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ABSTRACT. Internet-based customization tools can be used to design service encounters that maximize

customers’ utility in the present or explore their tastes to provide more value in the future, where these two

goals conflict with each other. Maximizing expected customer satisfaction in the present leads to slow rates

of learning that may limit the ability to provide quality in the future. An emphasis on learning can lead to

unsatisfied customers that will not only forego purchasing in the current period, but, more seriously, never

return if they lose trust in the service provider’s ability to meet their needs. This paper describes service

design policies that balance the objectives of learning and selling by characterizing customer lifetime value

as a function of knowledge. The analysis of the customization problem as a dynamic program yields three

results. The first result is the characterization of customization policies that quantify the value of knowledge

so as to adequately balance the expected revenue of present and future interactions. The second result is an

analysis of the impact of operational decisions on loyalty, learning, and profitability over time. Finally, the

quantification of the value of knowing the customer provides a connection between customer acquisition

and retention policies, thus enhancing the current understanding of the mechanisms connecting service

customization, value creation, and customer lifetime value.

Keywords: Service customization, customer learning, customer lifetime value, dynamic programming.

1 INTRODUCTION

Electronic interfaces for service delivery present unprecedented opportunities for customization.
Companies can identify returning customers at almost no cost and present each of them with a
unique interface or service offering over a web page, voice interface, or mobile device. Cus-
tomization is important in these interactions because the variety of products, services and in-
formation that companies can offer can be enormous and customers are often not able to find
and identify the alternative that best suits their preferences. More generally, the amount of in-
formation available over the Internet is overwhelming and the costs to search and evaluate all
potentially relevant pieces of information can be prohibitive.
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This situation can lead to interactions of low net utility to customers. Hence the need for soft-
ware applications generally called intelligent agents (or smart agents) that present customers with
customized recommendations from large sets of alternatives. These agents have the potential to
create great benefits for both consumers and companies. It is certainly desirable for customers to
reduce search costs and by going directly to a company that already knows them and gives them
high utility. At the same time, companies that learn about their customers can use this knowl-
edge to provide increasingly better service as the relationship progresses, making it difficult for
competitors to “steal” their customers.

In order to fully reap the benefits of customization, companies must overcome two obstacles.
First, the strategies that maximize selling (or their customers’ utility in the current period) do not
coincide with strategies that maximize learning. Second, the cost of making bad recommenda-
tions (and learning form them) might be prohibitive because customers rarely forgive and return
to service providers that make bad recommendations. Overcoming these obstacles depends on
the agents’ ability to adequately balance the goals of learning at the expense of selling and selling
at the expense of learning.

In addition to being an important tool in the reduction of search costs, smart agents are also cost-
efficient. Consequently, as more and more services are delivered through automated interfaces,
smart agents have been playing increasingly important roles in everyday decision-making and are
gaining considerable more autonomy to act on the consumers’ behalf (Maes [1995] documents
the early days of this tendency).

The essential task of learning about customers in order to provide better recommendations has
been made more difficult in many ways as interfaces change from human-human to human-
computer. Human intermediaries can, in many cases, observe their clients and make a number of
inferences on the basis of their interactions. The lack of cues typical of the personal encounter di-
minishes the opportunities for correcting incomplete advice or wrong guesses. Software agents
only register click patterns, browsing behavior, and purchase histories. These agents can only
learn about customers by asking them questions and by observing their behavior. The issues
related to the benefits and limitations of asking questions have been adequately addressed else-
where: clients may not be willing nor have the patience to answer questions (e.g., Toubia et al.,
2003), and their replies are not always truthful for various (and sometimes intentional) reasons
(White, 1976). Regardless of how they answer surveys, customers spend their time and money
in the activities from which they derive the most utility. In the offline world, Rossi et al. (1996)
found that the effectiveness of a direct marketing campaign was increased by 56% due to the cus-
tomization of coupons based on observations of one single purchase occasion. Intelligent agents
can learn about customers by observing the purchases they make. Furthermore, firms interacting
with customers through automated interfaces can also lean by observing the products that cus-
tomer reject. Therefore, companies must strive to learn about their customers by observing how
they react to the recommended products and services to which they’re exposed.

Intelligent agents face a dilemma: they must either sell at the expense of learning or learn at
the expense of selling. More precisely, they can either make recommendations that they expect
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their customers to like and learn about their customers’ preferences at slow rates or they can
take more risks by suggesting products their customers might not accept and learn at higher
rates. The agent’s dilemma captures the essence of the selling versus learning trade-off faced
by companies that customize services on the Internet. Observing an action that was already
expected to happen only reconfirms something one already knew or suspected to be true. But
should an agent recommend a product with no prior knowledge of how their customers would
react? By taking this course of action, agents may learn a lot about their customers’ responses to
recommendations of such products, regardless of whether or not the item is purchased. However,
they run the risk of causing an unsuccessful service encounter that may lead to defection.

Customers who receive very bad recommendations can lose trust in the smart agent’s ability to
help them make better decisions and never return. Research in psychology and marketing has
repeatedly shown the importance of trust as the basis for building effective relationships with
customers in e-commerce as well as in regular commerce (e.g., Kollock, 1999; Lewicki et al.,
1998; Ariely et al., 2004). Doney & Cannon (1997) established an important link between trust
and profitability by noting the importance of trust to build loyalty. Low trust leads to low rates
of purchase, low customer retention and, consequently, meager profits. Studies on human and
non-human agents have extended the findings of previous research by showing that trustworthy
agents are more effective, i.e., they are better at engaging in informative conversation and helping
clients make better decisions. Urban et al. (2000) have also shown that advice is mostly valued
by less knowledgeable and less confident buyers, and those are exactly the same customers less
likely to trust external agents to act as surrogates on their behalf. The human element involved in
company-customer relationships makes it imperative that firms strive to build and maintain trust
if they are to maintain profitable customers in the long run. The question is how these principles
can be operationalized in the strategies adopted by agents.

