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1. Introduction

SPC methods have been a critical tool for monitoring a process, detecting out-of-control signals, and 
identifying assignable causes in a complex system. Real time monitoring requires considering multiple quality 
characteristics and complex relationships that can be done with a multivariate approach. In addition, it is well 
known manifestations of complex relationships among quality characteristics can be represented in the type 
of mean change alone, variability change alone, or combined changes of mean and variability. If we ignore 
these challenges, the assignable cause can be masked by the unsuspected change in quality characteristics 
having complex structures. To respond these challenges, traditionally separate charts have been utilized to 
monitor process mean and variability (Alt, 1985). The combination of Hotelling’s  2T chart and generalized 
variance ( S ) chart is widely used practice for multivariate processes. The practice of using separate control 
charts needs more resources such as quality professionals and time. Alternatively, the omnibus approach 
considers combining the control chart statistics for mean and dispersion and using this single combination 
statistic to monitor the process. Since multivariate data streams are more complex and needs more effort to 
draw conclusions, single control charts provide a simple way of multivariate monitoring. The necessity to 
develop an omnibus chart for monitoring process mean and variability simultaneously have been recently 
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highlighted (Alt & Smith, 1988; Chen et al., 2005; Li et al., 2010; Maboudou-Tchao & Hawkins, 2011; Thaga 
& Gabaitiri, 2006).

The related work on the single control charts is summarized as follows: the combination of exponentially 
weighted moving average (MEWMA) and multivariate exponentially weighted moving covariance matrix 
(MEWMC) charts, multivariate maximum MEWMA (MME) chart, multivariate maximum (MaxM) chart, 
multivariate maximum cumulative sum (MMC) chart and likelihood ratio based multivariate exponentially 
weighted chart (MELR).

We investigated the two promising approaches of combining mean and variability in this study. The first 
approach is called the “max” procedure. The basic idea of this method is to convert statistics (mean and variability) 
to Z scores and find the maximum of these two values for each sampling period then implement a multivariate 
scheme (Cheng & Thaga, 2005; Thaga & Gabaitiri, 2006). See Cheng & Thaga (2006) for a detailed review. 
These charts are useful as complex multivariate nature is simplified by the Z score transformation and assisted 
by a univariate form (Thaga & Gabaitiri, 2006). Correspondingly, the practitioners can monitor both mean and 
variability using only a single visual tool. The superiority of these schemes is their ability of giving diagnostic 
assistance along with the control chart statistics.

The second combination method uses generalized likelihood ratio (GLR) statistic to construct a composite 
hypothesis of joint change in mean vector and covariance matrix. MELR chart (Zhang et al., 2010) was proposed 
as a way of using GLR as the basis of a multivariate single chart.

Traditional application of statistical process control charts require collecting large datasets for phase I 
to estimate the parameter information of in-control process. Gathering sufficient in-control process data 
makes it a big challenge in practice. It requires lots of time, and efforts in collecting data for a single use 
that aims in estimating process parameters. In addition, it requires to assure that the collected data represents 
in-control process which might be also challenging in practice. Most of the previous studies of single chart 
practice consider the process parameters are known or can be estimated. However, this assumption may be 
violated in real cases. The parameters may not be known a priori or the practitioners may not have adequate 
information to estimate the parameters. Moreover, using estimates acquired from a special phase I study may 
harm the performance of the control chart. It is concluded that the effect of the estimated parameters on 
the performance of control charts may be significantly high and less predictable (Holmes & Mergen, 1993; 
Jones et al., 2001, 2004; Jensen et al., 2006; Faraz et al., 2015; Zwetsloot & Woodall, 2017; Zwetsloot & 
Ajadi, 2019; Diko et al., 2019; Hu et al., 2019; Jardim et al., 2019, 2020). It is noted that reference sample 
size affects in‐control run length distribution that almost completely lies below the desired run length, causes 
larger variability in run length distribution and may reduce the sensitivity to a change. A simple recipe to 
overcome this difficulty is to increase phase I sample size and reduce the variability of the estimates. In many 
settings this can be inapplicable such as short run processes and professionals do not prefer this approach 
when it is not cost-effective.

