
Production, 30, e20200009, 2020
DOI: 10.1590/0103-6513.20200009

ISSN 1980-5411 (On-line version)

Research Article

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The introduction of digital technologies on the industry to provide integration between physical and digital 
systems has emerged under the form of Industry 4.0 (Frank et. al., 2019). These technologies can provide useful 
data to manufacturing systems. In particular, in smart manufacturing systems, planning activities can rely on 
information provided by intelligent computer systems, which use historical data to generate valuable information 
(e.g. future product demands).

Demand forecast refers to predict or estimate the need for a product or a component in a future time period 
(Armstrong, 2001). The information about the forecasted demand can be used to support managerial decisions 
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and planning process activities in operations. For example, in Guo et al. (2017), the forecasts are employed 
to support ordering decisions of airplane spare parts. Yu et al. (2011) proposes forecasting models to estimate 
demands of fashion products. Another example of application is presented by Syntetos et al. (2005), where the 
main objective is to forecast spare parts demands from an automotive industry.

The accuracy of the demand forecasts is important for companies, since forecasts are usually employed as 
input to inventory systems (Wang & Petropoulos, 2016; Rego & Mesquita, 2015; Babai et al., 2019). Several 
demand forecasting methods have been proposed in the literature, such as, Simple Exponential Smoothing 
(SES) (Hyndman & Athanasopoulos, 2018), Croston (CR) (Croston, 1972), among others; and many studies 
have been devoted to the selection of the appropriate forecasting method, which can depend on the time 
series characteristics, performance or professional expertise (Syntetos et al., 2005; Petropoulos et al., 2018; 
Moon et al., 2013).

In literature, different selection criteria for forecasting models have been used. The selection can be based 
on the time series characteristics (Syntetos et al., 2005; Petropoulos et al., 2018; Heinecke et al., 2013), on the 
forecasting model performance (Wang & Petropoulos, 2016; Fildes & Petropoulos, 2015), on the information 
criteria (Qi & Zhang, 2001), or on the judgmental expert selection (Petropoulos et al., 2018). For example, 
Adya et al. (2001) proposed an automated framework to identify six different time series characteristics in a 
rule-based forecast system.

Rule-base forecast is an expert system proposed by Collopy & Armstrong (1992), which relies on 28 characteristics 
of time series to weight four forecasting methods. In Adya et al. (2001), another strategy is proposed. The presence 
of outliers, level shifts, changes in trend, unstable recent trend, functional form, and unusual (last) demands 
are considered as time series characteristics. Another example is the selection based on an information criteria 
proposed by Qi & Zhang (2001). Using financial times series from S&P 500 Index, a strategy selects among 
many Artificial Neural Network and Autoregressive (AR) models using the Akaike information criteria and the 
Bayesian information criteria.

Furthermore, combinations of forecasting methods can significantly improve the accuracy of forecasts and 
reduce the variance of prediction errors, which are desirable characteristics for inventory purposes (Wang & 
Petropoulos, 2016). Combination of forecasts is a process of using different forecasting models to produce a 
final forecast. The application of combination schemes avoids the implicit assumptions about the underlying 
process of data generation. Kourentzes et al. (2019) proposed a heuristic, based on quartiles definition using 
forecasting errors, to build a pool of forecasting models for combination and selection. The approach was 
evaluated using the M3-Competition data; however, the employed evaluation metrics are different from those 
employed to evaluate the M3-Competiton results, which difficult the approach evaluation and comparison. Barrow 
& Kourentzes (2016) analyze the impact of a forecasting combination in terms of forecast error distribution 
and safety stock using demand data of a consumer goods manufacturer. The authors revealed that forecasts 
from a combination of Naive Forecast (NF), SES, AR, Autoregressive Integrated Moving Average (ARIMA), Theta 
and Multiple Aggregation Prediction Algorithm (MAPA) models can improve inventory decisions (Barrow & 
Kourentzes, 2016). However, the work does not compare different combination strategies.

In addition, Guo et al. (2017) evaluated a double-level combination of forecasting methods to predict spare 
part data of an aircraft fleet. The work employed different data types (e.g., flight time, number of takeoffs, 
number of landings, among others) that influence the spare part consumption to design the forecasting methods. 
The used methods are Exponential Smoothing methods variations, Genetic Neural Networks and Grey model. 
The proposed combination strategy consists of assigning the weights each forecasting method by solving a 
quadratic programming problem (“low-level combination”) and using a genetic algorithm for a “top-level 
combination”. The proposed approach outperformed other forecasting models. However, high computational 
time is required to produce predictions due to the use of a neural network that requires several computations 
to determine optimal weights.