Intelligent agents must strive to be trustworthy in two ways. First, customers must trust that
agents have their best interest in mind. This will be true whenever the agent’s payoffs are propor-
tional to each customer’s utility. Second, the customer must trust that the agent is good. Models
of online consumer behavior must take into account the fact that if the agent makes a very bad
recommendation the consumer loses trust and may never come back. The consequences of giv-
ing bad advice are much worse for software agents than for human agents. Ariely et al. (2004)
conducted a series of experiments to compare trust online and offline and found that even though
customers are sometimes willing to forgive a mistake made by a human agent, they rarely do
so for a software agent. In one of his experiments, half of the subjects received financial advice
from a software agent, and the other half from a human agent. Both agents were manipulated
so that they made exactly the same serious mistake. After realizing they had received bad ad-
vice, customers of the human agent were much more likely to continue the relationship than
customers of the software agent. People forgive people but they don’t forgive software. Turn-
ing off the computer or clicking on a different website entails much less psychological costs
than terminating a personal relationship. Consequently software agents face much higher churn
rates than their human counterparts. The levels of tolerance for incomplete, wrong or misleading
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advice are lower, yet the electronic agent must rely on much more precarious information and
cues regarding consumers’ tastes and preferences.

The customization policy used by the agent affects the customer lifetime value (CLV) in two
ways. CLV is typically defined as the net present value of the stream of cash flows the firm
expects to receive over time from a given customer (e.g., Berger & Nasr, 1998; Jain & Singh,
2002). The customization policy determines expected quality, which in turn influences (1) the
customer defection decision and (2) the expected revenue per interaction. The model analyzed
in this paper does not make any assumptions about the retention rate and profitability as the rela-
tionship progresses. These parameters are determined by the business setting and the manager’s
decisions. This flexibility is an important contribution of this paper, as it presents a tool that can
accomodate situations where profits accelerate over time as well as those when profits do not
accelerate over time.

The next section of this paper formalizes the customer behavior model, describes the dynamics of
customer/company interactions, and formulates the agent’s customization problem as a dynamic
program. Section 3 establishes the optimality conditions and solution procedures for the model
introduced in Section 2. Section 4 discusses the significance of the results, paying close attention
to their meaning in the context of CLV research. Finally, Section 5 offers some directions for
further research.

2 MODEL DESCRIPTION

This section is divided into three parts. The first one presents a mathematical choice model
that captures the essential behavioral features of the choice process customers go through when
interacting with software agents. This is followed by a description of a dynamic system used to
model the interactions between customers and companies over time. The third part shows how
the company’s decision of how to customize products and services can be framed in terms of a
Markov Decision Process using the customer behavior model of Section 2.1 and the dynamical
system of Section 2.2.

2.1 Customer Behavior

This section describes a customer behavior model that captures the ways in which customers
react to recommendations of products and services made by software agents that is consis-
tent with the behavior qualitatively described in the psychology and marketing literature (e.g.,
Zauberman, 2000; Ariely et al., 2004). Customer observe the true quality of the recommen-
dation, plus or minus an error term. The probability that the customer will accept the recom-
mendation, reject the recommendation, or leave the company is defined through a random utility
model (e.g., McFadden, 1981; Meyer & Kahn, 1990). According to random utility theory, when
a customer is offered product X the utility that is actually observed has two components: a de-
terministic component u(X), which corresponds to the true underlying utility and an error term
e. The error term accounts for factors such as unobserved attributes, imperfect information, or
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measurement errors that make the customer unable to determine the exact utility of a product
upon initial examination. Formally, this can be expressed as

û(X) = u(X) + ε

where û(X) is the observed utility.

Once customers evaluate the utility of X , the service they are being offered, they can take one of
three actions:

• Accept product X if û(X) > 0

• Reject product but come back next time if −c < û(X) < 0

• Leave the company and never come back if û(X) < −c

Customers who observe a very low utility (−c, which can be interpreted as a switching cost)
immediately lose trust in the agent as a reliable advisor and never return. In the case of services
provided over smartphone apps, this can be interpreted as unistalling the app. The recommenda-
tion is accepted if the observed utility exceeds a given threshold, which can be assumed to be 0
without loss of generality. Customers who accept the suggested product or service are satistfied
and return the next time they require service. If a recommendation is barely below the accep-
tance level, customers will purchase elsewhere (or forego purchasing in the current period) but
return in the future. The cost of not making a sale by experimenting with different customization
policies is captured by the probability that the observed utility will fall in the interval [−c, 0].

The probabilities of accepting, leaving, or rejecting a product X (denoted pA (X), pL (X), and
pR (X), respectively) can be computed by defining the distribution of ε. If ε is normally dis-
tributed with mean 0 and variance σ 2, the parameter σ can be altered to represent different types
of products or business settings, where the customer observes products with more or less error.
This model corresponds to the ordered Probit model, and its properties are thoroughly discussed
in Greene (2000). The general formulation of the choice probabilities is shown in the first column
of (1), and the specific form they take when ε ∼ N (0, σ ) is shown in the second column (where
8 represents the cumulative normal function). Figure 1 depicts the probabilities taking each of
the three possible actions when the customer is offered a recommendation with a deterministic
utility component u. In this particular case, u is below the acceptance threshold, but since the
observed utility is u + ε the probability that the product will be accepted is positive.

Action Probability of Action Probability if ε ∼ N (0, σ )

Accept pA (X) = Pr (u (X) ≥ 0) = 8
(

u(X)
σ

)

Leave pL (X) = Pr (u (X) < −c) = 8
(
− u(X)+c

σ

)

Reject pR (X) =
[
1 − pA (X) − pL (X)

]
= 1 − 8

(
u(X)

σ

)
− 8

(
− u(X)+c

σ

)

(1)
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Figure 1 – Probabilities of Accepting, Rejecting and Leaving when offered a

product with deterministic utility u.

