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Abstract 
 
In this article, we evaluate the performance of the 2T  chart based on the principal components 
(PC chart) and the simultaneous univariate control charts based on the original variables (SU X  
charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart 
lies on the dimensionality reduction. However, depending on the disturbance and on the way the 
original variables are related, the chart is very slow in signaling, except when all variables are 
negatively correlated and the principal component is wisely selected. Comparing the SU X , the SUPC 
and the 2T  charts we conclude that the SU X  charts (SUPC charts) have a better overall performance 
when the variables are positively (negatively) correlated. We also develop the expression to obtain the 
power of two 2S  charts designed for monitoring the covariance matrix. These joint 2S  charts are, in 
the majority of the cases, more efficient than the generalized variance S  chart. 
 
Keywords:  principal component; simultaneous univariate control charts; multivariate 
process control. 
 
 

Resumo 
 
Neste artigo, avaliamos o desempenho do gráfico de 2T  baseado em componentes principais 
(gráfico PC) e dos gráficos de controle simultâneos univariados baseados nas variáveis originais 
(gráfico SU X ) ou baseados em componentes principais (gráfico SUPC). A principal razão para o uso 
do gráfico PC é a redução de dimensionalidade. Entretanto, dependendo da perturbação e da correlação 
entre as variáveis originais, o gráfico é lento em sinalizar, exceto quando todas as variáveis são 
negativamente correlacionadas e a componente principal é adequadamente escolhida. Comparando os 
gráficos SU X , SUPC e 2T  concluímos que o gráfico SU X  (gráfico SUPC) tem um melhor 
desempenho global quando as variáveis são positivamente (negativamente) correlacionadas. 
Desenvolvemos também uma expressão para obter o poder de detecção de dois gráficos de 2S  projetados 
para controlar a matriz de covariâncias. Os gráficos conjuntos de 2S  são, na maioria dos casos, mais 
eficientes que o gráfico da variância generalizada S . 
 
Palavras-chave:  componentes principais; gráficos de controle simultâneos univariados; 
controle de processos multivariados. 
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1. Introduction 

The control charts are often used to observe whether a process is in-control or not. When 
there is only one quality characteristic, Shewhart charts are usually applied to detect process 
shifts. The power of the Shewhart charts lies in their ability to separate the assignable causes 
of variation from the uncontrollable or inherent causes of variation. Shewhart charts are 
relatively easy to construct and to interpret. As a result, they are readily implemented in 
manufacturing environments. 

However, there are many situations in which it is necessary to control two or more related 
quality characteristics simultaneously. Hotelling (1947) provided the first solution to this 
problem by suggesting the use of the 2T  statistic. Although the 2T  chart can be designed in 
a straightforward manner, it is difficult to relate an out-of-control signal to the variables 
whose parameters have moved away from their in-control values. 

To overcome this difficulty, one of the approaches appearing in the literature is the 
simultaneous use of p univariate X  charts. Woodall & Ncube (1985) and Pignatiello & 
Runger (1990) suggested using univariate CUSUMs on each of the original variables. 
Runger & Montgomery (1997) presented a simple geometrical description of the directional 
sensitivity of a procedure based on simultaneous univariate control charts. Serel et al. (2000) 
studied the use of separate X  control charts for each characteristic from an economic 
perspective. 

Principal components analysis (PCA) is a method of transforming a given set of variables 
into a new set of composite variables. These new variables are orthogonal to each other and 
account for the variance in the original data. It may be found that fewer principal 
components than the number of original variables are enough to summarize the variance. It is 
for these reasons that principal components are often used in exploratory data analysis and 
data reduction. Jackson (1980) suggested the use of principal components in quality control 
in conjunction with the 2T  control chart. The disadvantage of using principal components 
and the 2T  statistic is that both statistics may not have any physical meaning. 

Schall & Chandra (1987) presented a method based on the principal components properties 
and multivariate regression analysis to predict the cause of variation. Souza & Rigão (2005) 
proposed procedures to identify the variables responsible for process instability. They 
considered the cases of weakly correlated and strongly correlated variables. Initially the 

2T  chart is used to verify the state of the process. When the process is considered to be out-
of-control, another investigation is carried out. For variables strongly correlated, an X  chart 
based on principal components is considered. For variables weakly correlated, an X  chart 
with Bonferroni limits is used. 

The Bonferroni method is an alternative method for multiple comparisons developed from a 
probability inequality (see Johnson & Wichern (2002)). Let iA  denote the event that the 
sample mean for the ith quality characteristic, 1,2, ,i p= … , plots within specified control 

limits. Then, Bonferroni’s inequality states that ( )1 2 1pP A A A α∩ ∩ ∩ ≥ −" . Therefore, 

p individual charts would be constructed, each with type I error equals to pα  (Alt, 1985). 

According to Hayter & Tsui (1994), the overall error given by the system based on the 
Bonferroni inequality tends to be much smaller than α , because of the correlation between 
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the variables. To improve, they proposed a procedure based on the construction of exact 
simultaneous confidence intervals for each of the variables means, which offers easy 
identification of errant variables as well as easy quantification of any changes in the variable 
means. Their approach involves utilizing the existing tables of a multivariate normal 
distribution which give the desired percentage points corresponding to some selected 
correlation structures and α  values. For those combinations of correlations and α  that are 
not in the table, the authors suggest using simulation instead. 

Similarly to what happens with the mean vector, it is also necessary to control the possible 
shifts in 0Σ . In the univariate case, the well-known R, S and 2S  charts are the standard 
charts for the purpose of monitoring process variability (see Montgomery (2004)). Various 
alternative techniques for monitoring process dispersion have been introduced and gained 
wide acceptance in practice, as the use of CUSUM and EWMA control charts. While 
extension of these techniques to the multivariate case is of great importance in practice, 
control chart procedures for monitoring the covariance of a multivariate process have 
received very little attention (see Surtihadi et al. (2004)). Perhaps this lack of progress is due 
to the fact that it is not easy to define uniquely the shifts in the covariance matrix that need to 
be detected. Another difficulty in designing a multivariate control procedure for dispersion is 
the identification of the out-of-control process parameter(s) when the control chart signals. 