Also, Wang & Petropoulos (2016) employed a simple 50-50% combination of two forecasting sources, 
and results have shown improvements in the accuracy forecasts. The proposed combination consists of a 
simpler scheme, where the assigned weights are equals for two forecasting sources: a forecasting model from 
commercial software, and forecasts judgmentally produced by experts. The strategies were compared to the 
other combinations as the selection based on the variance of the forecast error, the selection based on the 
Mean Absolute Error (MAE), and a single forecasting method. The proposed combination strategies minimized 
the total cost of inventory meanwhile maximized the forecast accuracy, however, the strategies were evaluated 
only on a stationary data from a pharmaceutical industry.

On the other hand, Franses & Legerstee (2011) propose the use of a combination of forecasting methods with 
experts forecast. The proposed combination strategy also considers the specific characteristics of experts to assign 
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optimal weights. The results of the evaluation revealed that the 50-50% combination, using a statistical model and 
an expert model, can be a useful strategy. However, the strategy can hide the contribution of each model on the final 
forecast, since it can assign zero weight for one of them; although, the literature suggests that the use of both is usually 
better. Therefore, several works have demonstrated the predictive accuracy of combinations in forecasting problems.

Nonetheless, most studies do not deal with intermittent data series (i.e. series with a large number of zero 
values), which are common in the spare part industry. Intermittent demand time series can lead to high costs of 
holding due to the high risk of obsolescence (Babai et al., 2019). This type of time series is especially difficult to 
forecast, because they are limited to non-zero demand data and have high variability of values. In stock control 
systems, inappropriate levels can lead to out of stock or excessive quantities for intermittent items. Specific 
methods have been proposed (Croston, 1972; Syntetos et al., 2005; Babai et al., 2019). A popular method for 
this type of time series was proposed by Croston (1972), and it achieves empirically good performance in many 
studies. Although, some works have pointed out the existence of positive bias in this method. For example, 
Syntetos et al. (2005) evaluated the performance of intermittent and traditional forecasting methods using 
data from spare parts from an automotive industry. In this case, an adjusted version of the Croston’s method, 
called Syntetos and Boylan Approximation (SBA), achieved superior performance than the Croston’s method.

Moreover, Babai et al. (2019) propose and evaluate an approach for intermittent demands, called modified 
SBA method, using data from the military sector and the automotive industry. The approach is efficient to 
forecast intermittent time series, since traditional forecasting approaches do not make appropriate adjustments 
when no demand occurs. However, the study lacks of comparisons between the proposed approach and other 
approaches to handle intermittent data.

To address the listed problems, this paper proposes and compares one forecasting method selection 
strategy and two forecasting method combination strategies for demand forecasting problems with different 
characteristics (e.g. intermittency, trend, stationary and nonstationary). In the forecasting method selection 
strategy, the best forecasting method from a pool of forecasting methods is selected based on its accuracy on 
a validation interval. On the other hand, the forecasting method combination strategies are based on the mean 
methods’ outputs and on the methods’ accuracy. Forecasting method combinations are employed in this work 
because researches have demonstrated that they improve the generalization capability and overall performance 
of the systems (Soares et al., 2012); and thus, they have advantage over a single individual forecasting model 
in terms of forecasting accuracy (Choi & Lee, 2018).

The strategies are developed using SES, Holt’s linear trend method (HOLT) (a variant of SES), CR, AR and 
NF as forecasting models. The main contribution of this work is to propose a set of forecasting models with 
heterogeneous capabilities, so that the proposed strategies can achieve good results on time series with different 
data characteristics (such as, intermittency, increasing or decreasing patterns, stationary and nonstationary). 
Experiments, using a spare part data set (with intermittent demand) from an industry of elevators and a data 
set from the M3-Competition (Makridakis & Hibon, 2000), are reported to demonstrate the performance of the 
proposed strategies. The main contributions of this paper are to propose and compare a number of selection 
and combination strategies for intermittent and non-intermittent time series.

