopper Dichroplus elongatus Giglio-Tos (Orthoptera: Acrididae: Melanoplinae). Stud Neotrop Fauna Environ 46(2): 143-145., Mariottini et al. 2020MARIOTTINI Y, DE WYSIECKI ML, ALBERTI A & LANGE CE. 2020. Postembrionic development and reproductive parameters of the grasshopper pest Borellia bruneri (Acrididae: Gomphocerinae) under controlled conditions. Rev Bra Entomol 64(1): 1-5.). Following the categories widely accepted for defining the pest status of grasshopper species (COPR 1982COPR - CENTRE FOR OVERSEAS PEST RESEARCH. 1982. The locust and grasshopper agricultural manual. London: COPR, p. 690.), Carbonell et al. (2017)CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/.
http://163.10.203.2/ACRIDOMORPH/...
have categorized D. elongatus as a “Major pest of several crops” and B. bruneri as a “Frequent plague of importance”.

In this study we report on our assessment on the status of D. elongatus and B. bruneri as actual agricultural pests in areas of the southern Argentine Pampas by determining their relative abundance, distribution, and associated forage loss.

MATERIALS AND METHODS

Estimations on abundance and distribution

The study on the abundance and distribution of B. bruneri and D. elongatus was conducted in native grasslands of Laprida and Tandil, two counties in southern Buenos Aires province (Fig. 1). In Laprida county (345.498 ha) grasslands are the dominant vegetation type, being livestock activity markedly prevalent. Approximately 45% of the county’s area is used for livestock production (Batista et al. 2005BATISTA WB, TABOADA MA, LAVADO RS, PERELMAN SB & LEÓN RJC. 2005. Asociación entre comunidades vegetales y suelos en el pastizal de la Pampa Deprimida. In: OESTERHELD M, AGUIAR MR, GHERSA CM & PARUELO JM (Eds). La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Buenos Aires: Editorial Facultad de Agronomía, p. 113-129., Recabarren 2016RECABARREN P. 2016. La producción agropecuaria en Olavarría, Benito Juárez, Laprida y Gral. La Madrid: evolución y desafíos a futuro. Buenos Aires: Ediciones INTA, p. 143.). In Tandil county (493.500 ha), Sánchez et al. (1999)SÁNCHEZ RO, MATTUS G & ZULAICA L. 1999. Compartimentación ecológica y ambiental del partido de Tandil (provincia de Buenos Aires). En Actas del Congreso Ambiental ´99, Programa de Estudios Ambientales. San Juan: Universidad Nacional de San Juan, p. 338-346. identified three environments: Hills, hillock plain, and distal plain. Hillock plains succeed the hilly landscape and have good aptitude for agricultural development. The distal or depressed plains succeeds altimetrically the hillock plains and it is where grasslands of Nassella sp. and Piptochaetium sp. mix with shrub and saxifolia communities (Plants associated with rocky areas) comprise the native vegetation (Vazques & Zulaica 2011).

Figure 1
Study area: Laprida and Tandil counties, Buenos Aires province, Argentina.

In each county, 20 sampling sites, as evenly distributed as possible to cover as much of each county, were selected according to a visual impression of the dominant vegetation which represents the native grassland characteristics of the area (Batista et al. 1988BATISTA WB, LEÓN RJC & PERELMAN SB. 1988. Las comunidades vegetales de un pastizal natural de la región de Laprida, Prov. de Buenos Aires, Argentina. Phytoeconología 16(4): 519-534., Torrusio et al. 2002TORRUSIO S, CIGLIANO MM & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acridoidea) and plant community relationships in the Argentine pampas. J Biogeogr 29: 221-229.). In both counties the sampling of the 40 sites took place between 2012 and 2018.