2.2 Dynamics of Customer-Company Interactions

Figure 2 describes the dynamics of customer/company interactions. Since the interactions take
place through an automated interface controled by a smart agent, the words “company” and
“agent” are used interchangeably. This system is the basis of the formulation of the agent’s
dilemma as a Markov decision problem.

Figure 2 – The dynamics of customer-company interactions.

Each customer belongs to a segment Si ∈ S. The company does not know the segment to
which the new customer belongs, but has prior beliefs. These beliefs are represented by a |S|-
dimensional vector b0 ∈ B, with each component corresponding to the probability that the cus-
tomer belongs to a given segment. If S∗ denotes the true segment to which the customer belongs,
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the i’th component of the prior belief vector is b0
i = Pr(S∗ = Si ) ∈ [0, 1]. Since all customers

must belong to some segment,
|S|∑

i=1
b0

i = 1. The learning problem faced by the agent is the

assignment of an individual customer to one of the | S | segments.

Each segment Si is defined by a utility function ui (X) that maps products and services X into real
numbers. One way to define these utility functions is by associating each segment Si with a vector
β i . The components of β i are the weights a customer of segment i gives to each attribute of the

products in X. The corresponding utility function could be defined as ui
(
X j

)
=

(
β

′

i ∙ X j

)
,

where ui
(
X j

)
denotes the utility that product X j has to a customer of segment Si .

When the customer requests service, the company chooses a product from the set X = {X1,

X2, . . . , X |X|
}
. X is a set of substitute products or services, and can be thought of as the dif-

ferent ways in which a service can be customized. Each Xi ∈ X is a vector whose components
correspond to different levels of the attributes of the product or service. The recommendation
made during the t’th interaction is denoted Xt . The decision problem of which service configu-
ration should be chosen is directly addressed as an optimization problem in Section 2.3.

The customer will either accept the recommendation, reject the recommendation, or leave, as
explained in the beginning of this section. The probabilities with which each of these actions
take place are given by (1). The company will observe the customer’s action as described in
Figure 2. The observation made during the t’th interaction is denoted θ t , and the set of possible
observations is 2 =

{
θ A, θ R, θ L

}
, corresponding to accepting the recommendation, rejecting

the recommendation, and leaving the system. For example, θ5 = θ A means that the customer
accepted the product offered during the fifth interaction.

After each observation, beliefs are updated in light of the previous belief and the action/observ-
ation pair of the last interaction. Bertsekas (1995a) proved that the last belief, bt−1 is a sufficient
statistic for

(
b0, X1, θ1, X2, θ2, ..., Xt−1, θ t−1

)
. Thus, if bt

i denotes the i’th component of the
belief vector after t interactions, then

bt
i = Pr

(
S∗ = S1|b

t−1, Xt , θ t
)

.

The new belief can be computed using

Pr
(

S∗ = Si |b
t−1, Xt , θ t

)
=

1

Pr
(
θ t |bt−1, Xt

) ∙
[
bt−1

i ∙ Pr
(
θ t |Si , Xt)

]

where

Pr
(
θ t |bt−1, Xt

)
=

|S|∑

i=1

[
bt−1

i ∙ Pr
(
θ t |Si , Xt)

]
(2)

is a normalizing factor. The update function ϕ can then be defined by

ϕ (b, θ, X) =
1

Pr (θ |b, X)
∙








b1 ∙ Pr (θ |S1, X)

b2 ∙ Pr (θ |S2, X)

...

b|S| ∙ Pr
(
θ |S|S|, X

)








. (3)
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2.3 Optimization Problem

The company earns a payoff of 1 if the customer accepts the recommendation and 0 otherwise.
Since increasing the utility always increases the probability of purchase, the incentives of the
customer and the company are perfectly aligned. It is always in the company’s best interest to
please the customer, since the more utility the company provides to the customer, the higher
the payoff. The expected payoff of suggesting product X j to a customer from segment Si is
given by

R
(
Si , X j

)
= 1 ∙ pA

i

(
X j

)
+ 0 ∙ pR

i

(
X j

)
+ 0 ∙ pL

i

(
X j

)
= pA

i

(
X j

)
(4)

where pA
i

(
X j

)
is the probability of purchase as defined in (1).

If the company knows the customer’s true segment, the problem of making recommendations
reduces to always suggesting the product with the highest expected utility for that segment. This
is a Markov chain model, which can be easily extended to other models such as those of Pfeifer
& Carraway (2000) through state augmentation.

The problem of making recommendations is not as simple if the company does not know the
customer’s segment. The real decision is to find the best recommendation for each possible
belief so as to maximize the expected revenue (or customer’s utility). This policy, denoted μ∗

must solve the equation

μ∗ = arg max
X∈X

{

E

(
∞∑

t=0

γ t rt

)}

(5)

where γ ∈ (0, 1)is a discount factor and rt is the reward at time t . The set of possible beliefs
is [0, 1]|S|, which is uncountably infinite. This stands in sharp contrast with customer migration
models, where the possible states of the system are defined by a finite (or countably infinite) set.

In the belief-state problem, the payoff function maps belief states and actions to revenues. There-
fore, the payoff function R̃ is defined by

R̃ (b, X) =
|S|∑

i=1

bi ∙ R
(
Si , X j

)
. (6)

The three possible transitions from any given belief state are given by

Pr
(

bt = b̂|bt−1, Xt
)

=






|S|∑

i=1
bt−1

i ∙ pA
i

(
Xt

)
if b̂ = ϕ

(
bt−1, θ A, Xt

)

|S|∑

i=1
bt−1

i ∙ pR
i

(
Xt

)
if b̂ = ϕ

(
bt−1, θ R, Xt

)

|S|∑

i=1
bt−1

i ∙ pL
i

(
Xt

)
if b̂ = ϕ

(
bt−1, θ L , Xt

)
= L

0 otherwise

(7)

where L corresponds to the state when the customer has left the system. Figure 3 depicts the
dynamics of the belief-state problem for the two-segment case.
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PrPr

Pr

Figure 3 – Transition probabilities and payoffs in the partially observable

stochastic shortest path problem.