The rest of this paper is organized as follows. Section 2 describes the proposed combination strategy selection 
procedures, and evaluation metrics. Moreover, it presents the proposed forecasting method strategies. Section 3 
presents and discusses the main results of this paper. In Section 4, concluding remarks of this paper are summarized.

2. Proposed forecasting approaches

This section describes the proposed approaches for demand forecasting. It starts describing the main 
concepts about forecasting methods and the employed forecasting methods in this paper (Subsection 2.1). 
Then, Subsection 2.2 details the main evaluation metrics for forecasting methods. Subsection 2.3 introduces 
combination strategies for forecasting methods, and presents the proposed combination strategies in this paper. 
Finally, Subsection 2.4 presents the main strategies for forecasting method selection, and describes the proposed 
forecasting method selection in this work. Table 1 describes the main employed nomenclature in this paper.

2.1. Forecasting methods

In this paper, the demand forecasting methods were selected to cover a wide range of characteristics in 
time series (such as, trend, intermittency, autocorrelation, among others). Moreover, state-of-the-art methods in 
literature and employed methods on commercial software were selected in this research. As described previously, 
the selected methods are SES, HOLT, CR, AR and NF. Table 2 presents the main notations of this work.
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NF is a well-known forecasting method, widely used in literature as a benchmark for performing comparisons 
among other forecasting methods (Franses & Legerstee, 2011; Fildes & Petropoulos, 2015; Wang & Petropoulos, 
2016). This method assumes that the last observation in data time series is the most important data. In this case, 
an obtained estimate by the NF method is equal to the last observed demand on the data, that is:

	 ˆt h ty y+ = 	 (1)

in Equation 1, yt is the observed (real) demand on time t and ŷt+h is a forecast (prediction) on time t + h.
The SES method is also a popular forecasting method and it can be found in several commercial software, 

such as, SAP, Oracle RDF and ForecastPro. SES is usually employed when there is no clear pattern of trend 
or seasonality on a time series (Hyndman & Athanasopoulos, 2018). A forecast made by the SES method is 
determined as:

	 ˆ ˆ( )t h t ty y 1 yα α+ = + − 	 (2)

in Equation 2, 0 ≤ α ≤ 1 is a smoothing parameter. The SES method works by weighting past observations, 
where the weights decrease exponentially over time as the observations get older. To deal with time series with 
trends, a variant of the SES method, called HOLT, was included in this work. The Holt’s linear trend method is 
a modification of SES on which the forecast value is decomposed into level and trend components, being the 
trend component is calculated using h (Holt, 2004). A prediction using the HOLT method can be performed 
as in Equation 3:

	 ˆt h t ty l hb+ = +  	 (3)

	 ( )( )t t t 1 t 1l y 1 l bα α − −= + − + 	 (4)

	 ( ) ( )t t t 1 t 1b l l 1 bβ β− −= − + − 	 (5)

Table 1. Nomenclature.

Term Description

AR(p) Autoregressive model of order p

AUTO Automatic selection of forecasts based on the accuracy

CFm Combination Forecast based on the mean

CFw Combination Forecast based on the weighted mean

CR Croston method

HOLT A Holt’s linear method based on SES

MASE Mean Absolute Scaled Error

NF Naive Forecast

RMSE Root Mean Square Error

SES Simple Exponential Smoothing

Table 2. Notations.

Symbol Meaning

et A forecast error, yt - ŷt, computed on time t.

yt Observed demand on time t.

h Size of the forecast horizon.

ŷt+h
A forecast on time t + h.

zt Demand size forecast for time period after t.

pt

Demand interval between the demand in period t and the previous 
demand.

p̂ Demand interval forecast for time period after t.

w Vector of weights in the combination of forecasts.

o The forecast output vector of methods.

N Number of observations
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in Equation 4 and Equation 5, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are the smoothing parameters, lt is a forecast of the 
level of the series at time t, and bt is a forecast of the trend (slope) of the series at time t.

The literature proposes specifics methods to deal with intermittent demand time series (Croston, 1972; 
Syntetos et al., 2005), which are characterized by multiples periods of zero demand (Kourentzes, 2013). The most 
know, the Croston’s method (Croston, 1972) is present in commercial software, for example, SAP and Oracle 
RDF. In the CR method, the estimates are obtained as follows:

	 ( )t t t 1z y 1 zα α −= + − 	 (6)

	 ˆ ˆ( )t t t 1p p 1 pα α −= + − 	 (7)

	 ˆ ˆ( )t t t 1p p 1 pα α −= + − 	 (8)

The method consists of forecasting separately a value of demand, yt in Equation 6, and the time interval 
between demands, pt in Equation 7, assuming that both variables are independent (Croston, 1972). Finally, 
Equation 8 provides a rate of expected demand (forecast demand) by a period.