Like most grasshopper species in the Pampas both D. elongatus and B. bruneri are univoltine due to having obligatory embryonic diapause (COPR 1982COPR - CENTRE FOR OVERSEAS PEST RESEARCH. 1982. The locust and grasshopper agricultural manual. London: COPR, p. 690., Bardi & Lange 2011BARDI CE & LANGE CE. 2011. Voltinism in the melanopline grasshopper Dichroplus elongatus Giglio-Tos (Orthoptera: Acrididae: Melanoplinae). Stud Neotrop Fauna Environ 46(2): 143-145.), hatchings normally starting by mid-late spring (Mariottini et al. 2011MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2011. Postembryonic development and consumption of the melanoplines Dichroplus elongatus Giglio-Tos and Dichroplus maculipennis (Blanchard) (Orhtoptera: Acrididae: Melanoplinae) under laboratory conditions. Neotrop Entomol 40: 190-196.) and populations usually peaking sometime during January, possibly the best month for collection in order to maximize chances of detection of these two species.

The abundance of D. elongatus and B. bruneri were determined from 200 sweeps of entomological nets (diameter: 40 cm, depth: 75 cm, arc of sweep: 180º) along four transects of approximately 3 m wide and 50 m long each per site according to Evans (1988)EVANS EW. 1988. Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: influences of fire frequency, topography, and vegetation. Can J Zool 66: 1495-1501., a method acknowledged to provide representative samples of grasshopper communities (Larson et al. 1999LARSON DP, O´NEILL KM & KEMP W. 1999. Evaluation of the accuracy of sweep sampling in determining grasshopper (Orthoptera: Acridoidea) community composition. J Agron Urban Entomol 16(3): 207-214.). Later, the individuals of B. bruneri and D. elongatus collected were counted and the relative abundance of these was estimated taking into account the abundance of these species in relation to the total number of individuals of all species collected per site.

In order to determine the extent of the distribution (frequency of occurrence) of B. bruneri and D. elongatus, the scale proposed by Mariottini et al. (2013)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2013. Diversidad y distribución de acridios (Orthoptera: Acridoidea) en pastizales del sur de la región Pampeana, Argentina. Rev Biol Trop 61: 111-124. was followed. By using this scale of distribution the proportion of sites in which the given species was registered was taken into account in relation to the total number of sampled sites throughout the study period. The scale have four categories of distribution: a- (1-25%: restricted), b- (26-50%: Intermediate), c- (51-75%: Wide) and d- (>75%: Very wide), and it is important to indicate that it applies only to the study area.

Estimation of forage loss

To estimate the forage loss, the experience was carried out for a month (from January 3 to February 3, 2019) in a livestock field of Festuca arundinacea (a perennial forage grass that can prosper in multiple environments) (Insua et al. 2013INSUA JR, DI MARCO ON & AGNUSDEI MG. 2013. Calidad nutritiva de láminas de Festuca alta (Festuca arundinacea Schreb) en rebrotes de verano y otoño. RIA 37: 267-272., Bazzigalupi & Bertín 2014BAZZIGALUPI O & BERTÍN OD. 2014. Fertilización nitrogenada en Festuca arundinacea (Schreb) para producción de semilla con riego en el norte de Buenos Aires, Argentina. RIA 40(3): 290-295.) located in Tandil county (37º12 ‘27.39’’S, 59º 17’ 22.53’’O).

In order to estimate the forage loss (consumption + destruction rate) caused by different densities of D. elongatus and B. bruneri the methodology used by Torrusio et al. (2005)TORRUSIO SE, DE WYSIECKI ML & OTERO J. 2005. Estimación de daño causado por Dichroplus elongatus en cultivos de soja en siembra directa, en la provincia de Buenos Aires. RIA 34: 59-72. and Mariottini et al. (2018)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100. was followed. In the study site, 21 cages of aluminum and wire mesh screen of 50 cm x 50 cm x 70 cm high (0.25 m2) were used. In each of the cages, adult males and females of each species were placed in a 1:1 ratio (Torrusio et al. 2005TORRUSIO SE, DE WYSIECKI ML & OTERO J. 2005. Estimación de daño causado por Dichroplus elongatus en cultivos de soja en siembra directa, en la provincia de Buenos Aires. RIA 34: 59-72.). Three different densities were used according to Mariottini et al. (2018)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100.: 8 ind/m2, 16 ind/m2, and 32 ind/m2. Proportionally, 2, 4, and 8 individuals were placed in each cage. Three replicates were performed per density tested for D. elongatus and B. bruneri, and three cages without grasshoppers (0 ind/m2) were also established as a control. For estimating the initial plant biomass of the pasture, five samples were taken by harvesting all vegetation within an area of 0.25 m2. After the experience, the vegetation biomass remnant in each of the cages was harvested. All harvested material was dried in an oven at 70 ° C until constant weight and weighted on a precision scale (down to 0.001 g). The forage loss was estimated considering the final plant biomass harvested in the cages with grasshoppers respect to the control cages. The experience was monitored daily to ensure the presence of all grasshopper individuals in each of the cages.