‘Self-starting methods’ were proposed to amalgamate phase I and phase II studies. These methods involve 
sequentially updating the parameters with every new successive process reading and monitoring the process 
to see whether it is in-control or not (Hawkins, 1987; Hawkins & Maboudou-Tchao, 2007; Keefe et al., 2015; 
Khosravi & Amiri, 2019; Quesenberry, 1991; Shen et al., 2016). The unknown parameter change point estimation 
procedures (Hawkins & Zamba, 2005; Zamba & Hawkins, 2009) can also be classified as self-starting methods. 
Basically, self-starting methods convert the observations of an unknown statistical distribution into observations 
of a known distribution, for example, standard normal. The outcomes of the standardization can be effectively 
appointed to statistical monitoring.

This paper bridges the gap in literature by comparing the performance of time weighted single control 
charts when process parameters are sequentially updated with such self-starting method in a multidimensional 
setting. The contribution of this work is to introduce a modified multivariate control chart for the unknown 
parameter along with a throughout comparison of the related control charts. We discussed the methods 
proposed by Maboudou-Tchao & Hawkins (2011) and Kim (2012) and also applied self-starting method to the 
multivariate max control chart (Chen et al., 2005). Performance of each scheme is summarized comparatively. 
The remainder of the paper is organized as follows. In the next section, we provide the general multivariate 
framework of self-starting multivariate single control charts. After this section, we illustrate the application of 
these schemes using a real hypertension data set. We investigate the methods via an extensive simulation study 
in which the effects of mean, covariance and joint shifts and the learning period are considered. Finally, we 
provide a discussion about the comparison results.
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2. Background

2.1. Multi-conversion procedure and self-starting MEC (SSMEC) chart

Self-starting control charts require a standardization procedure for transforming unknown parameter process 
readings into known standardized outcomes. The conversion idea was used for various types of distributions 
and control charts (Hawkins & Olwell, 2012; Keefe  et  al., 2015; Quesenberry, 1991, 1993, 1995, 1997). 
For the multivariate domain one of the most recent multi-transformation method was discussed by Hawkins & 
Maboudou‑Tchao (2007). They first used this method with a MEWMA chart to monitor the mean vector. The same 
idea was later used in to monitor mean and covariance shifts with a MEC control chart (Maboudou‑Tchao & 
Hawkins, 2011). We call this control chart a SSMEC chart.

Let ,i jx , , , ,i 1 2 n= …  and , , ,j 1 2 p= …  be a sequence of individual process reading for a p − dimensional normal 
distribution where ( )~ ,  px N       µ Σ . The distribution shifts model is as follows:
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where τ  is the change point. Here, we assume that these parameters are unknown. This method includes 
a two-step conversion. A predicted value ,ˆt jx  is obtained from , ,,  1 j 2 jx   x , ,t j 1x −…  utilizing the coefficients 
estimated from ,  1 2x   x , t 1x −…  for t j 1> + . After finding the predicted values of each observation vector, 
the standardized recursive residuals are obtained as results of the first transformation. The standardized 
recursive residual is:
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where , , ,ˆ .t j t j t jr x x= −  The standardized recursive residuals , , ,,  , ,i 1 j i 2 j t jr   r r+ + … … are mutually independent and 
( ),  iN   µ σ  distributed. The matrix of the recursive residuals is the transformation of original observations 

into a data set with zero mean vector and a covariance matrix. The standardized recursive residuals follow a t 
distribution with ( )  t j 1   − − degrees of freedom. Thus the second transformation can be applied to ,   i j     e to find the 
stream of ,   i j     u which follows ( ),N 0 1  and independent, where

	 ( ), ,  
1

t j t j 1 i j   u   T e−
− − = Φ    	 (3)

Here,   Φ represents the inverse normal and t j 1T − −  is the CDF of a t distribution where degrees of freedom 
is t j 1− − . tu  is an independent ( ),  pN 0   I vector of transformed observations and includes p transformed vector 
at time point    t , and  U   is the matrix of these vectors. The independent standard normal observations ,   i j     u
form the transformed matrix  U   of independent ( ),  pN 0   I  vectors. Two single control charts are considered 
in order to monitor the transformed matrix  U   in the next section. Comparisons with the SSMEC chart are 
given in Section 3.

2.2 Self-starting multivariate exponentially weighted likelihood ratio (SSMELR) control chart

This method was proposed by Kim (2012) and uses a MEWMA procedure in which a GLR test statistic is 
integrated. The method extends GLR based control chart (Zhang et al., 2010) by self-updating the process 
parameters by the multi-conversion approach.

SSMELR chart uses a GLR function which is sensitive to deviations from a null hypothesis where   0µ =  and 
pIΣ = .