The first multivariate control chart for monitoring the covariance matrix Σ  was based on the 
charting statistic obtained from the generalized likelihood ratio test (see Alt (1985)). For the 
case of two variables Alt (1985) proposed the generalized variance S  statistic to control the 
covariance matrix Σ . 

Aparisi et al. (1999) extended the S  statistic to the case of more than two variables and also 
considered this statistic to propose their bivariate control chart with adaptive sample size 
(see Aparisi et al. (2001)). A recent review of multivariate control charts for monitoring the 
covariance matrix was elaborated by Yeh et al. (2006). 

The aim of this paper is to evaluate the performance of the 2T  chart based on the principal 
components and the simultaneous univariate control charts based on the original variables or 
based on the principal components. Moreover, we propose the use of simultaneous 2S  charts 
for monitoring the covariance matrix. We also develop the expression to obtain the power of 
this new monitoring procedure (see the Appendix II). 

This paper is organized as follows: the next section presents a revision of different types of 
control charts for monitoring multivariate processes. In Section 3, we first investigate the use 
of principal components to control the mean vector of bivariate and trivariate processes, 
with positive or negative correlations. Second, we investigate the use of simultaneous 
univariate X  charts for monitoring the mean vector of bivariate processes. Alternatively, we 
also consider the use of two simultaneous univariate charts based on the principal 
components. In Section 4, we investigate the performance of two simultaneous 2S  charts 
designed to detect shifts in the covariance matrix. Conclusions are in Section 5. There are 
also three appendixes: in the Appendix I we describe the algorithm given in Serel et al. 
(2000) to obtain the control limits for univariate X  charts; in the Appendix II we present the 
expression to obtain the power of the simultaneous 2S  charts, and Appendix III brings 
Tables A1 through A5. 
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2. Control charts for monitoring multivariate processes 

2.1 Control chart based on the principal components 

One approach to controlling a process with several measured variables is based on principal 
components analysis (PCA). A principal component analysis is concerned with explaining 
the variance-covariance structure of a set of variables through a few linear combinations of 
these variables. Its general objectives are data reduction and interpretation. 

Algebraically, principal components are particular linear combinations of the p random 
variables 1X , 2X ,…, pX . Geometrically, these linear combinations represent the selection of 
a new coordinate system obtained by rotating the original system with 1X , 2X ,…, pX  as the 
coordinate axes. The new axes represent the directions with maximum variability and 
provide a simpler and more parsimonious description of the covariance structure. 

Consider the special linear combinations 

 1 1 11 1 12 2 1p pY e X e X e X′= = + + +e X "  

 2 2 21 1 22 2 2 p pY e X e X e X′= = + + +e X "  (1) 

 #                                     #  
 1 1 2 2p p p p pp pY e X e X e X′= = + + +e X "  

where 

 Var ( )iY = i i iλ′ =e eΣ            1,2, ,i p= …  (2) 

 Cov ( , )i kY Y = 0i k′ =e eΣ      1,2, ,i k p≠ = …  (3) 

being Σ  the covariance matrix of the random vector ′X =[ 1X , 2X ,…, pX ] with the 
eigenvalues given by 1 2 0pλ λ λ≥ ≥ ≥ ≥" . 

The principal components are those uncorrelated linear combinations 1Y , 2Y ,…, pY  whose 
variances in (2) are as large as possible. 

Suppose X is a p dimensional normal vector with mean and covariance matrix given by µ  
and Σ , respectively, that is, ( ),pN µ Σ . The density of X is constant on the µ  centered 
ellipsoids 

 ( ) ( )1 2c−′− − =x µ x µΣ  (4) 

which have axes i ic λ± e , 1,2, ,i p= … , where the ( ),i iλ e  are the eigenvalue-eigenvector 

pairs of Σ . The 2c  statistic is well-known in the literature as the Hotelling 2T  statistic, see 
section 2.3. 

According to Johnson & Wichern (2002) 

 ( ) ( ) ( )22 22 1
1 2

1 2

1 1 1
p

p
c

λ λ λ
−′ ′ ′ ′= ∑ = + + +x x e x e x e x"  (5) 



Machado & Costa  –  The use of principal components and univariate charts to control multivariate processes 

Pesquisa Operacional, v.28, n.1, p.173-196, Janeiro a Abril de 2008 177 

where 1 2, , , p′ ′ ′e x e x e x…  are recognized as the principal components of x . Setting 

1 1 2 2, , , p py y y′ ′ ′= = =e x e x e x…  we have 

 ( ) ( ) ( )22 22
1 2

1 2

1 1 1
p

p
c y y y

λ λ λ
= + + +" . (6) 

In this way, the Hotelling 2T  statistic can be expressed as a function of the X values 
(expression (5)) or as a function of the Y values (expression (6)). Recommendations for 
selecting an appropriate number of principal component variables for multivariate statistical 
process control are typically the same as those proposed for traditional PCA in which the 
objective is to summarize a complex dataset. Following some guidelines suggested by 
Runger & Alt (1996): 

1) Choose k such that  
1 1

0.9
pk

i j
i j
λ λ

= =
≥∑ ∑  

2) Increment  k  such that i mλ λ≥ , where 1

p

j
j

m p

λ
λ ==

∑
 and 1,2, ,i k= …  

3) Plot iλ  against i and select k at the “knee” in the curve 

Although these are useful guidelines in general, process control has a different objective than 
a summary of variation in a random sample of in-control data. Because the goal of statistical 
process control is to detect assignable causes in a stream of data collected over time, an 
approach to PCA is to investigate the performance of a control chart as a function of k. 