Statistical analysis

In order to compare the abundance of B. bruneri and D. elongatus over the years (2012-2018) and between the counties an ANOVA of repeated measures were used. The dependent variable was the relative abundance (estimated as percentage). Prior to performing the ANOVA, the Mauchly sphericity test was used and the adjustment of the degrees of freedom was conducted by the Greenhouse Geisser method (Scheiner & Gurevitch 2001SCHEINER SM & GUREVITCH J. 2001. Design and analysis of ecological experiments, 2nd ed. New York: Oxford University.).

In order to assess forage increase during the study the initial biomass was compared with the final biomass of control cages (without grasshoppers) through a T test with the Satterwait correction. For comparing the final biomass of F. arundinacea harvested in cages with different grasshopper densities and the control an analysis of variance of two-factors (ANOVA) was performed. The mean consumption per individual was estimated by dividing the loss of forage occurred in each of the cages by the number of individuals present per day. The daily consumption by B. bruneri and D. elongatus was compared through ANOVA against the consumption made by the melanopline D. maculipennis, the most harmful grasshopper species in the area (Mariottini et al. 2018MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100.).

In all ANOVA analysis the Fisher test (LSD) was used a posteriori to compare means.

RESULTS

Abundance and distribution

In Laprida, the mean species richness per sampling site varied between a minimum value of 4.3 ± 0.44 species recorded in 2012 and a maximum of 6.9 ± 0.34 species collected in the 2016 season. In this county, the mean total number of individuals collected per sampling site was lower in 2015 (77.44 ± 7.25 individuals per site) and higher in 2016 (201.4 ± 20.13 individuals per site) (Table I). In Tandil, the variation in species richness was less, the lowest value was recorded in 2015 (4.1 ± 0.31 species per sampling site) and the highest was in the 2017 season (4.9 ± 0.29 species/ site), while in terms of number of individuals collected per sampling site the lowest value was observed in 2013 (29.40 ± 18.45 individuals/site), and the highest was in 2017 (162.9 ± 29.64 individuals/site) (Table II).

Table I
Mean values (± ES) of species richness, total individuals, relative abundance and distribution of Borellia bruneri and Dichroplus elongatus, between 2012 to 2018 in Laprida county. Between brackets minimum and maximum values.
Table II
Mean values (± ES) of species richness, total individuals, relative abundance and distribution of Borellia bruneri and Dichroplus elongatus, between 2012 to 2018 in Tandil county. Between brackets minimum and maximum values.

Abundance of the two species considered was significantly different both between counties and years. The interaction between the factors were significant (p<0.05) (Table III), suggesting changes in abundance of the two species over the years. With respect to B. bruneri population status, the relative abundance of this species was higher in Laprida than that recorded in Tandil (Fisher LSD p: 0.00038), registering a significant difference from 2013 onwards (LSD Fisher p<0.05) (Fig. 2). In addition, a significant variation in abundance of this species within each county was observed. In Laprida, there was a higher abundance in 2014 (27.57 ± 3.12%) and 2016 (30.48 ± 4.24%) compared to 2012 (17.87 ± 4.35%), 2013 (21.99 ± 2.94%), and 2015 (17.38 ± 4.38%) (LSD Fisher p <0.05). In Tandil, the abundance of B. bruneri in 2012 (14.59 ± 5.78) was higher (LSD Fisher p <0.05) with respect to 2015 (4.67 ± 2.69%) and 2016 (4.60 ± 2.69%).

Figure 2
Relative abundance of Borellia bruneri in native grasslands of Laprida and Tandil counties, between 2012 to 2018.
Table III
Results of repeated measures ANOVA for relative abundance of Borellia bruneri and Dichroplus elongatus in Laprida and Tandil counties between 2012 to 2018.