	 ( ) 2
t t t tSSMELR tr V log V pZ= − +  	 (4)

Here, ( ) ( )  t t 1 tZ 1   Z   U   λ λ−= − + , ( )t t t 1V S 1 Vλ λ −= + − , 0 pZ 0= , 0 pV I=  and (Tex translation failed) , and λ is a smoothing 
parameter (0 1λ< < ). If tSSMELR h> , the the chart generates an out-of-control signal, where h 0>  is a cutoff for 
a specific IC ARL.
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3. Methods

3.1. Proposed self-starting multivariate maximum EWMA (SSMME) control chart

We propose a self-starting multivariate single control chart extension includes using multi-conversion along 
with the MME (Chen et al., 2005) procedure.

Consider a statistic sensitive to mean shifts,

	 (Tex translation failed)  	 (5)

where ( ) ( )  t t 1 tZ 1   Z   U   λ λ−= − + and 0 pZ 0= . Here, ( ).1  −Φ  denotes the inverse of the standard normal 
cumulative distribution function and ( ).pH  is the chi-square distribution with p degrees of freedom. 
Let ( ) ( )( )  1

t t 1 p tY 1   Y     H W   λ λ −
−= − + Φ  be the second EWMA which is sensitive to covariance shifts where '

t t tW U U= . 
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. As   t    M and tV  are independent z scores when no special causes 

exist. Then   t    M and tV  is used as monitoring statistic: ( )max ,  t t tSSMME M   V= .
If tSSMME h> , then the process is considered to be out-of-control, where h 0>  is the upper control limit 

which achieves a specific significance level.
SSMME control charts has its own advantage to provide built-in diagnostic aids. The practitioner can 

monitor tM  and tV  pairs using 3±  as the control limits after a signal is issued by the SSMME chart. Thereafter, 
one can easily predict whether the shift occurs in mean vector, covariance matrix or both. A more complex 
tool is provided for the diagnostics after a signal in (Maboudou-Tchao & Hawkins, 2011). This approach needs 
more resources; however, it is quite successful in diagnosing simultaneous shifts. The practitioners should be 
cautious about the masking effect between mean shift and covariance shift signals. Although MELR have been 
criticized for lack of diagnostics ability (Zhang et al., 2010), we propose a naive apportioning for the SSMELR. 

( )  t t tV tr V log V   = − is known to be sensitive to covariance shifts while 2
t tM p Z=  is sensitive to mean shifts. Using 

these statistics simply help user identify the potential cause of a change.
A signal generated by self-starting control charts may include a potential delay in detecting the time of an 

assignable cause. Change point detection procedures as another diagnostic tool can be useful to estimate and 
detect the time of a special cause and prevent the delay in obtaining a signal after a change. They also can 
be informative for determining the type of a process disturbance. Further investigation on the performance 
assessment of the change point estimator for multivariate performances is available in Doǧu & Kocakoc (2011, 
2013) and Doǧu (2015).

4. Simulation settings

The performance of the control charts were discussed based on a simulation approach. We consider several 
possible patterns of shift in   µ and         Σ for bivariate cases for simplicity. Table 1 shows the shift sizes for each 
simulation scenario. The effect of a mean shift ( ,  1 2  ∆ ∆ ), the effect of a covariance shift ( ,  1 2  δ δ ), the effect of a 
simultaneous shift in the mean vector and covariance matrix ( ,  ,  1 2 1    δ∆ ∆ and  2  δ ), the effect of correlation ( )    ρ) and 
the effect of time elapsed before the change (τ ) are considered in the simulation study. The number of Monte 
Carlo simulation runs is 10,000 for each scenario and out-of-control ARL, SDRL and percentiles are calculated 
from simulation results. .  0 1  λ = is used as the smoothing factor for each chart and the IC ARL is fixed to 500 for 
each monitoring scheme.

The initial base period is conducted with the in-control parameters and after this period the mean vector 
and/or covariance matrix shift is introduced. A sequence of normal data from a multivariate normal distribution, 

Table 1. Corresponding magnitudes of shift for scenarios used in simulations.

Case
Mean vector Covariance matrix

1∆ 2∆ 1δ 2δ

0 (no shift) 0.0 0.0 1.0 1.0

3 0.5 0.0 1.0 1.5

6 1.0 1.0 1.5 1.5

8 2.0 1.0 2.0 1.0
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where ( )0  0 0µ =  and 0
1

  
1
ρ

ρ
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, is generated as the base samples. A set of numbers between 50 to 1000 is 

used to define    τ values. For a shift in mean vector, an increment in the mean of the first component or both 
components is considered, thus the out-of-control mean vector is ( )1 1 2  µ = ∆ ∆ . An out-of-control covariance 
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 is used for creating a covariance shift. Then, the statistics were monitored 

until a signal is issued by the control charts.
The known-parameter settings for each control chart are also included in the figures. Therefore, the ARL and 

SDRL results for the self-starting control charts can be tracked and compared with their asymptotes (the known 
parameter settings).