 
2.2 Univariate charts for monitoring multivariate processes 

As an example of how to control several variables with X  charts, let us consider two quality 
characteristics, represented by the normally distributed variables 1X  and 2X . First we 
consider the case where both characteristics are independent. If the two variables are 
monitored separately a univariate X  chart with, for example, 3-sigma limits can be 
constructed for each characteristic. Each chart has a probability α = 0.0027 (the type I error) 
of exceeding the 3-sigma control limits. The probability that both variables fall inside the 
control limits when the process is in-control is (1-0.0027)(1-0.0027) = 0.994607. So the 
overall type I error for this case is α′ = 1-0.994607 = 0.0054. If there are p statistically 
independent quality characteristics and charts with α  type I error are used, the overall type I 
error α′  is 

 1 (1 ) pα α′ = − −  (7) 

So if we want to set the type I error for the process as a whole, having p independent variables, 
equation (7) can be used to calculate the suitable type I error for each chart, and then, to obtain 
the correct control limits (see Montgomery (2004)). If the variables are not independent, 
which is the most common case, a more complex procedure has to be employed to obtain the 
control limits to have an α′  value. For simplicity, let us continue with the bivariate case 
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supposing that the variables follow a bivariate normal distribution with the in-control mean 

vector ( )0 0,1 0,2,µ µ′ =µ  and the in-control covariance matrix 
2
0,1 0,1 0,2

0 2
0,1 0,2 0,2

           

       

σ ρσ σ

ρσ σ σ

 
 =
 
 

Σ  

and X  charts are used. So, the control limits are 0,1 0,1a nµ σ±  for 1X  and 

0,2 0,2a nµ σ±  for 2X , where n is the sample size. Given α′ , the control limit coefficient 
a  can be obtained by the following relationship: 

 
1 20,1 0,2

0,1 0,2

1 Pr
X X

a a a a
n n

µ µ
α

σ σ

 − −
′ = − − < < ∩ − < <  

 
 (8) 

 ( )1 21 Pr a Z a a Z a= − − < < ∩− < <  

 ( )1 2 1 21 ,
a a

a a

f z z dz dz
− −

= − ∫ ∫  

where ( )1 2,f z z  is the joint density function of a bivariate standard normal distribution with 
correlation ρ . For example, using expression (8), if the variables 1X  and 2X  are 
uncorrelated ( ρ = 0) a =3.2005. On the other hand, if 1X  and 2X  are correlated ( ρ = 0.7) 
a =3.1828. 

Note that if the characteristics measured are not independent, the probability of a type I error 
is very difficult to calculate by expression (8) and may be distorted if it is computed by 
expression (7). This distortion gets worse as p increases. 

 

2.3 Multivariate control charts 

The most common chart used to control the mean vector of multivariate processes is the 2T  
chart introduced by Hotelling (1947). The first multivariate control chart for monitoring the 
covariance matrix Σ  was based on the charting statistic obtained from the generalized 
likelihood ratio test (Alt, 1985). 

Consider that p correlated characteristics are being measured simultaneously and these 
characteristics follow a multivariate normal distribution with mean vector 

( )0 0,1 0,2 0,, , , pµ µ µ′ =µ …  and covariance matrix 0Σ  when the process is in-control. When 
the ith sample of size n is taken we have n values of each characteristic and it is possible to 
calculate the iX  vector, which represents the ith sample average vector for the p 
characteristics. 

The charting statistic 

 ( ) ( )2 1
0 0 0i iiT n −′

= − −X µ X µΣ  (9) 

is called Hotelling’s 2T  statistic. 2
iT  is distributed as a chi-square variate with p degrees of 

freedom. 
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When the process is in-control, 0=µ µ , there is a probability α  that this statistic exceeds a 

critical point 2
,p αχ , so that the overall type I error can be maintained exactly at the level α  

by triggering a signal when 2 2
,i pT αχ> . If 0≠µ µ , 2

iT  is distributed as a non-central chi-
squared distribution with p degrees of freedom and with non-centrality parameter 

( ) ( )1
0 0 0nλ −′= − −µ µ µ µΣ . 

The first multivariate control chart for monitoring the covariance matrix Σ  was based on the 
following statistic: 

 ( )1
1 0

0
ln lnA pn pn n n tr − 

= − + − + ⋅ 
 

S
SΣΣ  (10) 

where S is the sample covariance matrix, 

11 12 1

21 22 2

1 2

p

p

p p pp

s s s
s s s

s s s

 
 
 =
 
 
 

S

"
"

# # " #
"

 

being iis  the sample variance of the ith variable and ijs  the sample covariance between the 
ith and jth variables. M  is the determinant of a matrix M and tr(M) is the trace of a matrix 
M (the sum of the diagonal elements). 

When the process is in-control, that is Σ = 0Σ , 1A  is distributed asymptotically as a chi-
square with ( )1 2p p +  degrees of freedom; thus, it is possible to define a control chart limit 
to obtain the desired type I error. 

For the case of two variables Alt (1985) proposed the generalized variance S  statistic to 
control the covariance matrix Σ .  S is the sample covariance matrix 

11 12

12 22

s s
s s
 

=  
 

S . 

When the process is in-control ( ) 1 2

1 2
0

2 1n⋅ − ⋅ S
Σ

 is distributed as a chi-square variable with 

2 4n −  degrees of freedom. 

Consequently, the control limit for the S  chart is: 

 
( )

( )

22
2 4, 0

24 1
nCL

n
αχ − ⋅

=
⋅ −

Σ
 (11) 

 



Machado & Costa  –  The use of principal components and univariate charts to control multivariate processes 

180 Pesquisa Operacional, v.28, n.1, p.173-196, Janeiro a Abril de 2008 

3. Performance of the control charts for monitoring the mean vector 

3.1 Comparing the standard 2T  chart with the 2T  chart based on PCVs 

The efficiency of a control chart in detecting a process change can be measured by the 
average run length (ARL). During the in-control period the ARL=1/α  and is called ARL0, 
and during the out-of-control period the ARL=1/(1 )β− . The risks α  and β  are the well-
known Type I and Type II errors, respectively. 
When a process is in-control it is desirable that the expected number of samples taken since 
the beginning of the monitoring until a signal (ARL0) be large, to guarantee few false alarms. 
When a process is out-of-control it is desirable that the expected number of samples taken 
since the occurrence of the assignable cause until a signal (ARL) be small, in order to 
guarantee fast detection of process changes. 