Unlike B.bruneri, abundance of D. elongatus was significantly higher from 2012 to 2016 in Tandil relative to Laprida (LSD p <0.0001). In Tandil, the abundance of this species remained stable until 2016 when it decreased significantly. The abundance of D. elongatus between 2012 and 2015 was around 50% in each season (Fig. 3) and in 2016 it decreased approximately by half (26.41 ± 6.37%). Then, in 2017 (33.64 ± 6.19%) increased, and decreased again 2018 (7.19 ± 5.72%) although with no significant changes between the last two years. In Laprida, abundance of this species also remained relatively constant throughout the study, only a higher abundance was recorded in 2015 (27.8 ± 2.9%) compared to 2012 (11.07 ± 1.41%).

Figure 3
Relative abundance of Dichroplus elongatus in native grasslands of Laprida and Tandil counties, between 2012 to 2018.

Regarding the distribution and considering all sites/years, B. bruneri, had a very wide distribution in Laprida county, having been registered in 91.4% of the sampled sites (128/140) and an intermediate distribution in Tandil of 42.14% of the total sites sampled (59/140 sites). Dichroplus elongatus in Laprida had a wide distribution representing 75% (105/140) of the sampled sites and in Tandil a very wide distribution of 77.14% of the sites (108/140).

Forage loss

Biomass of F. arundinacea estimated at the beginning and at the end (as from the cages without grasshoppers) of the experience was 182.52 ± 18.64 g/m2 and 333.70 ± 15.22 g/m2, respectively, and the difference between them was significant (T: 6.28 p = 0.0033). An increase in biomass of 54.7% was observed during the study.

Results of the ANOVA analysis indicated that the observed differences in forage loss were significant for both by species and by density (Table IV). The loss of forage caused by D. elongatus was significantly higher than that caused by B. bruneri (LSD Fisher p <0.005). The forage loss caused by the three tested densities of D. elongatus was different from the control and between them (LSD Fisher p <0.005).

Table IV
Results of two-way ANOVA of forage loss caused by differents densities of Borellia bruneri and Dichroplus elongatus on a Festuca arundinacea pasture.

The final biomass at a density of 8 ind/m2 of D. elongatus was 252.19 ± 5.52 g/m2, about 24.4% less than the final plant biomass of the control. At a density of 16 ind/m2 the biomass was of 168.53 ± 7.59 g/m2, approximately 49.5% less than the control, and at 32 ind/m2 the final plant biomass was of 131.03 ± 10.26 g/m2, 60.7% less than the control (Fig. 4).

Figure 4
Mean value (± SE) of the final biomass of Festuca arundinacea (g/m2) in control cages (without grasshoppers) and in the cages with the three tested densities of Dichroplus elongatus. Different letters indicate significant differences (LSD p <0.05).

Considering the food consumption made by B. bruneri, the final biomass of F. arundinacea at densities of 8 ind/m2 and 16 ind/m2 was of 293.23 ±25.18 g/m2 and 269.46 ± 12.43 g/m2, respectively, values that were not significantly different from the final biomass of the control (LSD Fisher p> 0.05). The decrease in final biomass caused by B. bruneri respect to the control at a density of 8 ind/m2 was approximately 12.13%, and at 16 ind/m2 was of 19.25%. A significant reduction of biomass was produced with a density of 32 ind/m2 (175.05 ± 8.23 g/m2), decreasing plant biomass approximately in a 47.57 ± 2.47% (Fig. 5).

Figure 5
Mean value (± SE) of the final biomass of Festuca arundinacea (g/m2) in control cages (without grasshoppers) and in the cages with the three tested densities of Borellia bruneri. Different letters indicate significant differences (LSD p <0.05).

When compared with D. maculipennis (as in Mariottini et al. 2018MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100.), the daily consumption of adults of D. elongatus and B. bruneri were significantly different (ANOVA F= 7.48; p= 0.003). The consumptions of D. elongatus (0.30 ± 0.02 g/day) and D. maculipennis (0.24 ± 0.02 g/day) (Mariottini et al. 2018MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100.), which were similar to each other (LSD Fisher p>0.05), were higher (LSD Fisher: p<0.05) than the consumption made by B. bruneri adults (0.16 ± 0.03 g/day).