5. Results and discussion

Next, we discuss detection performance of SSMEC, SSMELR and SSMME charts for predefined criteria such 
as magnitude of shift, correlation and learning periods.

Table 2 shows the results for various simulation settings. Figure 1a, b shows the simulation results (ARL and SDRL) 
for known parameter and self-starting schemes when p 2= , ρ =0.25 and IC ARL=500, respectively. Each panel 

Table 2. Performance comparisons based on ARL and SDRL for corresponding scenarios used in simulations.

Chart
Base sample 

size (τ )
Case

ρ=0.5 ρ=0.25 ρ=0.75

ARL SDRL ARL SDRL ARL SDRL

SSMEC

50

3 88.25 233.58 118.17 256.68 40.62 121.34

6 8.00 14.03 9.34 9.46 11.89 18.66

8 4.12 2.89 4.47 2.90 4.08 2.88

100

3 33.26 77.83 42.14 114.26 16.29 30.68

6 8.20 6.37 7.12 5.23 7.89 5.77

8 4.14 2.78 4.01 2.51 3.61 2.42

200

3 19.86 17.89 23.30 22.26 13.00 9.71

6 7.16 5.12 6.73 4.47 7.89 5.77

8 3.85 2.42 3.69 2.42 3.43 2.26

1000

3 16.37 12.36 19.27 14.44 11.54 7.74

6 6.51 3.93 6.33 4.24 7.23 4.63

8 3.71 2.42 3.78 2.36 3.35 2.20

SSMELR

50

3 114.69 279.57 137.06 284.51 42.80 134.89

6 13.87 26.48 13.08 38.75 21.96 94.86

8 5.91 3.89 5.71 3.24 5.23 2.93

100

3 114.69 279.57 49.92 131.49 16.39 13.83

6 13.87 26.48 9.05 5.83 10.44 8.13

8 5.91 3.89 5.25 2.76 4.76 2.50

200

3 37.26 84.70 49.92 131.49 14.36 9.37

6 9.96 6.89 8.20 4.96 9.16 5.76

8 5.28 2.83 4.89 2.39 4.62 2.32

1000

3 18.39 13.27 20.15 14.35 12.77 7.44

6 8.26 4.93 7.58 4.12 8.89 4.96

8 4.79 2.30 4.91 2.44 4.51 2.29

SSMME

50

3 91.99 217.02 115.98 259.87 61.28 192.30

6 9.99 11.86 8.83 8.73 10.20 9.61

8 5.55 3.48 5.40 3.26 5.15 3.29

100

3 30.97 78.95 40.36 87.37 20.00 63.68

6 8.00 5.24 7.78 5.08 8.63 5.85

8 4.79 2.76 4.60 2.59 4.58 2.70

200

3 21.15 21.63 22.54 21.70 14.67 11.27

6 7.74 4.68 6.73 3.81 8.03 5.04

8 4.65 2.60 4.56 2.53 4.35 2.49

1000

3 16.81 11.94 18.78 15.49 12.25 8.27

6 7.16 4.08 6.62 3.77 7.62 4.20

8 4.46 2.36 4.30 2.22 4.05 2.40
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in these figures filters the results for a particular baseline sample size and approach (known parameter or 
self‑starting). Known parameter case is the ideal and the results show that self-starting schemes converge to 
the known parameter results where a large phase I sample is available or parameters are known. In general, the 
learning time    τ has a major impact on the convergence to the known parameter case. In other words, as the 
learning time increases all the three self-starting control charts converge to their known-parameter settings. 
Additionally, ARL and SDRL results for the first four cases are relatively high and we see a pattern of reaching 
the asymptote quickly when magnitudes of shift increases. When we sketch the illustrations of this simulation 
study, it can be concluded that approaching to the asymptote requires moderate sizes of learning observations. 
However, research on the effect of parameter estimation shows that the traditional methods also need surprisingly 
large samples in order to effectively estimate the parameters (Holmes & Mergen, 1993; Jones et al., 2001, 2004). 
Moreover, a recent study revealed surprisingly low dispersion in ARL0 results of self-starting method compared 
to the results for a Shewhart chart with fixed Phase I sample (Keefe et al., 2015).