The AR models are a flexible class of models and can handle a wide range of time series patterns; but, in 
general, they are applied on stationary time series (Hyndman & Athanasopoulos, 2018). Unlike the traditional 
regression models, the independent variable is estimated by considering its past values (the autoregression term 
is used for this reason). The AR method of order p, also referred as AR(p), was selected in this work and it can 
be written as follows:

	 ...t 1 t 1 2 t 2 p t p ty c y y yϕ ϕ ϕ ε− − −= + + + + + 	 (9)

In the Equation 9, c is a constant, εt is the white noise of the time series, and φ1,...,φp are weight parameters. 
Note that the estimates (forecasts) are produced by a linear combination of lagged values of y.

2.2. Evaluation metrics for forecasting methods

To measure the accuracy of forecasting methods, several evaluation metrics can be found in literature. 
Mean Absolute Percentage Error (MAPE) is a popular evaluation metric, being suitable to evaluate different time 
series, because it is independent of the data scale and has easy interpretation. However, it can produce infinite 
or undefined errors if zero values (or approximately zero values) occur on the data, due division for the real 
value of demand. Since zero values are common in intermittent demand time series, MAPE is not suitable for 
this type of series as pointed in (Teunter & Duncan, 2009; Hyndman & Koehler, 2006; Makridakis et al., 2018).

Root Mean Square Error (RMSE) is a typical error metric widely employed in forecasting methods and machine 
learning methods. It does not suffer from the problem mentioned above. However, RMSE is more sensitive to 
outlier values. RMSE can be obtained as:

	 ( )
N 2

t
t 1

1RMSE e
N =

= ∑  	 (10)

In the Equation 10, N is the number of observations, and et is a forecast error on time t and obtained as yt - ŷt.
A survey of evaluation metrics for forecasting methods is proposed by Hyndman & Koehler (2006). Mean 

Absolute Scaled Error (MASE) can overcome the drawbacks of other evaluation metrics. This is because, MASE 
is independent of the data scale, less sensitive to outlier values and only produces undefined errors when all the 
NF forecast errors (on the denominator) are equals. Using a scaled error, qt, as in Equation 11:

	
t

t N
i i 1

i 2

eq
1 y y

N 1 −
=

=
−

−
∑  	 (11)

MASE is calculated by mean(|qt|), where N is the time series size on the training interval; and yi and yi−1 are the 
real demand values on time i and i−1, respectively.
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2.3. Combination of forecasting methods

The combination of forecasting methods has become an important strategy in many forecasting works and 
has used as a benchmark in many applications (Makridakis et al., 2018). For example, Wang & Petropoulos 
(2016) propose and evaluate the use a strategy of two models combination, namely judgmental adjustment and 
statistical output. The strategy is compared to a number of other demand forecast approaches. In most cases, 
to create a set of forecasting models and to perform a simple average of the methods’ outputs usually obtain 
better accuracy than to use a single forecasting method.

This paper proposes the use of two combination strategies for aggregating forecasting methods: simple 
mean and weighted mean. In the first strategy, the final forecast is obtained by averaging the methods’ outputs; 
and in the second strategy, the final forecast is calculated by taking a weighted sum of the methods’ outputs, 
where the weight of each method is determined using the method’s error on a validation interval. This work 
uses the terms CFm and CFw for the combination of forecasting methods with simple mean strategy and for the 
combination of forecasting methods with weighted mean strategy, respectively.