In this study we compare the performance of the standard 2T  chart based on the original 
variables and the 2T  chart based on PCVs. The control limits (CL) for different p values are 
given by 2

, 0.005pCL αχ == , reminding that p is the number of variables used to obtain the 2T  
statistic. 
It is assumed that when p=2 the original variables follow a bivariate normal distribution with 

the in-control mean vector ( )0 0,0′ =µ  and the covariance matrix 12
0

12

1
1
σ

σ
 

=  
 

Σ . 

The principal components analysis requires the computation of the eigenvalues and their 
corresponding eigenvectors. The eigenvalues and the eigenvectors are in Table 1.  
The ARL values for the bivariate case are in Tables 2, A1 and A2, where 
ρ = 0.0, 0.3, 0.5, 0.7± ± ± . The process mean vector changes from ( )0 0,0′ =µ  to 

( )1 0,1 1 1 0,2 2 2;µ δ σ µ δ σ′ = + +µ , where 1δ  and  2δ = 0, 0.5, 1.0, 1.5. 

 
Table 1 – Eigenvalues ( λ ) and eigenvectors (e1, e2) for the bivariate case. 

ρ   variable 1 variable 2 ρ   variable 1 variable 2 
          

 λ  1.0 1.0 λ 1.3 0.7 
 e1 1.0 0.0 e1 0.7071 0.7071 0.0
 e2 0.0 1.0 

-0.3
e2 -0.7071 0.7071 

          

 λ  1.3 0.7  λ 1.5 0.5 
 e1 0.7071 0.7071 e1 0.7071 0.7071 0.3 

 e2 0.7071 -0.7071 
-0.5 

e2 -0.7071 0.7071 
          

 λ  1.5 0.5  λ 1.7 0.3 
 e1 0.7071 0.7071 e1 0.7071 0.7071 0.5 

 e2 0.7071 -0.7071 
-0.7 

e2 -0.7071 0.7071 
          

 λ  1.7 0.3      

 e1 0.7071 0.7071     0.7 

 e2 0.7071 -0.7071     
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Tables 2, A1 and A2 compare the standard 2T  control chart based on the two original 
variables with the control chart based on the first PCV (PC1 chart) and the control chart 
based on the second PCV (PC2 chart). According to the results, the use of the PC1 chart or 
the PC2 chart instead of the standard 2T  chart is risky, specially when the practitioner does 
not know the nature of the disturbance. Runger & Alt (1996) also dealt with the choice of the 
principal components for multivariate statistical process control. Their procedure to select 
the principal components variables (PCVs) considers a specific shift in the mean vector. In 
our study we show that control charts based on selected PCVs are very efficient to detect a 
shift in the mean vector for which they were designed. However, there are other shifts for 
which the control chart might be insensitive. 

When the two original variables are uncorrelated ( 0ρ = ) the PC1 chart is insensitive to any 
shift on the X2 variable and the PC2 chart is insensitive to any shift on the X1 variable. When 
the two original variables are correlated ( 0ρ > ) the PC2 chart is insensitive to shifts of the 
same magnitude in 1µ  and 2µ , that is 1 2δ δ= . When the correlation is negative ( 0ρ < ), 
the PC2 chart is the one that performs better. Depending on the shift, one of the three charts 
leads to the lowest ARL (ARL in bold). 

 
Table 2 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 

(p = 2 and 0.3ρ = ± ) 

   ρ  
    -0.3   0   0.3  
δ1 δ2  PC1 PC2 2T  PC1 PC2 2T  PC1 PC2 2T  

              

0.0 0.0  200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.5  139.35 109.04 110.44 200.0 90.93 115.54 139.35 109.04 110.44 
0.0 1.0  68.12 39.97 37.96 200.0 28.21 41.92 68.12 39.97 37.96 
0.0 1.5  32.93 16.16 13.85 200.0 10.46 15.78 32.93 16.16 13.85 

              

0.5 0.0  139.35 109.04 110.44 90.93 200.0 115.54 139.35 109.04 110.44 
0.5 0.5  200.0 39.97 57.78 90.93 90.93 76.87 68.12 200.0 91.64 
0.5 1.0  139.35 16.16 22.75 90.93 28.21 32.95 32.93 109.04 40.09 
0.5 1.5  68.12 7.57 9.39 90.93 10.46 13.64 17.06 39.97 15.75 

              

1.0 0.0  68.12 39.97 37.96 28.21 200.0 41.92 68.12 39.97 37.96 
1.0 0.5  139.35 16.16 22.75 28.21 90.93 32.95 32.93 109.04 40.09 
1.0 1.0  200.0 7.57 11.28 28.21 28.21 18.49 17.06 200.0 25.81 
1.0 1.5  139.35 4.10 5.65 28.21 10.46 9.36 9.57 109.04 13.03 

              

1.5 0.0  32.93 16.16 13.85 10.46 200.0 15.78 32.93 16.16 13.85 
1.5 0.5  68.12 7.57 9.39 10.46 90.93 13.64 17.06 39.97 15.75 
1.5 1.0  139.35 4.10 5.65 10.46 28.21 9.36 9.57 109.04 13.03 
1.5 1.5  200.0 2.54 3.40 10.46 10.46 5.76 5.82 200.0 8.53 
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When p=3 the original variables also follow a trivariate normal distribution with the in-

control mean vector ( )0 0,0,0′ =µ  and the covariance matrix 
12 13

0 12 23

13 23

1
1

1

σ σ
σ σ
σ σ

 
 =  
 
 

Σ . 