DISCUSSION

The results of the present study revealed that both D. elongatus and B.bruneri had a high relative abundance within the grasshopper communities of southern Pampas of Argentina. During the evaluated period of time (2012 to 2018) they both showed to be species with a wide distribution range and a high frequency of occurrence, having been registered year after year in the majority of the sampled sites.

Borellia bruneri was more abundant and with a higher frequency of occurrence in Laprida than in Tandil and the opposite situation occurred with D. elongatus, being more abundant and frequent in Tandil than in Laprida. Previous studies on different ecological aspects of grasshoppers carried out in various plant communities of the Pampas region evidenced a high association of B. bruneri with halophilous vegetation (Torrusio et al. 2002TORRUSIO S, CIGLIANO MM & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acridoidea) and plant community relationships in the Argentine pampas. J Biogeogr 29: 221-229., De Wysiecki et al. 2004DE WYSIECKI ML, TORRUSIO S & CIGLIANO MM. 2004. Caracterización de las comunidades de acridios del partido de Benito Juárez, sudeste de la provincia de Bs. As, Argentina. Rev Soc Entomol Argent 63: 87-96., Mariottini et al. 2012MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2012. Variación temporal de la riqueza, composición y densidad de acridios (Orthoptera: Acridoidea) en diferentes comunidades vegetales del Sur de la provincia de Buenos Aires. Rev Soc Entomol Argent 71: 275-288., 2013). This would explain in part the higher abundance of B. bruneri recorded in Laprida relative to Tandil because larger areas of the former county´s grasslands are covered with short-type of grasses than in Tandil, a habitat greatly favored by B. bruneri (Batista et al. 2005BATISTA WB, TABOADA MA, LAVADO RS, PERELMAN SB & LEÓN RJC. 2005. Asociación entre comunidades vegetales y suelos en el pastizal de la Pampa Deprimida. In: OESTERHELD M, AGUIAR MR, GHERSA CM & PARUELO JM (Eds). La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Buenos Aires: Editorial Facultad de Agronomía, p. 113-129., Mariottini et al. 2013MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2013. Diversidad y distribución de acridios (Orthoptera: Acridoidea) en pastizales del sur de la región Pampeana, Argentina. Rev Biol Trop 61: 111-124., Recabarren 2016RECABARREN P. 2016. La producción agropecuaria en Olavarría, Benito Juárez, Laprida y Gral. La Madrid: evolución y desafíos a futuro. Buenos Aires: Ediciones INTA, p. 143.)

On the other hand, D. elongatus is normally favored with relatively humid type of habitats in relation to more arid ones (Carbonell et al. 2017CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/.
http://163.10.203.2/ACRIDOMORPH/...
). Various studies conducted on different areas of the Pampas depicted D. elongatus as one of the species numerically most important and also most widely distributed (Sánchez & De Wysiecki 1993SÁNCHEZ NE & DE WYSIECKI ML. 1993. Abundancia y diversidad de acridios (Orthoptera: Acrididae) en pasturas de la Provincia de La Pampa, Argentina. RIA 24 (1): 29-39., Cigliano et al. 1995CIGLIANO MM, DE WYSIECKI ML & LANGE CE. 1995. Disminución de la abundancia de Dichroplus maculipennis en comunidades del sudoeste de la provincia de Buenos Aires. Rev Soc Entomol Argent 54(1-4): 41-42., Cigliano et al. 2000CIGLIANO MM, DE WYSIECKI ML & LANGE CE. 2000. Grasshopper (Orthoptera, Acrididae) species diversity in the pampas, Argentina. Divers Distrib 6: 81-91.). A study made by Torrusio et al. (2002)TORRUSIO S, CIGLIANO MM & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acridoidea) and plant community relationships in the Argentine pampas. J Biogeogr 29: 221-229. found that D. elongatus was the most abundant species and was associated with implanted grasses and introduced forbs in Benito Juarez county which neighbors Laprida and Tandil. Also in Benito Juarez, Cigliano et al. (2002)CIGLIANO MM, TORRUSIO S & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acrididoidea) community composition and temporal variation in The Pampas, Argentina. J Orthoptera Res 11(2): 215-221. recorded that D. elongatus was the most prevalent species during an outbreak that occurred from 2001 to 2002.