Assuming m as the number of forecasting methods, oj as the output (forecast) of the model j for any time 
instant, wj as the weight of the model j, the combination output is given by the Equation 12:

	 ( ),
m

j j
j 1

oF w
=

= ∑w o  	 (12)

For the weighted mean strategy (CFw), the RMSE and MASE metrics on a validation interval are used to 
compute the methods’ weights. Consider errorj as the error value (i.e. RMSE value or MASE value) of a method 
j on a validation interval, its weight wj can be computed by Equation 13 (Soares et al., 2012):

	
j

j m
k

k 1

adjusted error
w

ajusted error
=

=
∑

 	 (13)

where the adjusted errorj is computed as:

	 j jadjusted error 1 average error= − 	 (14)

and in Equation 14, the average errorj is:

	
j

j m
k

k 1

error
average error

error
=

=
∑

	 (15)

Therefore, the main idea of the CFw strategy is to assign a weight for each forecasting method according to 
its performance on a validation interval. For the CFm strategy, the methods have the same contribution in the 
system, so that their weights are equal and set to wj=1/m (for j=1,...,m).

In this paper, the forecasting methods for designing the combination systems (i.e. CFm and CFw) are 
SES, HOLT, NF, AR and CR. Therefore, the number of forecasting models is 5, so that m=5 for Equation 12, 
Equation 13 and Equation 15.

2.4. Selection strategies for forecasting methods

A selection strategy aims to choose the best forecasting method (from a set of forecasting methods) using 
some criteria (for example, the accuracy on a validation interval). Different criteria can be found in literature. 
For example, based on the time series characteristics, Syntetos et al. (2005) proposed a selection scheme using 
the average inter-demand interval and the squared coefficient of variation of demand size. This scheme uses 
cut-off values to select between CR and an approach called Syntetos and Boylan approximation. This framework 
was proposed for intermittent demand time series.

On the other hand, Moon et al. (2013) propose other type of selection strategy. In this case, a squared 
coefficient of variation, a correlation and an equipment group (an external variable) were employed as inputs 
to a logistic regression model, where the main purpose it to predict which forecasting method has superior 
performance. The proposed model was evaluated using areal data set containing spare part demands from the 
Korean Navy.
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Other approach is to select a forecasting method based on the performance. This approach consists of selecting 
the best forecasting method on the previous periods (data samples) assuming that the selected forecasting 
method will be more suitable for the next periods (Wang & Petropoulos, 2016). In most cases, the time series 
is divided in three time intervals, which are employed as training (used for building the forecasting method), 
validation (used for selecting the best forecasting method) and testing (used for evaluating the best forecasting 
method on a future time interval), respectively.

The performance of the selection strategies can be evaluated in terms of the accuracy of the selected forecasting 
method. For example, Wang & Petropoulos (2016) compared the performance of five different forecasting strategies: 
a forecasting method using a statistical model, a forecasting method adjusted by an expert, a combination of two 
forecasting methods, selections of a forecasting method based on the accuracy or on the variance. The performance 
of the strategies is evaluated in terms of inventory system metrics and forecasting method accuracy.

On the other hand, Fildes & Petropoulos (2015) propose four rules to select a forecasting model, and then they 
are compared to simple combination and aggregate selection (selection of the best forecasting method for all the 
time series). The strategies were analyzed with a subset of the M3-Competition data set, a popular data set for time 
series forecasts. The rules incorporate different selection criteria: “[...] best in-sample fit, best validation performance 
for one-step-ahead forecast, best validation performance on a pre-defined forecast horizon h and best validation 
performance for all forecast horizons” (Fildes & Petropoulos, 2015, p. 1694). Other aspects are considered in this 
work, such as, the size of the pool of forecasting methods and the accuracy of the individual selection. According 
to the authors, aggregate selection can be preferred if the data contain more similar sub-populations, but the 
individual selection can be necessary when the considered methods in the pool are low correlated.

The effect of the selection strategy for forecasting methods by experts was analyzed by Petropoulos et al. 
(2018) using data from the M3-Competition. The performed experiment differs from the others works due to 
the inclusion of a human judgment on the selection of forecasts. Also, a combination of forecasting methods is 
employed for performance comparisons. The results suggest that the inclusion of a human judgment on forecasting 
systems can be a useful practice (Petropoulos et al., 2018). Hyndman & Khandakar (2008) proposed two automatic 
selection procedures for forecasting methods. The algorithms can select a forecasting method based on the Akaike’s 
Information Criterion for Exponential Smoothing models or based on a Step-wise procedure for an ARIMA model.