The optimal value function V ∗ (b) = max E
(

∞∑

t=0
γ t rt

)
satisfies the Bellman equation

V ∗ (b) = max
X∈X

{

R̃ (b, X) + γ
∑

b′∈B

P
(
b′|b, X

)
V ∗ (

b′)
}

. (8)

We know from (8) that b́ can only take three possible values, namely ϕ
(
b, θ A, X

)
, ϕ

(
b, θ R, X

)
,

and ϕ
(
b, θ L , Xt

)
. Furthermore, since customers have no value after they leave V ∗(L) = 0.

Therefore, (9) can be written as

V ∗ (b) = max
X∈X





R̃ (b, X) + γ

∑

θ∈{θ A,θ R}

P (θ |b, X) V ∗ (ϕ (b, θ, X))





, (9)

The dynamic programming mapping corresponding to the above value function is

(T V ) (b) = max
X∈X





R̃ (b, X) + γ

∑

θ∈{θ A,θ R}

P (θ |b, X) V ∗ (ϕ (b, θ, X))





(10)

This mapping is a monotone contraction under the supremum metric. Therefore, repeated ap-
plication of the operator T to a value function V converges to the optimal value function (e.g.,
Bertsekas, 1995b). This result is the basis for the value iteration algorithm, which consists of
repeatedly applying the operator T to the value function V 1. Letting V n = T n V , i.e., n applica-
tions of T to V 1, then the algorithm is stopped when |V ∗(b) − V n(b)| is within a tolerable error
margin, which can be expressed as a function of |V ∗(b) − V n−1(b)| (this is an application of a
standard result found in Littman [1994] or Bertsekas [1995b], for example).

One important problem must be solved before value iteration can be used to find the optimal
solution: there is an infinitely large number of beliefs. The continuity of the belief space could
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mean that there exists some n for which V n cannot be represented finitely or that the value
function updates cannot be computed in a finite amount of time. The next sections describes how
these difficulties can be overcome in order to solve the agent’s dilemma.

3 MODEL ANALYSIS AND SOLUTION

The value function after n iterations of the dynamic programming mapping is piecewise linear
convex function and can be written as

V n (b) = max
a∈An

(b ∙ α)

where An is a finite set of |S|-dimensional vectors. This implies that V ∗(b) can be approximated
arbitrarily well by a piecewise linear convex function.

Proposition 1. The value function V n(b), obtained after n applications of the operator T to
the value function V 1(b), is piecewise linear and convex. In particular, there exists a set An of
|S|-dimensional vectors such that

V n (b) = max
a∈An

(b ∙ α)

Proof. The proof is by induction, and therefore consists of the verification of the base case and
of the induction step.

(1) Base case: V 1 (b) = max
α∈A1

(b ∙ α) .

(2) Induction step: If
∃An−1 such that V n−1 (b) = max

α∈An−1
(b ∙ α)

then
∃An such that V n (b) = max

α∈An
(b ∙ α) .

The statement above can be proved by verifying that the elements α ∈ An are of the form

α = pA (X) + γ0A (αi ) + γ0R (
α j

)
(11)

where αi ∈ An−1, α j ∈ An−1 and 0A and 0R matrices with elements

0A
i j (X) =






pA
i (X) if i = j

0 otherwise

and

0R
i j (X) =






pR (X) if i = j

0 otherwise
.
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It then follows that
V n (b) = max

α∈An
(b ∙ α)

which can be verified to be true by defining

An :=
⋃

X∈X






⋃

αi ∈An−1




⋃

α j ∈An−1

(
pA (X) + γ0A (X) ∙ αi + γ0R (X) ∙ α j

)








.

The details of the proof are in Appendix A.1. �

Figure 4a shows an example of the convex hull of a hypothetical set An consisting of four vectors
and Figure 4b depicts the corresponding value function V n(b). Each vector corresponds to a
different customization policy. On a more intuitive level, each component of the vector is the
expected payoff the agent would receive given a sequence of recommendations and a customer
segment. The optimal policy will be a function of the belief (represented by the slope of the
dotted line in Figure 4a) and the set of feasible policies. Each piecewise-linear segment of the
value function 4b corresponds to a different policy.

Figure 4 – A set of An vectors and their corresponding value function.

Theorem 1 provides the missing link to ensure that the value iteration algorithm is certain to arrive
at the optimal solution for the finite-horizon problem and an arbitrarily good approximation for
the infinite horizon problem in a finite amount of time. Unfortunately, this finite amount of
time can be very large and often impractical. The difficulty lies in the efficient computation
of the sets An since the size of these sets grows very fast with each step of the value iteration
algorithm. In each iteration of the algorithm there is one new α vector for each possible product
recommendation X for each permutation of size 2 of the vectors in An−1. Consequently, |An| =
|X|2

n−1.

The way in which the sets An are generated make it impossible to determine the optimal value
function in closed-form, and the rate at which they grow can make numerical solutions impracti-
cal. Figure 5 show the convex hull of a sequence of sets An for increasingly large n. Fortunately,
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2α

1α

2α 2α

1α 1α

(a) (b) (c)

Figure 5 – Generating An sets from An−1.

this property is shared by all partially observable Markov Decision Problems (POMDPs), and
the important developments in the literature have generated methods to (i) make the sets An as
small as possible so as to minimize the size of An+1 or (ii) find ways of quickly generating the
sets An from sets An−1. Sondik (1978) made significant theoretical contributions to the under-
standing of the POMDP model and described the first algorithm for finding the optimal solution.
Monahan (1982) formulated a linear program that finds the smallest possible set An that contains
all the vectors a used in the optimal solution. Littman’s (1994) Witness algorithm is one of the
most important contributions to the generation of An from An−1. Applications in robot naviga-
tion resulted in a recent increase of interest in POMDPs in the artificial intelligence community
(e.g., Kaelbling et al., 1996) which led to very important contributions in computational meth-
ods. Littman et al. (1995), for example, describe methods to solve POMDPs with up to nearly
one hundred states. Tobin (2008) and Ross et al. (2008) provide a recent review of the state of
the art in this field.

