
“main” — 2013/5/13 — 11:23 — page 105 — #1

Pesquisa Operacional (2013) 33(1): 105-121
© 2013 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

CLUSTERING SEARCH

Alexandre César Muniz de Oliveira1, Antonio Augusto Chaves2

and Luiz Antonio Nogueira Lorena3*

Received September 10, 2012 / Accepted February 5, 2013

ABSTRACT. This paper presents the Clustering Search (CS) as a new hybrid metaheuristic, which works

in conjunction with other metaheuristics, managing the implementation of local search algorithms for opti-

mization problems. Usually the local search is costly and should be used only in promising regions of the

search space. The CS assists in the discovery of these regions by dividing the search space into clusters. The

CS and its applications are reviewed and a case study for a problem of capacitated clustering is presented.
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1 INTRODUCTION

Clustering Search (CS) has been proposed as a generic way of combining search metaheuris-
tics with clustering aiming to detect promising search areas before applying local search proce-
dures [7]. The possibility of employing any metaheuristic and to apply it to combinatorial and
continuous optimization problems make CS as a flexible framework for building hybrid meta-
heuristics.

The main idea is to identify promising areas of the search space by generating solutions through
a metaheuristic and clustering them into groups that are further explored with local search heuris-
tics [8].

A more precise definition of CS is given in [13]: a hybrid method that aims to combine meta-
heuristics and local search in which the search is intensified only in areas of the search space that
deserve special attention.

CS introduces intelligence and priority to the choice of solutions to apply, generally costly, local
searches, instead of applying random or elitist choices. Therefore it is expected an improvement
in the convergence process associated with a decrease in computational effort as a consequence
of a more rational employment of the computational costly heuristics.
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This paper presents an overview and recent findings of Clustering Search, besides a case study
for the Capacitated Centered Clustering Problem (CCCP), reviewing two early CS approaches,
that employs different two metaheuristics, and comparing the computational results against a
new approach, based on Iterated Local Search.

The remainder of this paper is organized as follows. Related applications are summarized in
Section 2. Section 3 describes the basic ideas, conceptual components and recent features of CS.
Section 4 examine three different CS approaches for Capacitated Centered Clustering Problem
and new computational results are presented for problem instances found in the Literature. At
last, the findings and conclusions are summarized in Section 5.

2 CS RELATED APPLICATIONS

CS was early proposed as a hybrid evolutionary algorithm, aware of detecting promising search
area based on clustering. The original ideas behind the Evolutionary Clustering Search (ECS),
proposed by Oliveira & Lorena [4], was validated by a well-succeeded application to uncon-
strained numerical optimization. The ECS was implemented by a steady-state genetic algorithm
hybridized by local search mechanism based on Hooke and Jeeves direct search. In the computa-
tional experiments, the method was compared against other approaches, taken from the literature,
including the well-known Genocop III and the OptQuest Callable Library.

A combinatorial version of the CS was later applied by Oliveira & Lorena [6] to instances of
sequencing problems that arise in scenarios involving arrangement of a set of client orders, gates
in VLSI circuits, cutting patterns, etc. Problem-specific evolutionary operator were designed to
deal with solutions represented by permutations, as block-order crossover (BOX) and 2-swap
mutation, as well as a local search procedure based on 2-Opt improvement moves. The results
obtained by CS were comparable to the best found in the literature [7].

Nagano et al. [5] and Ribeiro Filho et al. [9] present an CS applied to the Permutation Flow Shop
Scheduling problem with the objective of minimizing total flow time. The computational results
show superiority for a set of test problems, regarding the solution quality.

Ribeiro Filho et al. [32] apply the CS to the m-machine No-wait Flow Shop Scheduling problem.
In a no-wait flow shop, the operation of each job has to be processed without interruptions be-
tween consecutive machines, i.e., when necessary, the start of a job on a given machine must be
delayed so that the completion of the operation coincides with the beginning of the operation on
the following machine. The computational results compare CS with the best known algorithms
in the literature showing the superiority of the evolutionary hybrid regarding the solution quality.

Chaves et al. [8] present a CS applied to the Capacitated p-median Problem (CPMP). The CPMP
considers a set of n points, each of them with a known demand, the objective consists of finding
p medians and assign each point to exactly one median such that the total distance of assigned
points to their corresponding medians is minimized, and the a capacity limit on the medians may
not be exceeded. The computational results show that the CS found the best known solutions in
24 of 26 instances.
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Biajoli & Lorena [10] apply the CS to a Traveling Tournament Problem (TTP). The TTP is an
optimization problem that represents some types of sports timetabling, where the objective is to
minimize the total distance traveled by the teams. The CS is combined with the metaheuristic
Variable Neighborhood Search (VNS). The computational results consider benchmark problems
available in literature and real benchmark problems, e.g. Brazilian Soccer Championship.

Chaves & Lorena [11] considers the CS with GRASP and VNS for the Prize Collecting Traveling
Salesman Problem (PCTSP). In this problem a salesman collects a prize in each city visited and
pays a penalty for each city not visited, considering travel costs between the cities. The objective
is to minimize the sum of travel costs and penalties paid, while including in the tour enough cities
to collect a minimum prize, defined a priori. The CS was compared with CPLEX and found the
optimal solutions for instances up to 60 cities and better solutions for instances with 100 cities,
in which CPLEX did not get to close the gap between lower and upper bounds.