This paper proposes and analyzes the use of a selection strategy for choosing the best forecasting model, 
from a pool of forecasting models, based on the performance on a validation interval. That is, in the first 
step, a pool of seven forecasting methods (namely, SES, HOLT, NF, AR, CR, CFm and CFw) are designed using a 
training interval. After, the forecasting methods are evaluated using a validation interval. And then, the model 
with the lowest error (MASE or RMSE) is selected as the final forecasting model. Finally, the selected model is 
designed using the training and the validation intervals, and is evaluated on the testing interval to analyze its 
performance on future samples. In the next sections, this proposed approach, with automatic selection of a 
forecasting method, is termed as “AUTO”. Figure 1 presents an overview of the described approach.

Figure 1. An overview of the time intervals in this paper.

3. Experimental design and results

In this section, the proposed forecasting methods (CFm, CFw and AUTO) are evaluated using two real-world data 
sets: a spare part data set from an industry of elevators and the M3-Competition data set. The proposed approaches 
are compared to SES, HOLT, NF, AR and CR. The experiments were performed using the Python programming 
language, running on a PC equipped with an Intel® Core™ i5-7200U 2.50GHz processor of 2 cores and 8GB of RAM.
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The implementations of the forecasting methods (except the CR method) can be found at a Python library 
(Statsmodels, 2020) called Econometric and Statistical Modeling with Python published by Seabold & Perktold 
(2010). On the other hand, the implementation of the CR method was developed using tools of the mentioned 
library and other Python libraries.

3.1. Data set description

The M3-Competition data set is a popular and public data set (M3-Competition, 2020) containing a large 
number of time series (Makridakis & Hibon, 2000). It consists of 3,003 time series, where 1,428 times series 
have monthly demand data of various types of applications, including industry, demographic, finance, among 
others. This data set was selected due to the large amount of observations (samples) on the time series, providing 
enough information to build forecasting methods.

The other data set is a private data set provided by an elevator industry organization in Brazil. It is a time 
series data with monthly demands of a spare part throughout the year 2019 in 54 geographic locations (cities) 
in Brazil. Therefore, the total of time series is 54, one for each geographic location. A particular characteristic 
of this data set is the high presence of demands with zero values. Therefore, most times series are intermittent.

A test to verify the intermittent characteristics of both data sets was performed, using the framework proposed 
Syntetos et al. (2005). The test consists of computing the values for the average inter-demand interval and the 
coefficient of variation. Then, it employs these values to classify a time series as intermittent, using cut-off 
values proposed by the authors. Using this test, it was verified that the M3-Competition data set does not have 
intermittent characteristics, whereas the spare part dataset has intermittent characteristics. Table 3 describes 
the main specifications of both data sets.

Table 3. Specification of the Data Sets Used in the Experiments.

Data set
Number of 
time series

Mean number of 
observations

Access type
Intermittent 

characteristics?

M3-Competition 1428 117 Public No

Spare part 54 29 Private Yes

Figure 2. A time series of size 30 (T=30) from the M3-Competition data set.

Figure 3. A time series of size 60 (T=60) from the M3-Competition data set.

Figure 2, 3 and 4 show selected time series from the M3-Competition data set, where Figure 2 shows a time 
series of size 30 (T=30), Figure 3 presents a time series of size 60 (T=60), and Figure 4 displays a time series of 
size 126 (T=126). Times series from the spare part data set are omitted to preserve the privacy of this data set.
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3.2. Approach description and setup

To train and evaluate the forecasting models, the following time series division was adopted. Each time series 
(of size T) was divided into three time intervals: training interval (60%), validation interval (20%) and testing 
interval (20%). This division allows evaluating a time series according to its size, creating a more realistic scenario.

The first interval, with the training data, contains data from time 1 to T1; and it is used to fit and setup the 
forecasting models. The second interval, with the validation data, has data from time T1+1 to T2; and it is used 
to evaluate the performance of a forecasting method based using the predictions for this interval. The third 
interval, with the testing data, contains information from time T2+1 to T and will be used with a twofold 
purpose. That is, it will be used to evaluate the performance of the selection and combination strategies, and 
of the forecasting methods in terms of RMSE and MASE.

As described previously, to select the best forecasting method, the RMSE and MASE metrics on the validation 
data are used. Some authors name this approach as “past forecast performance” (Wang & Petropoulos, 2016; 
Fildes & Petropoulos, 2015). It means to produce a h-step-ahead forecast with h varying from 1 to T2−T1, which 
computes the accuracy and selects the method with the best value (lowest value) of RMSE or MASE, according 
to the configuration of an experiment.