Figure 6 illustrates the results of numerical studies comparing the optimal policy μ∗, defined in
(6) and computed using the Witness algorithm, and the myopic policy μM , which satisfies

μM (b) = arg max
X∈X

{
R̃ (b, X)

}
. (12)

(a) (b)
Figure 6 – Comparison of optimal and myopic customization policies.
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These results were obtained from simulations where companies started out with the same number
of customers and gained no new customers over time. The graphs are typical of simulations done
with varying numbers of customer segments and products. Graph 5(a) shows that the myopic
policy is more likely to generate profits in the short-run, while the optimal policy does better in
the long-run. The agent that acts optimally sacrifices sales in the beginning to learn about the
customers to serve them better in the future. Graph 5(b) shows the cost of learning in terms of
the customer base. The optimal policy leads to more customer defections due to low utility in the
short-run, but the customers who stay receive consistently high utility in later periods and defect
at much slower rates than customers being served by a myopic agent.

In spite of significant recent advances in computational methods, the optimal policy cannot al-
ways be computed in a reasonable amount of time. Hence the need for approximate solution
methods that produce good policies in an efficient manner. If V ∗(b) can be approximated by
Ṽ (b), then the corresponding policy μ̃ (b) satisfies

μ̃ = arg max
X∈X

{

R̃ (b, X) + γ
∑

θ∈2

P (θ |b, X) Ṽ (ϕ (b, θ, X))

}

. (13)

There are several ways to approximating V ∗(b). Bertsekas (1995b) discusses traditional ap-
proaches, and Bertsekas & Tsitsiklis (1996) suggest alternative methods based on neural net-
works and simulations. The paragraphs that follow describe the Limited Learning (L L) ap-
proximation. This approximation is of interest because its corresponding customization policy
yields good results and can be stated in simple terms which give insights into relevant managerial
settings.

Limited learning policies are derived by assuming that the agent will stop learning after a fixed
number of interactions. This restriction in the agent’s actions implies that the same product will
always be recommended after a given point. These approximations are very good in situations
where most of the learning occurs in the early stages.

Proposition 2 derives an expression for the policy μL L (b), which maximizes profits when agents
are not allowed to change their beliefs between interactions.

Proposition 2. If agents are constrained to recommend the same product in all interactions with
customers, then the infinite-horizon value function is given by

V L L (b) = max
X∈X






|S|∑

i=1

bi ∙

(
pA

i (X)

1 − γ
(
1 − pL

i (X)
)

)



. (14)

and the corresponding policy by

μL L (b) = arg max
X∈X






|S|∑

i=1

bi ∙

(
pA

i (X)

1 − γ
(
1 − pL

i (X)
)

)



. (15)
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Proof. See Appendix A.2. �

The μL L (b) policy can be re-written as

μL L (b) = arg max
X∈X

{
b′ ∙ 3 (X) ∙ pA (X)

}

where 3 (X) is a diagonal matrix that can be interpreted as the inverse of the risk associated
with each recommendation for each segment. There are many ways to choose the elements of
3 (X). In the particular case of (18), the risk is fully captured by the probability of leaving.
In a real world application, this would be an appropriate place to incorporate the knowledge of
managers into the control problem. If all the diagonal elements of 3 (X) are the same, μL L

reduces to the myopic policy. The matrix 3 (X) scales the terms pA
i (X) by a risk factor unique

to each product/segment combination. Therefore, under μL L products that are very good (or
very safe) for only a few segments are more likely to be chosen than products that are average for
all segments. The opposite would be true with the myopic policy. Consequently, agents acting
according to μL L observe more extreme reactions and learn faster.

The μL L (b) policy can be improved upon by allowing the agent to learn between interactions.
In other words, the agent acts according to μL L (b) but updates the beliefs after each interaction.
This idea can be generalized to a class of policies where during each period the agent solves a
n- period problem and chooses the action that is optimal for the first period, in a rolling-horizon
manner. More precisely,

μL L(n) = arg max
X∈X

{

E

(
n∑

t=0

γ t rt

)}

s.t.

rn (b) = V L L (b)

In the specific case where n = 1 the corresponding policy is given by

μL L(1) = arg max
X∈X

{

R̃ (b, X) + γ
∑

θ∈2

P (θ |b, X) V L L (ϕ (b, θ, X))

}

. (16)

Figure 7 shows the results of a numerical experiment designed to compare the performance of
policies μL L(1) and μM , the myopic policy. This experiment consisted of simulating purchase
experiences for two sets of 500 customers, each being exposed to one of the two control policies.
Figure 7a shows the customer a base as a function of the number of interactions. The myopic
policy takes less risks and performs better in the short-run, but agents using μL L(1) learn faster
and are able to retain a higher percentage of customers after 4 or so interactions. The net result
is that policy μL L(1) leads to a consistently higher customer base after 9 interactions. Figure 7b
shows that the initial investment in learning by μL L(1) pays off in the long-run in the form of
higher cumulative profits.
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Figure 7 – Comparison of the “limited learning” and “myopic” policies.