Correa et al. [12] present an CS with GRASP for the probabilistic maximal covering location-
allocation problem with the objective of maximizing the population that has a facility within a
maximum travel distance or time. The computational results show that the CS got better results
than others heuristics of the literature. The optimal values were found for some instances of
30-node and 818-node networks.

Chaves et al. [13] apply the CS to the Assembly Line Worker Assignment and Balancing Problem
(ALWABP). The ALWABP consists of assigning tasks to workstations, which are arranged in
a predefined order, so that the precedence constraints are satisfied and some give measure of
effectiveness is optimized. The CS got the best-known solution in 314 of 320 instances, and
defined new best solutions for 306 instances.

Chaves & Lorena [14, 16] present two approaches of CS using Simulated Annealing and Genetic
Algorithm, respectively, to the Capacitated Centered Clustering Problem. Both approaches have
found good results, showing that the CS may be used with different metaheuristics.

Oliveira et al. [17] considers the CS with Simulated Annealing for Berth Allocation Problem
(BAP). The BAP consists in allocating ships to positions of mooring using the maximum space
of the quay and minimizing service time. The decisions to be made are concerning the position
and time the ship should moor. Computational results are compared against recent methods
found in the literature.

Ribeiro et al. [33] present a CS to the workover rig routing problem that is a variant of the vehicle
routing problem with time windows. The objective is to minimize the total lost production in the
operations of onshore oil fields. The computational results show that CS is a good heuristic for
large instances. The authors illustrate a typical clustering process provided by CS, show active
clusters, poor clusters, and promising clusters.

Due to the growing popularity of CS as effective and robust optimizer, researchers have been
applying the CS to solve optimization problems arising in several fields. The literature on CS
applications is summarized in Table 1.
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Table 1 – Summary of applications of CS to optimization problems.

Areas and Problems Metaheuristics used Reference

Continuous Optimization

Unconstrained Numerical Optimization Genetic Algorithm [4, 28]

Scheduling Problems

Pattern Sequencing Problem Genetic Algorithm [6, 7, 28]

Permutation Flow Shop Scheduling Genetic Algorithm [5, 9]

Problem

M-Machine No-Wait Flow Shop Genetic Algorithm [32]

Scheduling Problem

Assembly Line Worker Assignment Iterated Local Search; Variable [13, 29]

and Balancing Problem Neighborhood Search; Simulated

Annealing; Genetic Algorithm

Location Problems

Capacitated p-Median Problem Simulated Annealing; Genetic [8, 29]

Algorithm; Iterated Local Search;

Variable Neighborhood Search

Probabilistic Maximal Covering GRASP [12]

Location-Allocation Problem

Capacitated Centered Clustering Genetic Algorithm; Simulated [14, 16, 29]

Problem Annealing; Iterated Local Search;

Variable Neighborhood Search

Hub Location Problem Genetic Algorithm; Simulated [31]

Annealing/Tabu Search

Capacitated Hub Location Problem Simulated Annealing [34]

Routing Problems

Traveling Tournament Problem Variable Neighborhood Search [10]

Prize Collecting Traveling GRASP/Variable Neighborhood [11, 29]

Salesman Problem Search; Genetic Algorithm;

Simulated Annealing; Iterated

Local Search

Berth Allocation Problem Simulated Annealing [17]

Dial-a-Ride Problem Simulated Annealing [30]

Workover Rig Routing Problem Simulated Annealing [33]

3 CLUSTERING SEARCH FOUNDATIONS

Clustering Search (CS) employs clustering for detecting promising areas on the search space. It
is particularly interesting to find out such areas as soon as possible to change the search strategy
over them. An area can be seen as a search subspace defined by a neighborhood relationship in
metaheuristic coding space.
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The CS attempts to locate promising search areas by framing them by clusters. A cluster is
defined by a center, c, that is generally, initialized at random and, posteriorly, it tends to progres-
sively slip along really promising points in the search space.

The number of clustersNC can be fixed a priori [8] or dynamically determined according to the
width of the search areas being explorated by the metaheuristic [4]. In the later case, clusters can
be created in a way that all candidate solutions are covered by, at least, a cluster. By the other
hand, inactive clusters, i.e., clusters not covering any solutions may be eliminated.

The coverage is determined by a distance metric that computes the similarity between a given so-
lution and the cluster center and must consider the problem nature. For example, in unconstrained
continuous optimization, the similarity has been defined regarding the Euclidean distance [4]. In
combinatorial optimization, the similarity can be defined as the number of movements needed to
change a solution into the cluster center [7].

3.1 Component general guidelines

CS can be splitted off in four conceptually independent parts: a) the search metaheuristic (SM),
b) the iterative clustering (IC) component, c) the analyzer module (AM), and d) the local searcher
(LS). Figure 1 brings its conceptual design and Figure 2 presents the pseudo-code of CS.

The SM component can be implemented by any optimization algorithm that generates diversified
solutions of the search space. It must work as a full-time solution generator, exploring the search
space by manipulating a set of solutions, according to its specific search strategy.