Results of the forage loss test showed that at same densities D. elongatus produced a greater forage loss than B. bruneri. At all the densities tested D. elongatus caused a significant decrease in the plant biomass of F. arundinacea respect to the control, unlike B. bruneri which only at a density of 32 ind/m2 caused a significant decrease in pasture biomass. The only previous quantitative assessment on the abundance of B. bruneri was provided by Mariottini et al. (2012)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2012. Variación temporal de la riqueza, composición y densidad de acridios (Orthoptera: Acridoidea) en diferentes comunidades vegetales del Sur de la provincia de Buenos Aires. Rev Soc Entomol Argent 71: 275-288. although not as a segregated species but in combination with D. maculipennis, on occasion of the 2008-10 outbreak in the southern Pampas. Both species were the ones that contributed the most to the overall increase in the grasshopper communities, reaching a mean density of 40 ind/m2 and peaks of 75 ind/m2, and causing substantial economic losses to ranchers and farmers.

The density at which economic damage or a significant decrease in plant biomass occurs is dynamic and depends (among other variables) upon the capacity of vegetation growth, the phenological state of the vegetation, and the climatic conditions (Thompson & Garner 1996). Belovsky (2000)BELOVSKY GE. 2000. Do grasshoppers diminish grassland productivity? A new perspective for control based on conservation. In: Lockwood JA, Latchininsky AV & Sergeev G (eds) Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster. Boston: Kluwer Academic, p. 7-29. indicated that the water status of the plant community largely determines the magnitude of the damage caused by a certain grasshopper density. During January 2016, Mariottini et al. (2018)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100. conducted a similar experience evaluating the loss of forage caused by D. maculipennis, one of the most harmful grasshopper species of Argentina (Mariottini et al. 2015, Carbonell et al. 2017CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/.
http://163.10.203.2/ACRIDOMORPH/...
). At that time, the accumulated rainfall (184.52 mml, double the average value for the month and study area) favored an increase of about five times the plant biomass in control cages (without grasshoppers). In the present study, climatic conditions were not as favorable, with lower rainfall (98mml) and an increase in plant biomass in control cages of 54.7%.

In the current work, the three densities tested for D. elongatus caused a significant decrease in plant biomass with respect to the control and between them. Mariottini et al. (2018)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100. used the same densities with D. maculipennis observing that all three of them also caused a significant decrease in biomass in relation to the control, but there was no significant difference between the decrease caused at 8 ind/m2 and 16 ind/m2. This situation could have been resulted from a possible compensatory growth (Dyer et al. 1982DYER MI, DETLING JK, COLEMAN DC & HILBERT DW. 1982. The role of herbivores in grasslands. In: ESTES JR, TYRL RJ & BRUKEN JÑ (Eds). Grasse and Grasslands. Norman: University of Oklahoma Press, p. 255-295.) of F. arundinacea after herbivory caused by favorable precipitation conditions registered at that time.

Taking into account the results obtained here and those obtained by Mariottini et al. (2018)MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100. at equal densities, B. bruneri shows a lower forage consumption than D. elongatus and D. maculipennis. In addition to consumption and destruction of vegetation, another relevant factor that may determine whether a grasshopper species would constitute a pest or not is its fecundity. In this sense, both D. elongatus (81.09 ± 14.02 eggs/female) and D. maculipennis (83.3 ± 11.9 eggs/female) showed much higher fecundity than that of B.bruneri (37.9 ± 1.8 eggs/female) all estimated under the same laboratory conditions (De Wysiecki et al. 1997, Mariottini et al. 2011MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2011. Postembryonic development and consumption of the melanoplines Dichroplus elongatus Giglio-Tos and Dichroplus maculipennis (Blanchard) (Orhtoptera: Acrididae: Melanoplinae) under laboratory conditions. Neotrop Entomol 40: 190-196., 2020). All in all, our study suggests that although the gomphocerine B. bruneri is an abundant and widely-distributed species capable of doing some damage in the grasslands of the southern Pampas region, it is comparatively much less harmful than the melanoplines D. elongatus and D. maculipennis, a fact that should be taken into account when control measures are considered due to upsurges in grasshopper communities.