The parameters and setup of the forecasting methods are the following:

•	Naive Forecast method (NF). Implemented considering Equation 1. The NF method does not any require parameter 
setup; and it can be also implemented using the SES method (described below) by setting α=1;

•	 Simple Exponential Smoothing method (SES). The selected smoothing parameter α is the one that maximizes the 
log-likelihood. The first “in-sample” fitted value (i.e. ŷ1) is initialized using a grid search method;

•	Holt’s linear trend method (HOLT). The smoothing parameter for level α and the smoothing parameter for trend 
β are chosen by maximizing the log-likelihood. And, as in the SES method, a grid search method is used for 
initializing the level and the trend values;

•	 Autoregressive method (AR). The constant term c, the model order p and the coefficients φ1,...,φp are estimated 
using unconditional maximum likelihood approach;

•	 Croston Method (CR). The smoothing parameter α was set to 0.15, as suggested Teunter & Duncan (2009). The 
initialization values for the interval p are is first interval between demands; and the level z is the first non-zero value.

3.3. Evaluation methodology

To evaluate the performance of the forecasting methods, data from time 1 to T2 (training and validation 
intervals) are employed to train the methods and data from for the time T2+1 to T are used to evaluate the 
methods (testing interval). The h-step-ahead forecast for the testing interval will be produced by varying h from 1 
to T−T2. The RMSE and MASE errors of the forecasting methods on the testing interval are computed. This 
configuration allows to compare the performance of the selection procedure to the others forecasting methods.

Below, the results of the forecasting methods on the testing interval, averaged over all the time series are 
reported.

Figure 4. A time series of size 126 (T=126) from the M3-Competition data set.
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4. Results and discussion

In this subsection, the results of the forecasting methods are reported. Table 4 presents the results of the 
M3-Competition data set using time series with 30, 60 and all the observations (i.e. T = 30, T = 60 and Full) 
using the RMSE and MASE metrics to compute the accuracy.

Table 4. Results of the M3-Competition Data Set with T = 30, T = 60 and Full (all the observations).

Forecasting 
Method

Average of RMSE on different values of T Average of MASE on different values of T

T = 30 T = 60 Full T = 30 T = 60 Full

AR 1149.536 883.593 871.413 2.585 2.346 2.510

AUTO 815.663 777.513 861.401 1.701 1.976 2.652

CFm 783.281 785.916 881.638 1.665 1.977 2.625

CFw 776.355 773.046 868.119 1.635 1.931 2.583

CR 795.502 805.393 927.457 2.275 2.651 3.473

HOLT 1036.631 1085.089 1167.305 1.906 2.325 2.876

NF 880.760 879.720 997.645 1.748 2.181 3.009

SES 792.204 804.115 916.457 1.647 2.102 2.931

Table 5. Results of the Spare parts Data Set.

Forecasting 
Method

Average of 
RMSE

Average of 
MASE

AR 165.3232 1.397

AUTO 101.109 0.891

CFm 101.047 0.882

CFw 100.224 0.876

CR 95.940 0.8443

HOLT 128.434 1.199

NF 115.778 1.016

SES 100.429 0.870

By varying the time series sizes, it can be analyzed the effect of the h and the amount of used observations 
to produce the forecasts for a horizon h. Table 5 shows the results of the spare part data set. Each error value, 
for RMSE and MASE, is calculated by averaging the error values of all the time series. In all tables, the best 
performing method is highlighted in bold.

Considering the time series with 30 observations (Table 4), the results reveal that the CFw method has the 
lowest error for MASE and RMSE. Therefore, the CFw method has good performance when compared to the 
other forecasting methods for small time series size. Moreover, the combination strategy using equal weights 
(CFm) has the second lowest error (considering RMSE). This shows that a combination of forecasting methods 
can outperform other approaches.

Considering the results shown in Table 4 (T=60), the CFw method has good performance and is followed by 
the AUTO selection strategy, considering both metric errors. This result indicates that the CFw has good accuracy 
as the size of the time series increases. The CFm remains at the top of the three performing forecasting methods.

Table 4, Full column, shows the result using all the observations of the time series. In this case, the results 
present some differences. Regarding the AUTO method, its accuracy improved as the size of the time series 
increase, performing better than all the other forecasting methods, considering the RMSE metric. It suggests that 
the AUTO strategy is more sensitive to the size of the time series. The CFw method is also the best performing 
methods, achieving the second best accuracy in both metrics.