The policy μL L(N ) consistently yields good results in empirical tests. The expression for V L L (b)

can be combined with an upper bound based on the assumption of perfect information to compute
performance bounds as a function of the belief state:

max
X∈X






|S|∑

i=1

bi ∙




pA

i (X)

1 − γ
(

1 − pL
i (X)

)









≤ V ∗ (b) ≤






|S|∑

i=1

bi ∙ max
X∈X




pA

i (X)

1 − γ
(

1 − pL
i (X)

)









. (17)

Note, first of all, that the upper and lower bounds are very close to each other in the extreme
points of the belief space. The worst-case scenario happens when the company knows very little
about the customer. In this case, however, we would expect the upper bound to be very loose,
since it is based on the assumption of perfect information. This suggests that using the lower
bound value function as a basis for control may yield good results even if the upper and lower
bounds are not very close.

Figure 8 discretizes the continua of customer heterogeneity and product variety to explain why
μL L(1) performed well in our simulations and is likely to perform well in real-world scenarios.
The first column refers to the situation when there are few customer segments and they are all
very similar. Customization is of little value in this situation because one standardized product
should suit all customer segments equally well. The cases described by the first row are equally
uninteresting. If all products are very similar, the agent will learn very little by observing cus-
tomers over time. However, profits will not be affected because the limited product variety would
prevent the agent from catering to specific tastes in the first place. Cell (4) accurately captures
the situation where online customization is most valuable (and most commonly used): different
customer segments and different products. Since customers differ in their reactions to recommen-
dations, early observations are very informative. This is precisely the situation when the policy
performs well, because it observes “extreme” reactions from different segments and learns fast,
moving to one of the regions in the belief space where μL L(1) is more likely to coincide with the
optimal policy.
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Figure 8 – Possible configurations of customer segments and products.

We conclude this section listing five important properties of the μL L(1) policy.

1. Convergence to the optimal policy

As the belief state approaches the extreme points of the belief space, the upper and lower bounds
are very close to each other. This implies that over time, as the company learns about the cus-
tomer, the policy μ(L L) (b) will be the same as the optimal policy.

2. Lower the probability that the customer will leave after each interaction due to a bad recom-
mendation.

This can only be guaranteed probabilistically because the observation error could theoretically
be large enough to cause the customer to behave suboptimally. The likelihood of this event
happening decreases as the utility of the recommendation increases, and the utility of the recom-
mendations will increase over time.

3. Better revenues than the myopic policy.

When the company already knows the customer well, μL L(1) the myopic policy, and the optimal
policy perform equally well. In situations where tthe agent needs to learn, μL L(1) loses to the
myopic policy in terms of short-run revenue, wins in terms of expected revenues over time.

4. Learn faster than the myopic policy.

The myopic policy is more likely to suggest products that have similar utilities across all customer
segments when the agent is not sure about the customer’s true segment. This situation is likely
to happen at the beginning of the relationship, and suggesting such products leads to little, if any,
learning.

5. Ease of computation (or, better yet, closed-form solution).

The value function V L L(b) can be described in closed-form. Therefore, policies μL L(n) are very
easy to compute and implement for small n.
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4 DISCUSSION

4.1 Solving of the Agent’s Dilemma

The main question of this paper is how companies should customize their products and services in
settings such as the Internet. The analysis unambiguously shows that the pre-dominant paradigm
of maximizing the expected utility of the current transaction is not the best strategy. Optimal
policies must take into account future profits and balance the value of learning with the risk of
losing the customer. This paper describes two ways of obtaining good recommendation policies:
(i) applying POMDP algorithms to compute the exact optimal solution, (ii) approximating the
optimal value function. The heuristic we provide worked well on the tests we performed, but we
do not claim this heuristic to be the best one for all possible applications. Indeed, there are better
heuristics for the solution of POMDPs with certain characteristics and the development of such
heuristics for specific managerial settings is a topic of great interest to current researchers.

The bounds analyzed in the previous section make explicit why agents acting according to a
myopic policy perform so poorly. These agents fail to recommend products that can be highly
rewarding for some segments because they fear the negative impact that these recommendations
could have on other segments. This fear is legitimate – companies can lose sales and customers
can defect – but it can be quantified through a matrix 3(X) that captures the risk associated
with each possible recommendation for each segment. Optimally-behaving agents make riskier
suggestions than myopic agents, learn faster, and earn higher payoffs in the long-run.

4.2 Learning and the Value of Loyalty

The more quality (utility) a company provides the customer, the more likely the customer is to
come back. The better the company knows the customer, the more quality it can provide. Yet,
learning about the customer can mean providing disutility (less quality) in the short-run. The in-
teraction policy described in this paper reconciles these two apparently contradictory statements.
The model suggests that the concept of loyalty must be expanded to incorporate learning. The
extent to which repeated purchases lead to high value and loyalty depends on the company’s
ability to learn about their customers as they interact.

The benefits of loyalty to profitability have been abundantly discussed in the managerial litera-
ture. Reichheld (1996) gives the following examples of how loyalty leads to profits:

• In an industrial laundry service, loyal customers were more profitable because drivers knew
shortcuts that made delivery routes shorter and led to cost reductions.

• In auto-service, if the company knows a customer’s car, it has a better idea of the type of
problem the car will have and will be able to identify and fix the problem more efficiently.

• A shop that sells to the same group of people year after year saves on inventory costs
because it can stock only the items its customers like.
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These examples suggest an intimate relationship between learning and loyalty. In the laundry
example, the fact that the customers have made a number of purchases from the same service
provider has no direct effect on cost reduction. If a particular customer were to leave the company
and its neighbor became a new customer, the cost savings would be the same in spite of the
newness of the new customer. What seems to matter is knowledge, not length of tenure or number
of previous purchases. Changes in profitability and retention rate over time depend on the firm’s
ability to learn from past interactions and customize its services so as to provide customers with
more quality.