The eigenvalues and the eigenvectors are in Table 3. The ARL values for the 
trivariate case are in Tables 4, A3 and A4, where ( )12 13 23,  ,  ρ ρ ρ  = (0.0,0.0,0.0); 
(0.3,0.3,0.3); (0.8,0.5,0.2). The process mean vector changes from ( )0 0,0,0′ =µ  to 

( )1 0,1 1 1 0,2 2 2 0,3 3 3; ;µ δ σ µ δ σ µ δ σ′ = + + +µ  where 1δ , 2δ  and 3δ = 0, 0.5, 1.0, 1.5. It is 
adopted ARL0=200.0. 

Tables 4, A3 and A4 compare the standard 2T  chart based on the three original variables 
with the control charts based on: the first PCV (PC1 chart), the second PCV (PC2 chart), the 
third PCV (PC3 chart), the first and the second PCVs (PC12 chart), the first and the third 
PCVs (PC13 chart) and the second and the third PCVs (PC23 chart), being 0.0ijρ ≥ . The 
conclusions are the same as for the bivariate case. The cases where 0.0ijρ <  were also 
investigated. The main conclusion is that the PC3 chart has, in some cases, a better overall 
performance, for instance, when ( )12 13 23,  ,  ρ ρ ρ  is (-0.3,-0.3,-0.3) or (-0.8,-0.5,-0.2). For 
the cases of mixing positive and negative correlations, the control chart based on the 
principal components is very slow in signaling some disturbances. 

Today, with electronic and other automated methods of data collection, it is usual to deal 
with a larger number of variables (p > 3). In this way, the reduction of the original p 
variables to k principal components is worthwhile. However, our study with p = 2 and 3 
suggests that before adopting a 2T  chart based on the k principal components, the user 
should investigate how this chart responds to different types of disturbances. 

 
Table 3 – Eigenvalues ( λ ) and eigenvectors (e1, e2, e2) for the trivariate case. 

( )12 13 23,  ,  ρ ρ ρ     variable 1 variable 2 variable 3 
      

  λ  1.0 1.0 1.0 
(0.0,0.0,0.0)  e1 1.0 0.0 0.0 

  e2 0.0 1.0 0.0 
  e3 0.0 0.0 1.0 
      

(0.3, 0.3,0.3)  λ  1.6 0.7 0.7 
  e1 0.5774 0.5774 0.5774 
  e2 0.8165 -0.4082 -0.4082 
  e3 0.7071 0.0 -0.7071 
      

(0.8,0.5,0.2)  λ  2.041 0.822 0.137 
  e1 0.6706 0.5993 0.4372 
  e2 -0.0996 -0.5113 0.8536 
  e3 0.7351 -0.6159 -0.2832 
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Table 4 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 
(p = 3 and 12 13 23 0ρ ρ ρ= = = ). 

   chart 
δ1 δ2 δ3 PC1 PC2 PC3 PC12 PC13 PC23 2T  

          

0.0 0.0 0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.0 1.5 200.0 200.0 10.46 200.0 15.78 15.78 20.41 
0.0 0.5 1.5 200.0 90.94 10.46 115.55 15.78 13.64 17.65 
0.0 1.0 1.5 200.0 28.21 10.46 41.92 15.78 9.36 12.07 
0.0 1.5 1.5 200.0 10.46 10.46 15.78 200.0 15.78 20.41 

          

0.5 1.0 0.0 90.94 28.21 200.0 32.95 115.55 41.92 41.76 
0.5 1.0 0.5 90.94 28.21 90.94 32.95 76.87 32.95 34.05 
0.5 1.0 1.0 90.94 28.21 28.21 32.94 32.95 18.49 20.41 
0.5 1.0 1.5 90.94 28.21 10.46 32.95 13.64 9.36 10.79 

          

1.0 0.0 0.0 28.21 200.0 200.0 41.92 41.92 200.0 52.41 
1.0 0.5 0.5 28.21 90.94 90.94 32.95 32.95 76.87 34.05 
1.0 1.0 1.0 28.21 28.21 28.21 18.49 18.49 18.49 13.58 
1.0 1.5 1.5 28.21 10.46 10.46 9.36 9.36 5.76 5.35 

          

1.5 0.0 0.0 10.46 200.0 200.0 15.78 15.78 200.0 20.41 
1.5 0.0 0.5 10.46 200.0 90.94 15.78 13.64 115.55 17.65 
1.5 0.0 1.0 10.46 200.0 28.21 15.78 9.36 41.92 12.07 
1.5 0.0 1.5 10.46 200.0 10.46 15.78 5.76 15.78 7.33 

 

3.2 Univariate X  charts to control bivariate processes 

In this section we study the simultaneous use of two univariate X  charts (SU X  charts) to 
control bivariate processes. Alternatively, we also consider the use of two simultaneous 
univariate charts based on the principal components (SUPC charts). The subroutine to 
compute the control limits for the SU X  charts uses an algorithm given in Serel et al. 
(2000), see the Appendix I. The control limit for each one of the two SUPC charts is given 
by 2

1,0.0025CL χ= , considering that the overall type I error α′  is 0.005 and the type I error α  
for each chart is computed by expression (7). 

Tables 5 and 6 compare the ARL values for the SU X  charts with the ARL values for the 
2T  control chart and for the SUPC charts, where 1δ  and 2δ  = 0, 0.5, 1.0, 1.5 and 

ρ  = 0.0, 0.3, 0.5, 0.7± ± ± . In these tables, we consider only the case where 2δ  is equal or 
larger than 1δ . The inverse condition ( 2δ < 1δ ) leads to the same ARL values. 