ACKNOWLEDGMENTS

This study was supported by Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) (PIP 00464).

REFERENCES

  • BARDI CE & LANGE CE. 2011. Voltinism in the melanopline grasshopper Dichroplus elongatus Giglio-Tos (Orthoptera: Acrididae: Melanoplinae). Stud Neotrop Fauna Environ 46(2): 143-145.
  • BATISTA WB, LEÓN RJC & PERELMAN SB. 1988. Las comunidades vegetales de un pastizal natural de la región de Laprida, Prov. de Buenos Aires, Argentina. Phytoeconología 16(4): 519-534.
  • BATISTA WB, TABOADA MA, LAVADO RS, PERELMAN SB & LEÓN RJC. 2005. Asociación entre comunidades vegetales y suelos en el pastizal de la Pampa Deprimida. In: OESTERHELD M, AGUIAR MR, GHERSA CM & PARUELO JM (Eds). La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Buenos Aires: Editorial Facultad de Agronomía, p. 113-129.
  • BAZZIGALUPI O & BERTÍN OD. 2014. Fertilización nitrogenada en Festuca arundinacea (Schreb) para producción de semilla con riego en el norte de Buenos Aires, Argentina. RIA 40(3): 290-295.
  • BELOVSKY GE. 2000. Do grasshoppers diminish grassland productivity? A new perspective for control based on conservation. In: Lockwood JA, Latchininsky AV & Sergeev G (eds) Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster. Boston: Kluwer Academic, p. 7-29.
  • BRANSON DH, JOERN A & SWORD GA. 2006. Sustainable Management of Insect Herbivores in Grassland Ecosystems: New Perspectives in Grasshopper Control. Bioscience 56(9): 743-755.
  • CARBONELL CS, CIGLIANO MM & LANGE CE. 2017. Acridomorph (Orthoptera) species of Argentina and Uruguay. http://163.10.203.2/ACRIDOMORPH/
    » http://163.10.203.2/ACRIDOMORPH/
  • CIGLIANO MM, DE WYSIECKI ML & LANGE CE. 1995. Disminución de la abundancia de Dichroplus maculipennis en comunidades del sudoeste de la provincia de Buenos Aires. Rev Soc Entomol Argent 54(1-4): 41-42.
  • CIGLIANO MM, DE WYSIECKI ML & LANGE CE. 2000. Grasshopper (Orthoptera, Acrididae) species diversity in the pampas, Argentina. Divers Distrib 6: 81-91.
  • CIGLIANO MM, POCCO ME & LANGE CE. 2014. Acridoideos (Orthoptera) de importancia agroeconómica (Acridoids: Orthoptera). In: ROIG-JUÑENT S, CLAPS LE & MORRONE JJ (Eds), Biodiversidad de Artrópodos Argentinos. La Plata: Sociedad Entomológica, p. 1-26.
  • CIGLIANO MM, TORRUSIO S & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acrididoidea) community composition and temporal variation in The Pampas, Argentina. J Orthoptera Res 11(2): 215-221.
  • COPR - CENTRE FOR OVERSEAS PEST RESEARCH. 1982. The locust and grasshopper agricultural manual. London: COPR, p. 690.
  • DE WYSIECKI ML, TORRUSIO S & CIGLIANO MM. 2004. Caracterización de las comunidades de acridios del partido de Benito Juárez, sudeste de la provincia de Bs. As, Argentina. Rev Soc Entomol Argent 63: 87-96.
  • DYER MI, DETLING JK, COLEMAN DC & HILBERT DW. 1982. The role of herbivores in grasslands. In: ESTES JR, TYRL RJ & BRUKEN JÑ (Eds). Grasse and Grasslands. Norman: University of Oklahoma Press, p. 255-295.
  • EVANS EW. 1988. Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: influences of fire frequency, topography, and vegetation. Can J Zool 66: 1495-1501.
  • GUO Z, LI HC & GAN YL. 2006. Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Sci 13: 221-227.
  • INSUA JR, DI MARCO ON & AGNUSDEI MG. 2013. Calidad nutritiva de láminas de Festuca alta (Festuca arundinacea Schreb) en rebrotes de verano y otoño. RIA 37: 267-272.