Comparing ARL and SDRL results reveal some other interesting features of these control charts. MELR 
control chart slightly over performs MEC and MME for most of the cases. However, this result is not valid 
for self-starting versions. In general, SSMEC and SSMME over performs SSMELR for most of the cases. They 
produce less variation in run lengths and reach to the known parameter value with smaller baseline sample sizes 
on average. ARL and SDRL results of SSMELR are mostly higher than the results of other schemes. Figure 2a 
and Figure 2b summarizes percentiles (10th and 90th) for each self-starting control chart when p 2= , ρ =0.25 
and IC ARL=500. This figure shows the large variability for small sizes of baseline samples. As the number of 
observations to update the parameters increase, the dispersion of run length distribution declines dramatically.

Figure 1. Plots of out-of-control ARL and SDRL of SSMEC, SSMELR and SSMME charts based on various initial sample sizes 
along with the results when parameters are known ( . ).0 25ρ = ).
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Effect strong correlation structure (ρ =0.75) on ARL distribution is also studied and given in Figure 3. 
Figure 3a and Figure 3b show the effect of high correlation (ρ =0.75) on ARL and SDRL results along with 
various sizes of baseline samples. All the three schemes provide relatively high ARL and SDRL scores for short 
learning periods. As the learning period extends, magnitude of shift and correlation increase the control charts 
perform better. On the other hand, the results for small sizes of shift captured by case 3 are slightly different. 
SSMEC and SSMME charts performs better than SSMELR for weak correlation and small/moderate baseline 
sample sizes (50-200). Additionally, SSMELR improves its detection capability and provides less variability where 
strong correlation exists.

Figure 2. Line plots of percentiles of run length of SSMEC, SSMELR and SSMME charts based on various baseline sample sizes 
( . )0 25ρ = ).
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6. An illustrative example: case of hypertension monitoring

Control charts have been widely used to understand health-care data (Doǧu, 2012; Eren-Dogu & Dogu, 
2013; Kim, 2012). In the complex nature of chronic disease management, monitoring the biological, and 
clinical characteristics and the identification of special causes are vital for a successful health care monitoring. 
For example, blood pressure (BP) monitoring is used to assess risk for hypertension as well as cardiovascular 
diseases. Specialists need to understand: the past and current state of the important blood pressure metrics, the 
relationships between the metrics, the underlying causes of variation and the possible effects of an intervention. 
Patient level metrics such as systolic blood pressure (SBP) and diastolic blood pressure (DBP) are important 
indicators measured over time in order to assess risk and effects of changes in drug regimen and changes in mean 
levels, metric covariance and correlation in the time course. Examples of implementation of control charts for BP 
monitoring include Albloushi et. al. (2015), Cornélissen et al. (1997) and Hawkins & Maboudou-Tchao (2008).

Figure 3. Line plots of out-of-control ARL and SDRL of SSMEC, SSMELR and SSMME charts based on various baseline sample 
sizes ( . ).0 75ρ = ).
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from both control charts supporting a simultaneous shift in BP mean and covariance. Similarly, SSMELR chart 
signals after 42th reading. The type of shift is more difficult to evaluate with SSMELR control chart as it doesn’t 
provide built-in diagnostic tools. However, the mean and covariance components are shown in Figure 6. %M 
values are showing signs of increase over time meaning a strong mean shift is detected with the MELR statistic. 
SSMME control chart and two diagnostic tools (M and V control charts) are provided in Figure 7. SSMME 
control chart offers clear and more informative diagnostics while it generates signals for the post-treatment 
period. Evaluating M and V control charts, we can conclude a joint shift in mean vector and covariance matrix.

Citing the importance of monitoring BP levels over time, we applied the suggested charting methodologies to 
BP monitoring data previously used in Albloushi et al. (2015). Suppose in this application immediate monitoring 
is needed to support medical decision making to evaluate the effects of changes in medication. SBP and DBP 
of a 43 years old male patient who was diagnosed with hypertension were measured for 84 days. The physician 
suggested the patient to take 10 mg ACE (angiotensin-converting enzyme) inhibitor every day. Pre-treatment 
and post-treatment measurements are shown in Figure 4.

SSMEC, SSMELR and SSMME control charts were constructed using the dataset and results are presented 
in Figures 5-7, respectively. All the competing procedures provided strong signals after 42th observation where 
intervention begun. SSMEC is the only non-omnibus control chart we study. MEWMA control chart in Figure 5 
presents reactions to mean shifts while C chart provides signals to covariance shifts. Here, we obtained signals 

Figure 4. Run charts of SBP and DBP measurements.