IC component aims to gather similar solutions into groups, maintaining a representative cluster
center for them. A distance metric, 1, must be defined, a priori, allowing a similarity measure
for the clustering process.

AM component examines each cluster, in regular intervals, indicating a probable promising clus-
ter. A cluster density, also named volume, δ j , is a measure that indicates the activity level inside
the cluster j . For simplicity, δ j can count the number of solutions generated by SM and grouped
into c j . Whenever δ j reaches a certain threshold λ, meaning that some information template
becomes predominantly generated by SM, such cluster must be better investigated to accelerate
the convergence process on it. Clusters with lower δ j can be eliminated or perturbed, as part of
a mechanism that allows creating posteriorly other clusters, keeping framed the most active of
them [7]. The cluster elimination does not affect the set of solutions in SM. Only the cluster is
considered irrelevant for the process.

At last, the LS component is an internal searcher module that provides the exploitation of a
supposed promising search area, framed by a cluster.

3.2 Overview of the clustering process

The iterative clustering can be seen as a learning process about an external environment (search
space), from where new sampled knowledge is acquired, resulting in changes the previously
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Figure 1 – CS components.

Figure 2 – CS pseudo-code.
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learned beliefs [26]. The IC is the CS’s core, working as a classifier, keeping grouped only
relevant information, and driving search intensification in the promising search areas.

Solutions sk generated by the SM are passed to the IC that attempts to group as known informa-
tion, according to 1. If the information is considered sufficiently new, it is kept as a center in a
new cluster, cnew. Otherwise, redundant information activates the closest center ci (cluster cen-
ter that minimizes 1(sk, c j=1,2,∙∙∙ ,)), causing some kind of perturbation on it. This perturbation
means an assimilation process, in which the previously learned knowledge (center of the cluster)
is updated by the received information. Cluster creation, i.e., variable number of clusters, is not
always implemented [8, 13, 16].

The assimilation process is applied over the closest center ci , considering the new generated
solution sk . The general assimilation form is [28]:

c′
i = ci ⊕ β(sk 	 ci ) (1)

where ⊕ and 	 are abstract operations over ci and sk meaning, respectively, addition and sub-
traction of solutions. The operation (sk 	ci ) means the vector of differences between each one of
the n variables compounding the solutions sk and ci , considering the distance metric. A certain
percentage β of the vector is the update step for ci , giving c′

i . According to β, the assimilation
can assume different forms. The three types of assimilation are shown in Figure 3.

Figure 3 – Simple, path and crossover assimilations, respectively.

In simple assimilation, β ∈ [0, 1] is a constant parameter, meaning a deterministic move of ci

in the direction of sk . Only one internal point is generated more or less closer to ci , depending
on β, to be evaluated afterwards. The greater β, the less conservative the move is. This type of
assimilation can be employed only with real-coded variables, where percentage of intervals can
be applied to [4].

Despite its name, crossover assimilation is not necessarily associated with an evolutionary oper-
ator. In a general way, it means any random operation between two candidate solutions (parents),
giving other ones (offsprings), similarly as a crossover operation in EAs. In this assimilation, β

is an n−dimensional random vector and c′
i can assume a random point inside the hyper plane

containing sk and ci .
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Simple and crossover assimilations generate only one internal point to be evaluated afterwards.
Path assimilation, instead, can generate several internal points or even external ones, holding the
best evaluated one to be the new center. It seems to be advantageous, but clearly costly. These
exploratory moves are commonly referred in path relinking theory [27].

In this assimilation, β is a η−dimensional vector of constant and evenly spaced parameters, used
to generate η samples taken in the path connecting ci and sk . Since each sample is evaluated
by the objective function, the path assimilation itself is an intensification mechanism inside the
clusters. The new center c′

i is given by the best evaluated solution sampled in the path.

Table 2 summarizes the variables, the parameters and the problem-specific decisions that need
to be set on CS. The better parameters for a given application of the CS can only be set by
experimentation.

Table 2 – Summary of variables, parameters and problem-specific decision of CS.

Symbol Type Description

c j variable cluster center

δ j variable density or volume of the cluster

λ parameter threshold of promising cluster

NC parameter number of clusters

1 problem-specific decision distance metric

4 CS: A CASE STUDY

A classical location problem is the Capacitated p-Median Problem (CPMP) [1], which have
various applications in many practical situations. It can be described as follows: given a set of
n points (customers), each of them with a known demand, the problem consists of finding p
medians and assigning each point to exactly one median such that the total distance of assigned
points to their corresponding medians is minimized, and the capacity limit on the medians may
not be exceeded.

The Capacitated Centered Clustering Problem (CCCP) [2] is a generalization of the CPMP, which
can be viewed as the problem of defining a set of p groups with limited capacity and minimum
dissimilarity among the formed groups, in which each group has a centroid located at the geo-
metric center of its points and covers all demands of a set of n points. The main difference to
the CPMP is that groups are centered at the “average” of their points’ co-ordinates, while for the
CPMP the groups are centered by their medians.

The evaluation of the objective function for the CCCP solution has a high computational cost as
the centroids are unknown a priori. So, in this paper we solved the CPMP with the metaheuristics
and the others components of CS solved the CCCP based on the CPMP solution.