When the correlation is positive ( ρ > 0), the scheme based on the SU X  charts has a better 
overall performance, see Table 5. When the correlation is negative ( ρ < 0), the scheme 
based on the SUPC charts has a better overall performance, see Table 6. If it is well known 
that the assignable cause only affects one variable at a time, then the 2T  chart is always the 
best option, except when ρ = 0.0. However, even in this case when ρ = 0.0, the ARL 
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reduction provided by the SU X  charts or by the SUPC charts is very small. For the case 
where the variables are uncorrelated ( ρ = 0.0) the SUPC charts and the SU X  charts have 
the same performance for any shift. 

Table 5 – ARL values for the standard 2T  chart and for the SU X  charts ( 0.0ρ ≥ ). 

  ρ  
  0.0 0.3 0.5 0.7 
  SU X 2T  SU X  SUPC 2T  SU X SUPC 2T  SU X  SUPC 2T  
 UCL 3.023 10.597 3.021 9.138 10.597 3.015 9.138 10.597 2.996 9.138 10.597 
 LCL -3.023 - -3.021 - - -3.015 - - -2.996 - - 
δ1 δ2            

             

0.0 0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.5 117.4 115.6 117.4 115.1 110.5 117.5 104.2 99.7 115.8 81.5 78.0 
0.0 1.0 41.6 41.9 41.6 43.6 38.0 41.5 34.7 30.6 40.3 20.8 19.0 
0.0 1.5 15.1 15.8 15.1 17.5 13.9 15.0 12.8 10.5 14.5 6.65 5.94 

             

0.5 0.5 83.2 76.9 84.0 93.0 91.7 85.4 101.3 99.7 87.0 108.4 106.7 
0.5 1.0 36.4 33.0 36.9 43.3 40.1 37.5 46.5 41.9 37.8 44.7 38.7 
0.5 1.5 14.4 13.6 14.5 19.4 15.8 14.6 19.3 15.0 14.5 15.0 11.4 

             

1.0 1.0 23.44 18.5 24.1 25.2 25.8 24.93 30.0 30.60 25.96 34.8 35.25 
1.0 1.5 11.89 9.36 12.3 13.3 13.0 12.65 15.9 15.01 13.01 17.8 15.73 

             

1.5 1.5 8.09 5.76 8.50 8.02 8.53 8.91 9.94 10.51 9.42 12.0 12.58 
 

Table 6 – ARL values for the standard 2T  chart and for the SU X  charts ( 0.0ρ ≤ ). 

  ρ  
  0.0 -0.3 -0.5 -0.7 
  SU X 2T  SU X  SUPC 2T  SU X SUPC 2T  SU X  SUPC 2T  
 UCL 3.023 10.597 3.021 9.138 10.597 3.015 9.138 10.597 2.996 9.138 10.597 
 LCL -3.023 - -3.021 - - -3.015 - - -2.996 - - 
δ1 δ2            

             

0.0 0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.5 117.4 115.6 117.4 115.1 110.5 117.5 104.2 99.7 115.8 81.5 78.0 
0.0 1.0 41.6 41.9 41.6 43.6 38.0 41.5 34.7 30.6 40.3 20.8 19.0 
0.0 1.5 15.1 15.8 15.1 17.5 13.9 15.0 12.8 10.5 14.5 6.65 5.94 

             

0.5 0.5 83.2 76.9 82.6 58.0 57.8 81.7 41.6 41.9 78.3 22.7 23.4 
0.5 1.0 36.4 33.0 36.1 23.1 22.8 35.7 14.9 15.0 34.1 7.06 7.35 
0.5 1.5 14.4 13.6 14.3 10.1 9.39 14.1 6.27 6.10 13.6 2.99 3.04 

             

1.0 1.0 23.44 18.5 23.1 10.7 11.3 22.8 6.44 6.88 21.8 3.02 3.23 
1.0 1.5 11.89 9.36 11.7 5.42 5.65 11.5 3.30 3.48 11.1 1.72 1.80 

             

1.5 1.5 8.09 5.76 7.85 3.18 3.40 7.71 2.03 2.16 7.43 1.25 1.29 
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We also investigated the use of three simultaneous univariate X  charts to control trivariate 
processes. However, the results were not encouraging. 

 

4. Performance of the control charts for monitoring the covariance matrix 

4.1 Univariate 2S  charts to control bivariate processes 

Two simultaneous univariate 2S  charts (SU 2S  charts) based on the statistics 
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 are considered to control the process 

covariance matrix Σ , being X1 and X2 two quality characteristics. As an alternative to the 
use of two 2S  charts we might consider a single chart based on the statistic ( )2 2

1 2max ,S S . 

This is equivalent to using two 2S  charts. 

We assume that X1 and X2 follow a bivariate normal distribution with mean vector 0 0=µ  

and covariance matrix 12
0

12

1
1
σ

σ
 
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Σ . Following Surtihadi et al. (2004) we consider two 

kinds of assignable causes that change the initial covariance matrix to 
2
1 1 2 12

1 2
1 2 12 2

γ γ γ σ

γ γ σ γ

 
=   
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Σ , being 12σ ρ= . For the case I 2 2
1 cγ =  and 2

2 1γ =  (or 2 2
2 cγ =  and 

2
1 1γ = ) and for the case II 1 2γ γ γ= =  and 2 cγ = , being 2 1c > . In the Appendix II we 

develop the expression to obtain the ARL for the SU 2S  charts. In both cases ρ  remains 
unaltered. 

In this section we present the ARL values for the SU 2S  charts considering only bivariate 
processes (p = 2). The cases where p > 2 are already under investigation and the results will 
be presented in a future paper. The ARL values are obtained for ρ = 0, 0.1, 0.5, 0.7, 0.9 and 

2c = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 3.0, 5.0. 

The S  chart’s performance is independent of ρ , while ρ  has a minor influence on the 

SU 2S  charts’ properties, see Table 7. 

Table 8 compares the ARL for the SU 2S  charts with the ARL for the S  chart  
(the generalized variance S  chart) proposed by Alt (1985). It was built fixing ρ = 0.0. 