Figure 5. SSMEC control chart for BP dataset.
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7. Conclusions

In this study, we discussed self-starting control charts which does not demand for a long historical data for 
an expensive phase I application to start monitoring. The investigated procedures (SSMEC, SSMELR and SSMME) 
are easily designed and constructed while they do not require in-control parameter information from phase-I 
data. In addition, the single multivariate self-starting SPC methods (SSMELR and SSMME) maintain the ability 
to simultaneously monitor the mean and process variability for a multivariate process. These procedures are quite 
robust and sensitive to small magnitudes of shift, because the control chart statistics use exponential smoothing.

The self-starting control charts studied in this paper provided helpful information to discover problems 
related to health status, however, they are not directionally sensitive. Table 3 provides summary statistics for 
pre-treatment and post-treatment data supporting the evaluation of a joint shift. These results show a decrease 
in mean levels of SBP and DBP and also an increase in their corresponding variances.

Figure 6. SSMELR control chart for BP dataset.

Figure 7. SSMME control chart for BP dataset.

Table 3. Summary statistics for BP data.

SBP DBP
Correlation

mean variance mean variance

Pre-treatment period 135.76 9.86 92.32 5.90 0.27

Post-treatment period 119.35 29.06 80.85 12.74 0.16
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Some similarities between the methods studied here can be interpreted. The methods discussed in this study, 
SSMELR and SSMME, are the extensions of the MELR and the MME. These charts use similar statistics, but 
the underlying assumption is that the parameters are known or can be estimated from a phase I study. In the 
proposed methods, the need of a phase I study is minimized. Firstly, the unknown distribution is transformed 
into a standardized distribution. The practitioners use these known parameters for the implementation instead 
of estimating them from a relatively long pre-observation stage. The relative results show differences from the 
known parameter case.

From the simulation study, we propose that SSMME control chart is the best choice in real applications. 
When the charting performance results of SSMME control chart are compared with the existing SSMEC, SSMELR, 
we found that SSMEC and SSMME control charts proves similar but better detection capabilities than SSMELR 
control chart in various scenarios of simulation. Considering the performance, SSMME has similar detecting 
capabilities for joint shifts to the SSMEC chart which is not an omnibus procedure beyond our original purpose. 
It means SSMEC needs more resources while SSMME provides the similar detecting ability but needs only one 
control chart during the in-control phase. In addition, SSMME provides the diagnostic tools for further analysis 
of a signal. SSMME is a well-defined option for diagnostic tools since they use standard 3±  limits as a decision 
rule. Comparing the SSMME with SSMELR, we observe that SSMELR control chart performs better when small 
shift sizes, short learning periods and strong correlation exist. When only mean shift is considered, SSMELR also 
provides better results for small shift sizes and short learning periods.

The number of learning observations to update the parameters is a concern for these methods. This may lead 
professionals to think of the learning period as a type of phase I application. The benefit of the methods in this 
study is that the practitioner may detect shifts even after a short initial learning session and may immediately 
start monitoring after a few process readings obtained. Self-starting methods include a continual learning 
fragment and against the traditional approach they update the parameter when a new observation enters. This 
makes the method to be increasingly precise as the in control data gathering grows and eliminates the phase I 
and II distinction. The self-starting methods need a careful practice to obtain these benefits. Every signal should 
be carefully inspected and the special causes should be eliminated not to contaminate the parameter update 
process. The reaction to the early shifts may cause variance inflation and careful consideration is needed for 
parameter update. Running the charts backwards to diagnose very early shifts is proposed (Maboudou-Tchao 
& Hawkins, 2011) as a way of preventing this type of problem.

We introduced a motivating example of blood pressure monitoring to show the implementation of the 
methods discussed in this paper. In real health monitoring, SPC methodology is becoming widely accepted as a 
tool of monitoring process and outcome because it has benefits not only in finding evidence for special causes 
of variation, but also in understanding noise and common causes in the process. However, traditional univariate 
and multivariate SPC methodology still fall short in practical healthcare monitoring application as most of them 
rely on a phase I dataset and focus on only changes in the mean or variation of the process. Generally, patient 
health conditions are diagnosed based on mean levels. However, increased variability can predict illness, even 
if the mean level is stable. Second, it is difficult to gather sufficient in-control process data regarded in clinical 
settings. The methods discussed in this study provide a way of overcoming these difficulties.
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