  • LANGE CE & CIGLIANO MM. 2019. Elongated grasshopper, Dichroplus elongatus Giglio-Tos, 1894 (Orthoptera: Acrididae). In: LECOQ ML & ZHANG (Eds), Encyclopedia of Pest Orthoptera of the World.Pekin, China Agricultural University Publisher, China, p. 79-82.
  • LARSON DP, O´NEILL KM & KEMP W. 1999. Evaluation of the accuracy of sweep sampling in determining grasshopper (Orthoptera: Acridoidea) community composition. J Agron Urban Entomol 16(3): 207-214.
  • MARIOTTINI Y, DE WYSIECKI ML, ALBERTI A & LANGE CE. 2020. Postembrionic development and reproductive parameters of the grasshopper pest Borellia bruneri (Acrididae: Gomphocerinae) under controlled conditions. Rev Bra Entomol 64(1): 1-5.
  • MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2011. Postembryonic development and consumption of the melanoplines Dichroplus elongatus Giglio-Tos and Dichroplus maculipennis (Blanchard) (Orhtoptera: Acrididae: Melanoplinae) under laboratory conditions. Neotrop Entomol 40: 190-196.
  • MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2012. Variación temporal de la riqueza, composición y densidad de acridios (Orthoptera: Acridoidea) en diferentes comunidades vegetales del Sur de la provincia de Buenos Aires. Rev Soc Entomol Argent 71: 275-288.
  • MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2013. Diversidad y distribución de acridios (Orthoptera: Acridoidea) en pastizales del sur de la región Pampeana, Argentina. Rev Biol Trop 61: 111-124.
  • MARIOTTINI Y, DE WYSIECKI ML & LANGE CE. 2018. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev Investig Agrop RIA 4(1): 92-100.
  • MIGUEL L, LORIER E & ZERBINO S. 2014. Caracterización y descripción de los estadios ninfales de Borellia bruneri (Rhen, 1906) (Orthoptera: Gomphocerinae). Agrociencia Uruguay 18(2).
  • RECABARREN P. 2016. La producción agropecuaria en Olavarría, Benito Juárez, Laprida y Gral. La Madrid: evolución y desafíos a futuro. Buenos Aires: Ediciones INTA, p. 143.
  • SÁNCHEZ NE & DE WYSIECKI ML. 1993. Abundancia y diversidad de acridios (Orthoptera: Acrididae) en pasturas de la Provincia de La Pampa, Argentina. RIA 24 (1): 29-39.
  • SÁNCHEZ RO, MATTUS G & ZULAICA L. 1999. Compartimentación ecológica y ambiental del partido de Tandil (provincia de Buenos Aires). En Actas del Congreso Ambiental ´99, Programa de Estudios Ambientales. San Juan: Universidad Nacional de San Juan, p. 338-346.
  • SCHEINER SM & GUREVITCH J. 2001. Design and analysis of ecological experiments, 2nd ed. New York: Oxford University.
  • SONG H, MARIÑO-PÉREZ R, WOLLER DA & CIGLIANO MM. 2018. Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). System Div 2(4): 3.
  • THOMPSON DV & GARDNER KT. 1996. Importance of grasshopper defoliation period on southwestern blue grama-dominated rangeland. J Rang Manag 49: 494-498.
  • TORRUSIO S, CIGLIANO MM & DE WYSIECKI ML. 2002. Grasshopper (Orthoptera: Acridoidea) and plant community relationships in the Argentine pampas. J Biogeogr 29: 221-229.
  • TORRUSIO SE, DE WYSIECKI ML & OTERO J. 2005. Estimación de daño causado por Dichroplus elongatus en cultivos de soja en siembra directa, en la provincia de Buenos Aires. RIA 34: 59-72.
  • VÁZQUEZ P & ZULAICA L. 2011. Cambios en el uso de la tierra del partido de Tandil y principales impactos ambientales. Rev Párrafos Geografic 10: 242-267.

Publication Dates

  • Publication in this collection
    18 Dec 2023
  • Date of issue
    2023

History

  • Received
    19 June 2020
  • Accepted
    2 Aug 2020
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br