Therefore, a solution of the CCCP is represented by two vectors as a solution of the CPMP.
The first vector represents the point/median assignments and the second vector represents the
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chosen medians. The CS performs movements on these structure and the centroids are found
later, calculating the average of the points’ coordinates of each group defined by the medians.
Figure 4 shows an example of one solution with ten points and three groups.

Figure 4 – An example of the solution representation.

The objective function of CCCP (equation 2) is the total sum of distances between each centroid
and its allocated points. In this algorithm, we set a penalty for the solutions that not satisfy the
capacity constraints. Let Tj be the sum of distances for the group j and f j be the infactibility
measure; $ be the multiplier for the value f j .

f (s) =
p∑

j=1

(
Tj + $ ∗ f j

)
(2)

The distance metric 1 is the number of points assigned to different medians between two solu-
tions. So, the distance increases when there are a large number of allocations to different medians
between the solutions.

4.1 Metaheuristics

In this paper, we present a review of two approaches to the CS using different metaheuristics
to generate solutions to the clustering process: Genetic Algorithm (Chaves & Lorena [16]) and
Simulated Annealing (Chaves & Lorena [13]). And a new approach to the CS using the Iterated
Local Search.

In these metaheuristics, initial solutions are constructed randomly choosing p medians and allo-
cating points to the closest median (respecting the capacity of the medians).

4.1.1 Genetic Algorithm

The Genetic Algorithm (GA) [18] employs evolutionary operators as selection, crossover and
mutation. The population size was set to 100 solutions, randomly initialized at first.

The solutions, during the reproductive phase, are selected from the population and recombined,
producing offspring, which comprise the next generation. Parents are randomly selected from
the population using the tournament method, which favors best individuals.

Crossover operation partially exchanges information between two selected solutions. We imple-
mented the uniform crossover [21], in which a crossover mask (the same length as the solution
structure) is created at random and the parity of the bits in the mask indicate which parent will
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supply the offspring with which attributes. For each attribute the parent who contributes its at-
tribute to the offspring is chosen randomly with equal probability. The mutation operator changes
the median of a randomly selected point by other random median. The probabilities of crossover
(pc) and mutation (pm) are set to 95% and 5% respectively. The termination condition of GA is
the number of generations, that was defined as 1000.

4.1.2 Simulated Annealing

The Simulated Annealing (SA) algorithm [19] starts from a random initial solution, following the
traditional SA algorithm schema. Given a temperature T, the algorithm randomly selects one of
the moves to a neighborhood and computes the variation of the objective function. If it improves
the current solution the move is accepted, otherwise there is a probability of acceptance that is
lower in low temperatures.

Four different moves have been defined to compose distinct neighborhoods from a solution s,
named N 1, N 2, N 3 and N 4. N 1 is obtained swapping the allocation of two points of different
medians. N 2 is obtained swapping a median with an assigned point to it. N 3 is obtained dropping
a point allocated to a median and allocating it to another median. Finally N 4 is obtained swapping
a median with any other non median point.

The control parameters of the procedure are the rate of cooling or decrement factor (α), the
number of iterations for a fixed temperature (S Amax) and the initial temperature (T0). In this
paper, we use α = 0.95, S Amax = 1000 and T0 = 1000000.

4.1.3 Iterated Local Search

The Iterated Local Search (ILS) [20] consists in the iterative application of a local search pro-
cedure to starting solutions that are obtained by the previous local optimum through a solution
perturbation.

The ILS starts from a random initial solution. In order to escape from local optima and to explore
new regions of the search space, ILS applies perturbations to the current solution. We used the
four moves defined in SA that are randomly applied in our ILS procedure. The strength of the
perturbation is the number of solution components (points) that are modified, and it is randomly
defined in each iteration. A percentage ϕ (ϕ ∈ [0.25, 0.60]) of the number of points are altered
by the perturbation.

We select the Location-Allocation and Interchange-Transfer heuristics as the local search of ILS.
This heuristics performs a descent from a solution s′ until it reaches a local minimum (ŝ′). Fur-
ther details of these heuristics are presented in Section 4.3.

The acceptance criterion is biased towards diversification of the search since the best solution
resulting from the local search phase is accepted if it improves the local minimum encountered
so far or with a probability of 5%. And, the condition used to stop the algorithm was the maximal
number of iterations, which was defined as 5000 iterations.
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4.2 Clustering Process

Initially, we define the number of clusters NC as 20. The cluster centers should be generated
in order to represent different regions of search space. This paper uses a greed method based on
maximum diversity to create the initial centers, which generate a large set with n(n >> NC)

random solutions and a subset is selected with NC solutions that have the longest distance
among themselves [16].

At each iteration of CS, one solution sk is grouped into the closest cluster C j ; that is, the cluster
that minimizes the distance between the solution and the cluster center. The volume δ j is in-
creased in one unit and the center c j should be updated with new attributes of sk (assimilation
process).

The assimilation process uses the path-relinking method [25]. The procedure starts by computing
the symmetric difference between the center c j and the solution sk ; i.e., the set of moves needed
to reach sk from c j . A path of solutions is generated, linking c j and sk . At each step, the
procedure examines all moves m from the current solution s and selects the one that results in
the best-cost solution, applying the best move to solution s. The set of available moves is updated.
The procedure terminates when 30% of the solutions in the path have been analyzed. The new
center c j is the best solution along this path. In this paper, one move is to swap one median of c j

by one median of sk , changing the allocation of the points regarding the new median.