Moreover, AUTO and CFm have similar performance when considering the RMSE metric, but AUTO has worse 
performance when using the MASE metric. In general, all the methods increase the RMSE and MASE values as 
the time series size (T) increases, since the forecasting horizon (h) also increases (number of testing observations). 
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For example, the RMSE values of the CFw method are 776.355, 773.046 and 868.119 for T=30, T=60 and Full, 
respectively. This occurs because when h is larger, more uncertainty is associated to the time horizon h [9]. 
In particular, the AR method may be less sensitive to this effect, since the RMSE values are 883.593 and 871.413 for 
T=60 and full time series data, respectively.

The performance results of the spare part data set (Table 5) are similar to the results of the M3-Competition 
data set. The CR method, which is an approach for intermittent series, performs better than the other forecasting 
methods. In this case, CR has achieved 95.940 and 0.844 values for RMSE and MASE, respectively. Considering 
RMSE, the second best performing method is CFw, which achieved good performance on this data set, but, in this 
case, it does not outperform CR. When comparing the performances of AUTO and CFm, AUTO has 101.109 for 
RMSE and CFm has 101.047 for RMSE; and, for MASE, AUTO has 0.891 for MASE and CFm has 0.882 for 
MASE. Thus, the AUTO strategy has worse performance than CFm with data from the spare parts data set.

Additionally, a notable performance of SES was obtained in both data sets, performing better than AUTO 
and CFm in some cases. This confirms the popularity of SES in literature and among the providers of commercial 
software.

In general, the selection and the combination strategies have good generalization performance on both data 
sets, so that they can be efficiently applied to other data sets.

It should be pointed that the AUTO has the performance similar to CFm, so that an additional test was 
performed to analyze their accuracy. Table 6 shows the percentage of time series in which AUTO has better 
accuracy (lowest error) than CFm in the testing interval. For example, considering the M3-Competition data set 
(with “Full” times series size) and the RMSE metric, in 50.14% of the times series (from a total of 1,428 times 
series), AUTO outperforms CFm. The results confirm that both forecasting methods have similar performance, 
considering data from spare parts data set and M3-Competition.

Table 6. Percentage of Better Accuracy of AUTO than CFm.

Data set Value (%) Metric

M3-Competition 48.73 MASE

50.14 RMSE

Spare part 42.59 MASE

59.25 RMSE

5. Conclusion

This work proposes a forecasting application strategy considering two procedures, the combination of 
state-of-the-art forecasting methods and the selection of forecasting methods based on the models’ accuracy. 
Two combination strategies are proposed: simple mean and weighted mean based on the methods’ accuracy. 
This paper evaluates the model performance by using the MASE and RMSE metrics in order to measure the 
accuracy of the forecasting strategies under different scenarios, avoiding problems reported by previous works 
(Hyndman & Koehler, 2006).

To simulate different and more realistic scenarios, this work used two data sets with different characteristics, 
a public dataset of the M-Competition and a private data set of spare part demand from an elevator industry. 
This last data set presents a particular characteristic of time series called intermittency. The tested data sets 
allow assessing the generalization of the proposed strategies in other data sets.

The combination of forecasting methods demonstrates to be valuable if a weighting scheme based on the 
performance is employed. Although, the combination using simple mean outperforms other forecasting methods 
(such as, SES). The combination strategy is easy to understand and implement, and can be used in future works 
of forecasting methods. Moreover, the experiment results indicate that the automatic selection strategy based 
on the performance on a validation interval (AUTO) may not be good criteria for selecting forecasting models, 
since CFw outperforms AUTO.

In general, the results suggest that combination strategies have potential application in demand forecasting 
problems, outperform other state-of-the-art models in trend and stationary series, and have comparable accuracy 
to other models in intermittent series. Therefore, they can be used to improve production planning activities in 
different applications and scenarios. Therefore, future works should be devoted to test other selection criteria. 
For example, a selection strategy based on the inventory performance, as proposed by Wang & Petropoulos 
(2016). Moreover, future works can also consider using a rolling (dynamic window) forecast design (Fildes 
& Petropoulos, 2015; Wang & Petropoulos, 2016). The inclusion of other forecasting methods (such as, 
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multivariate methods and machine learning methods) in the pool of selection and combination models can be 
also considered as a future work.
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