The observations of the previous paragraph are corroborated by the analysis of Section 3. Fig-
ure 9 reproduces and labels the graph of Figure 6b. When the curves intersect, both firms have
a customer base of size N who have been customers for T interactions. Even though both cus-
tomer bases might be assigned the same value by a number of metrics (e.g., size of customer base,
length of tenure) the difference in knowledge acquired during the first T interactions makes an
enourmous difference in future profits. A metric such as RFM (recency, frequency, monetary
value) might even assign a higher value to customers of the myopic agent. The ability to offer a
large variety of products to a heterogeneous customer population (cell 4 in Figure 8) is not suffi-
cient to generate rising revenues over time. It is also necessary to learn over time and customize
services accordingly. Reinartz & Kumar (2000) make no mention of learning about customer
preferences and customized services in their study, and their conclusion is that profitability per
customer does not increase over time. Reichheld & Schefter (2000) conduct their study in the
context of the Internet, where customer information is easily gathered and customization is com-
monplace. Not surprisingly, they find that profits per customer rapidly increase over time and
that the benefits of loyalty on the online world far exceed those of the brick-and-mortar world.

Figure 9 – The effect of knowledge of profits.

4.3 The Value of Knowing the Customer

The model presented in this paper shows how to quantify the value of learning about cus-tomers.
Therefore, the optimal value function V ∗(b) can be interpreted as the lifetime value of a customer
as a function of how well the company knows that customer. The fact that V ∗(b) is convex
(proved in Theorem 1) has interesting managerial implications.
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Consider, for example, a company operating in an industry where customers of Segment 1 are
half as profitable as customers in Segment 2. Which marketing campaign would be most prof-
itable: (i) one that only brings in customers from Segment 1 or (ii) one that brings customers from
both segments with equal probability? The answer is that it depends on the shape of the value
function. Figure 10 shows three possible value functions. If V ∗(b) = V ∗

1 (b), then campaign (ii)
is better; if V ∗(b) = V ∗

3 (b), then campaign (i) is better. Both campaigns are equally profitable
if V ∗(b) = V ∗

2 (b). The intuition behind this result is that sometimes it can be costly to learn
about one’s own customers. In some situations the company is better off knowing for sure that
they are providing excellent value to the least desirable segment. The lower the switching cost
and the higher the variance in the utility observation error, the more companies should invest in
targeted advertising. This result provides an important connection between a firm’s acquisition
and retention policies: the V ∗

i curves, which guide the acquisition policy, are determined by the
customization policy.

)0(*

)1(*

)(*
1 )(*

2 )(*
3

Figure 10 – The value of customers as a function of how well the company knows them.

The more a company knows the preferences of a particular customer, the more it should want to
learn even more about that customer in order to transform knowledge into cus-tomized, highly
valued services. Intuitively, one may think the information is most valuable when the company
doesn’t know anything about the customer. The convexity of the value function implies the
opposite. In qualitative terms, the change in the value of the customer as the company’s level
of knowledge changes from “very good” to “excellent” is greater than the change in value as
knowledge goes from “average” to “good”. This finding provides a theoretical justification for the
empirical finding that the difference in loyalty between “very satisfied” and “satisfied” customers
is much greater than the difference between “satisfied” and “slightly dissatisfied” customers (e.g.,
Heskett et al., 1994). If a company knows a customer well, that customer will receive consistently
good recommendations and be very satisfied.

5 DIRECTIONS FOR FUTURE RESEARCH

The results obtained in this paper drew on previous research in Management Science and Con-
sumer Behavior. Future research in this topic can be pursued in both these directions. From the
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Management Science perspective, the issue of the best way to implement web-based customiza-
tion policies remains open. The value function approximations derived in this paper lead to a
number of insights, but exact numerical methods generate better control policies. More work
needs to be done to understand which approximation methods work best in situations where the
problem is too large to compute the optimal policy. A second open question is how to recom-
mend sets of products. In some situations agents are asked to recommend more than one product.
One obvious way of addressing this issue is to consider each possible set as a single product and
reduce the problem to the one solved in this paper. This method can be inefficient if the set of
possible products is large, because of the exponential increase in the number of potential sugges-
tions. Therefore, it is worthwhile to explore other ways to generate good policies.

From the Consumer Behavior perspective, there are two topics of interest. First, the de-velopment
of efficient perception management devices to reduce the probability of defection. In some situa-
tions, it may be possible to have a “suggestion” to explore tastes as well as a “recommendation”
to maximize utility. It has been shown that customers do not forgive bad recommendations, but
could they forgive bad suggestions? Second, it is important to investigate how customers ag-
gregate their experiences with agents over time. The model in this paper assumes that customer
behavior is solely determined by the current product offering. In reality, the customers’ percep-
tions of the agent’s quality evolve over time. But how exactly does this evolution take place? On
one hand, there is a stream of research which suggests that recency (the satisfaction derived in
the last few interactions) is the most important determinant of current satisfaction (for a review
see Ariely & Carmon, 2000). On the other hand, first impressions are important and it can be
very difficult for a customer to change his or her initial perception of the agent’s quality (e.g.,
Hogarth & Einhorn, 1992). These two views are in direct opposition, and it is not clear which is
more important in web-based settings. Further research should also investigate how customers’
expectations change as a function of the quality of the advice they receive.
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A Appendix

A.1 Proof of Proposition 1

The proof is by induction, and therefore consists of the verification of a base case and the induc-
tion step.

(1) Base case: To prove that there exists a set of vectors A1 such that

V 1 (b) = max
α∈A1

(b ∙ α) .

The optimal policy with 1 step to go is to act myopically with respect to immediate payoffs:

V 1 (b) = max
X∈X

{
R̃ (b, X)

}
= max

α∈A1
(b ∙ α)

where the last equality holds by letting A1 =
⋃

X∈X
pA

i (X) .