After performing the path-relinking, we must conduct an analysis of the volume δ j , verifying if
this cluster can be considered promising. A cluster becomes promising when its volume reaches
the threshold λ (δ j ≥ λ). The value of λ was define as 15 in this application.

Then, if the volume δ j reached λ and the local search has been obtained success in this cluster,
an exploitation is applied in center c j by local search heuristics.

Finally, if there are clusters with lower δ or clusters in which local search often have been unsuc-
cessful, instead of eliminating them, we apply a perturbation in the cluster center allowing it to
move to another region of the search space. This random perturbation is performed by swapping
50% of allocations point/median.

4.3 Local Search

The VND method is implemented as local search of CS, intensifying the search in neighborhood
of a promising cluster C j .

The VND uses two heuristics: Location-Allocation and Interchange-Transfer [24]. This heuris-
tics are applied using the solution for CPMP, and for each new generated solution is calculated
the coordinates of the centroids and the value of the objective function of CCCP.

The Location-Allocation heuristic is based on the observation that the center c j defines p groups,
corresponding to the p medians and their allocated points. The center c j can be improved by
searching for a new median inside each cluster, swapping the current median by a non-median
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point and reallocating. We consider two steps for reallocating the points. The first one is to
examine the points that were allocated to the current median and reallocate to the closest one.
The second step is to examine the points assigned to the others medians and calculate the saving
of moving them to the new one, if it improves the solution the point is reallocated to the new
median.

The Interchange-Transfer heuristic tries a further improvement to the center c j , which consists
of two movements: interchange the allocation of two points and transfer one point from a median
to another. All the possible movements are analyzed and the best one is performed.

If some heuristic obtains a better solution, VND returns to the first heuristic and the search
continues from the better solution; otherwise, it changes to the next heuristic. The VND stopping
condition is that are no more improvements can be made to the incumbent solution. The center
c j is updated if the new solution is better than the previous one.

4.4 Computational Results

The CS was coded in C and the computational tests executed on a 3 GHz Pentium 4. Four
problem sets are used in this tests: two sets introduced by [24], that contains 6 instances named
sjc and 5 instances named p3038, and two sets introduced by [2], that contains 7 instances named
ta and 7 instances named doni.

Table 3 presents the results for the three approaches of CS. The entries in the table are the best
solution (best-sol), the percentage deviation from the best solution found (dev) in 20 runs, the
percentage deviation from the best-known solution (gap), the average running time to find the
best solution (best-time) and the average running time (time) in seconds. The imp column shows
the percentage of improvement of the CS’s on the metaheuristics. The values in boldface show
the best objective function value for each instance.

The results show the efficacy of the CS’s. We observed that all approaches of CS had similar
behavior, both in terms of solution quality and in running time. The CS found the best-known
solution in the literature for 21 of the 25 instances tested.

The CS algorithm was very robust, producing low deviations (the average deviation, column dev,
found by CS’s were close to zero). And, the computational times of CS were competitive, finding
very good solutions within few seconds for the smaller instances and in a reasonable time for the
larger instances. We also note that the CS converges quickly to the best solution.

We can observe that SA, GA and ILS without the clustering process (column imp) gave solutions
in poorer quality than CS. The best solutions found by CS were about 18,5%, 17,3% and 12,3%
better than the best solutions found by the respective methods.

Table 4 reports a comparison with other methods of literature. Negreiros & Palhano [2]
presented a two-phase heuristic using a Variable Neighborhood Search (VNS). Palhano et
al. [22] developed a new polynomial constructive method (called CKMedians). And, Pereira
& Senne [23] applied the column generation method in the CCCP.

Pesquisa Operacional, Vol. 33(1), 2013



“main” — 2013/5/13 — 11:23 — page 117 — #13

A.C.M. OLIVEIRA, A.A. CHAVES and L.A.N. LORENA 117

T
ab

le
3

–
C

C
C

P:
R

es
ul

ts
of

th
e

C
S.