According to this table the univariate 2S  charts are always more effective than the 
generalized variance S  chart, except in case II, with ρ = 0.9. In this case the difference is 

small, so, in the great majority of cases the univariate 2S  charts are preferable. 
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Table 7 – The ARL for the SU 2S  charts (n=5). 

     case I      case II   
     ρ      ρ    
   0.0 0.1 0.5 0.7 0.9 0.0 0.1 0.5 0.7 0.9 
             

c2 CL  3.677 3.676 3.668 3.646 3.569 3.677 3.676 3.668 3.646 3.569 
             

1.0   200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
1.1   132.10 132.10 132.48 132.77 132.07 139.14 139.14 139.72 140.50 142.13 
1.2   86.49 86.49 86.79 86.79 84.48 101.64 101.65 102.44 103.56 105.78 
1.3   58.12 58.12 58.30 58.11 55.45 77.14 77.16 78.03 79.25 81.63 
1.4   40.60 40.60 40.70 40.44 38.09 60.46 60.48 61.36 62.58 64.94 
1.5   29.52 29.52 29.57 29.31 27.42 48.69 48.71 49.57 50.75 53.00 
2.0   9.62 9.62 9.62 9.50 8.91 21.63 21.65 22.33 23.19 24.78 
3.0   3.38 3.38 3.38 3.34 3.21 8.64 8.66 9.09 9.59 10.48 
5.0   1.67 1.67 1.67 1.66 1.63 3.73 3.74 3.98 4.25 4.71 
 

Table 8 – The ARL for the SU 2S  charts and for the S  chart. 

      n     
   4   5   6  
  S  SU 2S * SU 2S ** S  SU 2S * SU 2S ** S  SU 2S * SU 2S ** 
             

c2 CL 6.134 4.106 4.106 5.375 3.677 3.677 4.820 3.375 3.375 
             

1.0  200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
1.1  146.78 136.23 142.54 141.44 132.10 139.14 136.03 128.50 136.20 
1.2  112.48 92.14 106.24 104.60 86.49 101.64 97.77 81.69 97.72 
1.3  89.13 63.74 82.02 80.45 58.12 77.14 73.39 53.50 73.05 
1.4  73.30 45.60 65.23 64.08 40.60 60.46 57.38 36.60 56.52 
1.5  60.35 33.80 53.19 51.91 29.52 48.69 45.62 26.19 45.01 
2.0  30.24 11.57 24.67 24.11 9.62 21.63 19.99 8.21 19.27 
3.0  13.64 4.10 10.23 10.16 3.38 8.64 8.05 2.89 7.48 
5.0  6.37 1.95 4.48 4.58 1.67 3.73 3.58 1.49 3.21 

*case I; **case II 
 

4.2 An example of application 

In this section we consider the example given by Aparisi et al. (2001) to explain the use of a 
single chart based on the ( )2 2

1 2max ,S S  statistic and the generalized variance S  chart. For 
monitoring the mean vector, Costa & Machado (2007) presented an interesting example that 
illustrates the use of a synthetic 2T  control chart with two-stage sampling to control 
bivariate processes. 
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The part in Figure 1 has two dimensions to be controlled, X1 (distance between centers of the 
two interior holes) and X2 (distance between the centers of the two lateral holes), correlated 
to each other with a correlation coefficient 0.7ρ = . 

 

 

 

 

Figure 1 – Part of the example of application. 

 
When the process is in-control the mean vector and the covariance matrix are known: 

0
10.0
10.5
 =  
 

µ , 0
0 45 0 332
0 332 0 5

.       .

.       .
 =  
 

Σ .  So, 0 0.114776=Σ . 

We initially generate 30 samples of size n = 5 with the process in-control. The last 15 
samples were simulated with 2c = 3.0 and the same sample size. We consider the case I 
where the assignable cause increases only the variability of the first variable X1. In this case 

1Σ  is given by: 

1
1.35     0.575
0.575      0.5

 =  
 

Σ . 

Table A5 presents the data of (X1, X2), the sample variances, the sample covariances, the 
statistics S , 2

1S , 2
2S  and ( )2 2

1 2max ,S S . 

The control limit of CL = 1.747 for the proposed model was determined by expression (A8) 
with 1 2γ γ=  = 1.0, see the Appendix II. The control limit of CL = 0.617 for the S  chart 
was determined by expression (11). For this example, a probability of Type I error of 5 per 
one thousand (α = 0.005) is adopted. 

Figures 2 and 3 show the generalized S  chart and the control chart based on the 

( )2 2
1 2max ,S S  statistic, respectively. Figure 2 shows that the disturbance is signaled at sample 

44 (run length = 14) while Figure 3 shows that the chart signals at samples 39, 40, 43 and 44 
(run length = 9), that is, the control chart based on the ( )2 2

1 2max ,S S  statistic is much more 
sensitive than its competitor. 

 

X1 (cm) X2 (mm) 
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Figure 2 – Generalized variance S chart. 
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Figure 3 – Control chart based on the ( )2 2
1 2max ,S S  statistic. 

 
5. Conclusions 

In this article we provided an evaluation of the performance of the 2T  chart based on the 
principal components (PC chart) and the simultaneous univariate control charts based on the 
original variables (SU X  charts) or based on the principal components (SUPC charts). 

The main reason to consider the 2T  chart based on the principal components lies on the 
dimensionality reduction. However, depending on the disturbance and on the way the 
original variables are related, the chart is very slow in signaling, except when all variables 
are negatively correlated and the principal component is wisely selected. 

S

( )2 2
1 2max ,S S
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Comparing the SU X , the SUPC and the 2T  charts we concluded that the SU X  charts 
(SUPC charts) have a better overall performance when the variables are positively 
(negatively) correlated. 