(2) Induction step

If
∃An−1 such that V n−1 (b) = max

α∈An−1
(b ∙ α)

then
∃An such that V n (b) = max

α∈An
(b ∙ α)

From the induction hypothesis, we can write, for θ ∈
{
θ A, θ R

}
,

V n−1 (ϕ (b, θ, X)) = max
α∈An−1

(ϕ (b, θ, X) ∙ α) = ϕ (b, θ, X) ∙ αn−1 (b, θ, X) (18)

where
αn−1 (b, θ, X) = arg max

α∈An−1
(ϕ (b, θ, X) ∙ α) .

Since V n = T V n−1, we obtain V n (b) by applying the mapping (T V ) (b) to the V n−1 function
above:

V n (b) = max
X∈X





R̃ (b, X) + γ

∑

θ∈
{
θ A,θ R

}
Pr (θ |b, X)

[
ϕ (b, θ, X) ∙ αn−1 (b, θ, X)

]




. (19)
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Recall the definition of ϕ (b, θ, X) and note that ϕ
(
b, θ A, X

)
and ϕ

(
b, θ R, X

)
can be written as

ϕ
(

b, θ A, X
)

=
b ∙ 0A (X)

Pr
(
θ A|b, X

)

and

ϕ
(

b, θ R, X
)

=
b ∙ 0R (X)

Pr
(
θ R |b, X

) .

If we substitute R̃ (b, X) =
|S|∑

i=1
bi ∙ R

(
Si , X j

)
and the expressions for ϕ (b, θ, X) above into the

expression for V n (b) we obtain

V n (b) = max
X∈X

{
b ∙ pA (X) + γ ∙ b ∙ 0A (X) ∙ αn−1

(
b, θ A, X

)

+ γ ∙ b ∙ 0R (X) ∙ αn−1
(

b, θ R, X
) }

by cancelling out the terms Pr
(
θ A|b, X

)
and Pr

(
θ R |b, X

)
.

Factoring out the vector b and defining the set An as

An =
⋃

X∈X






⋃

αi ∈An−1




⋃

α j ∈An−1

(
pA (X) + γ0A (X) ∙ αi + γ0R (X) ∙ α j

)









we conclude that
V n (b) = max

α∈An
(b ∙ α)

A.2 Proof of Proposition 2

If agents are not allowed to learn, then the value function that maximizes future expected profits
for the n−period problem is given by

V̂ n (b) = max
α∈ Ãn

(b ∙ α) .

where Â1 = A1 and the sequence of sets
{

Â1, Â2, ..., Ân
}

is defined by the recursion

Ân =
⋃

X∈X




⋃

αi ∈ Ân

[
pA (X) + 0(X) ∙ αi

]




where 0 (X) = 0A (X) + 0R (X).

The value functions V̂ n (b) can be explicitly written as maximizations over α ∈ Â1 as follows:

V̂ 1 (b) = max
α∈ Â1

(b ∙ α) = max
X∈X

(
b ∙ pA (X)

)
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V̂ 2 (b) = max
α∈ Â2

(b ∙ α) = max
X∈X

(
b ∙

[
pA (X) + 0 (X) ∙ pA (X)

])

...

V̂ n (b) = max
α∈ Ân

(b ∙ α)

= max
X∈X

(
b ∙

[
pA (X) + 0 (X)

[
pA (X) + 0 (X) [pA (X) + ∙ ∙ ∙

]
∙ ∙ ∙

]
∙ pA (X)

)

= max
X∈X

b ∙ pA (X) + b ∙ 0 (X) ∙ pA (X) + ∙ ∙ ∙ + b ∙ [0 (X)]n−1 ∙ pA (X)

= max
X∈X

b

[

I +
n−1∑

i=1

[0 (X)]i

]

∙ pA (X)

The sequence of functions V̂ n (b) converges:

lim
n→∞

(
V̂ n+1 (b) − V̂ n (b)

)
= (20)

= lim
n→∞

(

max
X∈X

b

[

I +
n−1∑

i=1

[0 (X)]i

]

∙ pA (X) − max
X∈X

b

[

I +
n−2∑

i=1

[0 (X)]i

]

∙ pA (X)

)

= lim
n→∞

(
max
X∈X

[0 (X)]n ∙ pA (X)

)

= 0

The last step follows from the fact that all the elements in 0 (X) are in (0, 1), and therefore
lim

n→∞
[0 (X)]n is a matrix of zeroes. Now consider the difference

Dn (b) = b ∙ α̂ − V n (b)

where
α̂ = arg max

X∈X

(
b ∙ [I − 0 (X)]−1 ∙

[
pA (X)

])
.

Substituting the full expression for V n (b) yields

Dn (b) = max
X∈X

(
b ∙ [I − 0 (X)]−1 ∙

[
pA (X)

])
−

(

max
X∈X

b ∙

[

I +
n−1∑

i=1

[0 (X)]i

]

∙ pA (X)

)

Since all the elements of 0 (X) are in (0, 1), the expression [I − 0 (X)]−1 is well-defined and
can be expanded to

[I − 0 (X)]−1 = I +
∞∑

i=1

[0 (X)]i .
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Substituting the expansion above into the expression for Dn yields

Dn (b) = max
X∈X

(

b ∙

[
∞∑

i=n

[0 (X)]i

]

∙ pA (X)

)

.

It then follows that
lim

n→∞
Dn (b) = 0, ∀b (21)

The result from (20) ensures that the sequence V n (b) converges to a limit V ∗ (b). Equation
(21) asserts that V n (b) also converges to b ∙ α̂. Since the dynamic programming mapping is a
monotone contraction, the limit is unique, so α̂ corresponds to the policy that maximizes the
infinite horizon value function.

A.3 Simulation parameters

Parameters used for simulation in Figure 7:

c = 2.5

ε ∼ Normal (0, 3)

u1 (1) = −2 u2 (1) = 5

u1 (2) = 5 u2 (2) = −2

u1 (3) = 0 u2 (3) = 0

u1 (4) = 3 u2 (4) = 3
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