C
S-

SA
C

S-
A

G
C

S-
IL

S

Pr
ob

le
m

B
es

t-
kn

ow
n

B
es

t-
so

l
D

ev
G

ap
B

es
t-

tim
e

T
im

e
Im

p
B

es
t-

so
l

D
ev

G
ap

B
es

t-
tim

e
T

im
e

Im
p

B
es

t-
so

l
D

ev
G

ap
B

es
t-

tim
e

T
im

e
Im

p

TA
25

12
51

,4
4

12
51

,4
4

0,
00

0,
00

0,
73

4,
63

1,
76

12
51

,4
4

0,
00

0,
00

0,
68

2,
16

1,
76

12
51

,4
4

0,
00

0,
00

0,
73

6,
65

1,
76

TA
50

44
74

,5
2

44
74

,5
2

0,
00

0,
00

0,
89

7,
93

0,
08

44
74

,5
2

0,
00

0,
00

0,
99

5,
52

0,
00

44
74

,5
2

0,
00

0,
00

0,
91

6,
67

0,
08

TA
60

53
56

,5
8

53
56

,5
8

0,
00

0,
00

1,
72

10
,0

5
0,

00
53

56
,5

8
0,

00
0,

00
1,

05
9,

13
0,

00
53

56
,5

8
0,

00
0,

00
1,

55
6,

73
0,

00

TA
70

62
40

,6
7

62
40

,6
7

0,
00

0,
00

1,
08

11
,3

3
0,

44
62

40
,6

7
0,

00
0,

00
0,

77
8,

78
0,

44
62

40
,6

7
0,

00
0,

00
0,

87
7,

09
0,

00

TA
80

55
15

,4
6

57
30

,2
8

0,
00

3,
89

3,
59

17
,7

2
0,

74
57

30
,2

8
0,

00
3,

89
2,

59
22

,7
7

0,
79

57
30

,2
8

0,
00

3,
89

5,
03

12
,8

8
0,

38

TA
90

88
99

,0
5

90
69

,8
5

0,
00

1,
92

0,
99

15
,6

4
0,

00
90

69
,8

5
0,

00
1,

92
1,

26
22

,1
1

0,
70

90
69

,8
5

0,
00

1,
92

0,
89

10
,5

8
0,

00

TA
10

0
81

02
,0

4
81

02
,0

4
0,

00
0,

00
5,

67
23

,0
0

0,
61

81
02

,0
4

0,
00

0,
00

11
,2

4
48

,5
9

1,
08

81
02

,0
4

0,
00

0,
00

7,
82

17
,4

1
0,

40

SJ
C

1
17

35
9,

75
17

35
9,

75
0,

01
0,

00
5,

53
24

,9
6

0,
00

17
35

9,
75

0,
02

0,
00

8,
17

38
,8

2
0,

02
17

35
9,

75
0,

01
0,

00
7,

88
19

,2
8

0,
17

SJ
C

2
33

18
1,

65
33

18
1,

65
0,

00
0,

00
37

,7
5

11
9,

81
0,

95
33

18
1,

65
0,

00
0,

00
40

,3
7

17
9,

42
0,

43
33

18
1,

65
0,

00
0,

00
11

,7
4

10
4,

84
2,

25

SJ
C

3a
45

35
4,

38
45

35
4,

38
0,

08
0,

00
25

8,
35

48
6,

20
1,

38
45

35
8,

23
0,

06
0,

01
50

9,
66

12
06

,7
2

2,
92

45
35

9,
09

0,
11

0,
01

13
5,

98
38

8,
32

2,
91

SJ
C

3b
40

66
1,

94
40

66
3,

44
0,

06
0,

00
20

9,
16

54
0,

90
1,

87
40

66
1,

94
0,

02
0,

00
77

1,
83

14
33

,8
0

4,
08

40
66

1,
94

0,
04

0,
00

26
1,

91
45

8,
79

3,
06

SJ
C

4a
61

93
1,

60
61

93
1,

60
0,

08
0,

00
47

3,
86

12
49

,8
7

3,
95

61
93

1,
60

0,
04

0,
00

10
92

,9
7

30
25

,7
2

6,
54

61
94

4,
86

0,
05

0,
02

40
1,

17
89

3,
54

3,
32

SJ
C

4b
52

21
4,

55
52

21
4,

55
0,

16
0,

00
61

7,
73

16
45

,3
7

2,
80

52
22

7,
60

0,
06

0,
02

19
65

,8
2

39
95

,2
0

6,
75

52
22

7,
11

0,
07

0,
02

54
0,

30
11

99
,8

2
4,

84

p3
03

8
60

0
12

82
03

,4
0

12
89

74
,0

3
0,

40
0,

60
54

59
,5

4
99

91
,6

6
51

,7
4

12
84

19
,9

5
0,

23
0,

17
61

37
,6

7
97

36
,8

0
48

,8
9

12
82

03
,4

0
0,

51
0,

00
38

42
,8

4
94

36
,9

6
51

,2
6

p3
03

8
70

0
11

60
51

,8
8

11
61

58
,3

4
0,

69
0,

09
92

05
,0

9
11

67
5,

07
53

,9
6

11
63

25
,0

5
0,

31
0,

24
68

48
,5

2
11

65
8,

11
53

,0
9

11
60

51
,8

8
0,

66
0,

00
53

59
,1

6
10

91
5,

27
51

,7
0

p3
03

8
80

0
10

69
61

,2
0

10
69

61
,2

0
1,

12
0,

00
92

10
,1

0
13

36
8,

57
57

,0
1

10
77

64
,6

9
0,

32
0,

75
83

35
,3

6
13

19
4,

76
60

,8
9

10
72

09
,8

2
0,

66
0,

23
58

93
,5

6
12

81
0,

04
52

,1
6

p3
03

8
90

0
99

75
6,

59
99

75
6,

59
0,

75
0,

00
11

38
9,

33
15

04
9,

56
59

,1
4

99
96

8,
15

0,
44

0,
21

11
72

6,
17

15
34

1,
74

67
,0

4
10

01
33

,8
5

0,
65

0,
38

53
86

,2
7

13
93

1,
29

57
,5

9

p3
03

8
10

00
92

70
6,

38
93

14
8,

68
0,

53
0,

48
14

18
4,

79
18

69
8,

52
64

,5
9

92
70

6,
38

1,
22

0,
00

10
74

7,
13

17
12

8,
41

77
,4

0
92

85
0,

88
1,

04
0,

16
44

74
,1

6
15

45
1,

21
63

,8
7

D
O

N
I1

30
21

,4
1

30
22

,2
6

0,
25

0,
03

34
,3

9
76

,2
2

10
,7

0
30

27
,6

3
0,

44
0,

21
86

,3
8

12
7,

04
3,

12
30

26
,8

7
0,

30
0,

18
70

,4
1

10
5,

91
0,

77

D
O

N
I2

60
80

,7
0

63
72

,8
1

0,
21

4,
80

11
2,

12
24

2,
60

4,
52

63
73

,2
6

0,
02

4,
81

30
9,

77
68

7,
48

0,
34

63
77

,7
7

0,
05

4,
89

31
6,

78
41

0,
20

0,
67

D
O

N
I3

84
38

,9
6

84
46

,0
8

0,
62

0,
08

20
3,

42
54

3,
19

13
,6

7
84

38
,9

6
0,

51
0,

00
62

4,
12

92
8,

41
6,

01
84

70
,1

8
0,

67
0,

37
71

1,
60

92
4,

60
0,

43

D
O

N
I4

10
85

4,
48

10
85

4,
48

0,
62

0,
00

24
9,

45
10

11
,0

8
19

,9
8

10
95

2,
27

0,
38

0,
90

10
69

,0
7

23
89

,5
8

1,
62

11
09

4,
62

0,
88

2,
21

13
95

,0
3

16
81

,2
7

0,
00

D
O

N
I5

11
13

4,
94

11
13

4,
94

0,
75

0,
00

76
3,

65
16

17
,9

9
17

,9
0

11
20

9,
99

0,
11

0,
67

21
75

,0
4

36
24

,4
0

1,
17

11
18

2,
87

0,
19

0,
43

22
97

,9
1

27
30

,8
8

1,
36

D
O

N
I6

15
72

2,
67

15
81

4,
56

0,
56

0,
58

33
26

,3
4

87
05

,5
3

45
,0

7
15

72
2,

67
0,

34
0,

00
61

74
,8

3
10

31
6,

55
22

,2
9

15
78

0,
97

0,
34

0,
37

10
00

5,
59

14
46

6,
46

2,
88

D
O

N
I7

18
59

6,
74

19
03

8,
91

0,
47

2,
38

10
19

3,
80

18
92

6,
76

49
,5

6
18

59
6,

74
0,

82
0,

00
15

86
0,

55
26

91
3,

91
60

,8
7

18
62

3,
59

1,
99

0,
14

20
64

9,
82

29
75

1,
42

5,
43

A
ve

ra
ge

0,
29

0,
59

26
37

,9
6

41
62

,5
7

18
,5

0
0,

21
0,

55
29

80
,0

8
48

81
,8

4
17

,1
3

0,
33

0,
61

24
71

,2
0

46
29

,9
2

12
,2

9

Pesquisa Operacional, Vol. 33(1), 2013



“main” — 2013/5/13 — 11:23 — page 118 — #14

118 CLUSTERING SEARCH

T
ab

le
4

–
C

C
C

P:
C

om
pa

ri
so

n
of

th
e

re
su

lts
.

N
eg

re
ir

os
&

Pa
lh

an
o[

2]
Pa

lh
an

o
et

al
.[

22
]

Pe
re

ir
a

&
Se

nn
e[

23
]

C
S

Pr
ob

le
m

B
es

t-
kn

ow
n

B
es

t-
so

l
G

ap
B

es
t-

so
l

G
ap

B
es

t-
so

l
G

ap
B

es
t-

so
l

G
ap

TA
25

12
51

,4
4

12
51

,4
4

0,
00

–
–

12
80

,4
9

2,
32

12
51

,4
4

0,
00

TA
50

44
74

,5
2

44
76

,1
2

0,
04

–
–

44
74

,5
2

0,
00

44
74

,5
2

0,
00

TA
60

53
56

,5
8

53
56

,5
8

0,
00

–
–

53
57

,3
4

0,
01

53
56

,5
8

0,
00

TA
70

62
40

,6
7

62
41

,5
5

0,
01

–
–

62
40

,6
7

0,
00

62
40

,6
7

0,
00

TA
80

55
15

,4
6

57
30

,2
8

3,
89

–
–

55
15

,4
6

0,
00

57
30

,2
8

3,
89

TA
90

88
99

,0
5

91
03

,2
1

2,
29

–
–

88
99

,0
5

0,
00

90
69

,8
5

1,
92

TA
10

0
81

02
,0

4
81

22
,6

7
0,

25
–

–
81

68
,3

6
0,

82
81

02
,0

4
0,

00

SJ
C

1
17

35
9,

75
17

69
6,

53
1,

94
20

34
1,

34
17

,1
8

17
37

5,
36

0,
09

17
35

9,
75

0,
00

SJ
C

2
33

18
1,

65
33

42
3,

84
0,

73
35

21
1,

99
6,

12
33

35
7,

75
0,

53
33

18
1,

65
0,

00

SJ
C

3a
45

35
4,

38
47

98
5,

29
5,

80
50

59
0,

49
11

,5
4

45
37

9,
69

0,
06

45
35

4,
38

0,
00

SJ
C

3b
40

66
1,

94
–

–
–

–
41

18
5,

18
1,

29
40

66
1,

94
0,

00

SJ
C

4a
61

93
1,

60
66

68
9,

96
7,

68
69

28
3,

05
11

,8
7

61
96

9,
06

0,
06

61
93

1,
60

0,
00

SJ
C

4b
52

21
4,

55
–

–
–

–
52

98
9,

44
1,

48
52

21
4,

55
0,

00

p3
03

8
60

0
12

82
03

,4
0

19
20

24
,8

3
49

,7
8

13
54

81
,9

9
5,

68
–

–
12

82
03

,4
0

0,
00

p3
03

8
70

0
11

60
51

,8
8

17
67

31
,0

7
52

,2
9

12
36

98
,7

6
6,

59
–

–
11

60
51

,8
8

0,
00

p3
03

8
80

0
10

69
61

,2
0

18
45

02
,3

8
72

,4
9

11
77

05
,4

8
10

,0
5

–
–

10
69

61
,2

0
0,

00

p3
03

8
90

0
99

75
6,

59
17

67
81

,5
1

77
,2

1
11

10
33

,2
7

11
,3

0
–

–
99

75
6,

59
0,

00

p3
03

8
10

00
92

70
6,

38
15

91
39

,8
9

71
,6

6
11

00
49

,7
8

18
,7

1
–

–
92

70
6,

38
0,

00

D
O

N
I1

30
21

,4
1

30
21

,4
1

0,
00

32
34

,5
8

7,
06

–
–

30
22

,2
6

0,
03

D
O

N
I2

60
80

,7
0

60
80

,7
0

0,
00

66
92

,7
1

10
,0

6
–

–
63

72
,8

1
4,

80

D
O

N
I3

84
38

,9
6

87
69

,0
5

3,
91

97
97

,1
2

16
,0

9
–

–
84

38
,9

6
0,

00

D
O

N
I4

10
85

4,
48

11
51

6,
14

6,
10

11
59

4,
07

6,
81

–
–

10
85

4,
48

0,
00

D
O

N
I5

11
13

4,
94

11
63

5,
18

4,
49

11
82

7,
69

6,
22

–
–

11
13

4,
94

0,
00

D
O

N
I6

15
72

2,
67

18
44

3,
50

17
,3

1
–

–
–

–
15

72
2,

67
0,

00

D
O

N
I7

18
59

6,
74

23
47

8,
79

26
,2

5
–

–
–

–
18

59
6,

74
0,

00

av
er

ag
e

17
,5

7
10

,3
8

0,
51

0,
43

Pesquisa Operacional, Vol. 33(1), 2013



“main” — 2013/5/13 — 11:23 — page 119 — #15

A.C.M. OLIVEIRA, A.A. CHAVES and L.A.N. LORENA 119

The proposed method presents new best-known solutions for 17 instances. And for the others
instances, the solutions obtained by CS were close to the best-known solutions. We can observe
that the average deviation from the best-known solution (column gap) of the CS was close to
zero (0.43%).

The CS found the best-known solutions for all instances of the sjc and p3038 sets. For the
instances in the ta set, the CS found the best-known solutions in 5 of 7 instances. For the last
class of instances (doni), the CS found the best solutions in 5 of 7 instances.

5 CONCLUSIONS

This paper presents a new method of detecting promising search areas based on clustering: the
Clustering Search (CS). In a general way, CS attempts to locate promising search areas by clus-
ter of solutions. The clusters work as sliding windows, framing the search areas and giving
a reference point (center) to problem-specific local search procedures. Furthermore, the clus-
ter center itself is always updated by a permanent interaction with inner solutions, in a process
called assimilation. Therefore, the process of detecting promising areas becomes an interesting
alternative, preventing the indiscriminate application of local search methods.

In this paper, research work on CS has been surveyed. The advances in CS designs, CS for
complicated optimization problems and some applications in real problems, have been covered.
The CS is still in its early stage, although there have been a large number of publications.

A version of CS for Capacitated Centred Clustering Problem (CCCP) was presented as a case
study. We use three metaheuristics to generate solutions to the CS (Genetic Algorithm, Simulated
Annealing and Variable Neighborhood Search), showing that the CS can be used with different
methods.

The computational results were examined from two viewpoints: the best metaheuristic for CS
and comparison against other literature methods. The three approaches to CS had similar behav-
ior, finding solutions with a small gap to the best known solution. Moreover, the CS’s showed
robust with a small deviation between the average solution and the best solution found in 20
runs. The computational time was also similar in the three approaches, finding good solutions
in a reasonable time. In comparison against other literature methods, CS has achieved superior
performance in terms of solution quality in most instances.

For further work, it is intended to build new algorithms based on CS, including other metaheuris-
tics as Ant Colony System, Tabu Search and Large Neighborhood Search. And also exploring
other aspects of CS, such as: parallelize their components and create a CS for multiobjective
optimization problem.
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