We also developed the expression to obtain the power of two 2S  charts designed for 
monitoring the covariance matrix. The univariate 2S  charts always perform better than the 
generalized variance S  chart, except in case II, with ρ =0.9. In this case the difference is 

small, so, in the great majority of cases the univariate 2S  charts are preferable. These 
conclusions hold for the case of two variables. Whether they can be generalized for a large 
number of variables is still an open issue. 

Additionally, the univariate 2S  charts have also better diagnostic feature, that is, with them it 
is easier to relate an out-of-control signal to the variables whose parameters have moved 
away from their in-control values. 
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Appendix I – The Algorithm given in Serel et al. (2000) to obtain the control limits for 
univariate X  charts 

Serel et al. (2000) developed numerical methods to obtain the two-sided control limits for the 
individual charts such that the overall type I risk of the system is near or equal to the desired 
value of α . We will describe here the method used to obtain the control limits for the 
bivariate case. They also studied higher-order cases. 

When iα  is the type I risk of the Shewhart chart for variable iX , its upper and lower control 
limits, 0 i ihµ σ±  ( )0ih > , satisfy 

 ( )[ ]2 1i ihα = −Φ , for i = 1,2, (A1) 

where ( )Φ ⋅  denotes the standard normal cumulative distribution function. Let 0 (0,0)=µ  
and 1.0iσ = . The out-of-control ARL for the specified shift ∆  is given by 

( )1

1
1 1 1 1 2 2 2 2 2( ) 1 Pr ,ARL h X h h X hδ δ δ δ

−
 ∆ = − − − < ≤ − − − < ≤ −  . (A2) 
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The joint distribution in the right-hand side of (A2) is to be calculated with iX ’s being jointly 
distributed as a bivariate normal with a zero mean vector and the known covariance structure. 
The ARL given by (A2) is not for a particular chart, but is the joint ARL of two charts. 

The cumulative distribution function of a bivariate normal with zero mean vector and 
correlation coefficient ρ  is given by 

( )1 2, ;B x x ρ = ( )
1 2

1 2 1 2,
x x

f X X dX dX
−∞ −∞
∫ ∫ . 

It can be shown that 

 ( )1 1 1 2 2 2Pr ,l X u l X u< ≤ < ≤  

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, ; , ; , ; , ;B l l B l u B u l B u uρ ρ ρ ρ= − − + . (A3) 

The goal is to find the values 1h  and 2h  such that 

( )1 1 1 2 2 2Pr , 1h X h h X h α− < ≤ − < ≤ = − . 

Using (A3), the probability ( )1 α−  is given by 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 21 , ; , ; , ; , ;B h h B h h B h h B h hα ρ ρ ρ ρ− = − − − − − − +  (A4) 

By substituting the following equalities: 

 ( ) ( ) ( )1 2 2 1 2, ; , ; , ;B h h B h B h hρ ρ ρ− = +∞ − − − − − , (A5) 

 ( ) ( ) ( )1 2 2 1 2, ; , ; , ;B h h B h B h hρ ρ ρ= +∞ − − − , (A6) 

into (A4) and rearranging, 2α  is given by 

( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2, ; , ; , ; , ;B h h B h h B h h B h hα α ρ ρ ρ ρ= + − − − − + − − − − − − . (A7) 

The Algorithm proposed by Serel et al. (2000) recursively finds the exact values of 1h  and 

2h  satisfying (A7), given α , ρ , and r,  where 2 1r α α= . The underlying idea is to find the 
zero of an equation by successive substitutions. Subroutine DBNRDF from the IMSL Fortran 
library (1995) can be used to evaluate ( )1 2, ;B x x ρ . The Algorithm has eight steps: 

Step 0. Set the initial values of 1h  and 2h  based on a Bonferroni region (i.e., 

1 2α α α= + ): 

 ( )1 1 rα α= +    and   2 1rα α= , 

 such that ( )1
1 11 2h α−= Φ −  and ( )1

2 21 2h α−= Φ − . 

Step 1. Update 2α  from (A5). 

Step 2. Update 1α  from 1 2 rα α= . 

Step 3. Compute new values of 1h  and 2h  (from (A1)): 

 ( )1 1 0.5in ih α−= Φ − ,  i = 1,2. 
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Step 4. If 2 2 0.0001nh h− <  go to step 7. 

Step 5.  2 2nh h= , 1 1nh h= . 

Step 6. Go to step 1. 

Step 7. Stop. Current values of 1h  and 2h  are the solutions. 

 

Appendix II – The power of the simultaneous univariate 2S  charts 

Consider the statistics 
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, where 1 1 1j jx X µ= − , 2 2 2j jx X µ= − . 

Let X1 and X2 be bivariate normal variables with mean vector ( )0 0,0=µ  and covariance 

matrix 12
0
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1
1
σ

σ
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Σ .  The power of the SU 2S  is given by: 

2 2
1 21 1 Pr[( ) ( )]S CL S CLβ− = − < ∩ <  

where CL is the control limit. 

The occurrence of the assignable cause changes the initial covariance matrix to 
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and 

 2 2
1 2Pr[( ) ( )]S CL S CL< ∩ < =  

 ( ) ( ) ( )
( )

2
1

2 2
2 12 2

2, 1 2 2   0 
2

1Pr
2 21

nCL
nt

nn t

nCL e t dt
n

γ

ρ ρ
χ

γ ρ

−−
−

 
 = <

Γ − 
∫  (A8) 

During the in-control period 2 2
1 2 1γ γ= = , ( ) ( )2 2

1 2Pr 1S CL S CL α < ∩ < = −   and the 

expression (A8) is used to obtain the control limit CL for specified values of 0ARL , 
reminding that 0 1/ARL α= . We used the subroutine DCSNDF available on the IMSL 
Fortran library (1995) to compute the probability in the expression (A8). 

 

Appendix III – Tables A1 through A5 

Table A1 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 
(p = 2 and 0.5ρ = ± ). 

   ρ  

    -0.5    0    0.5  
δ1 δ2  PC1 PC2 2T   PC1 PC2 2T   PC1 PC2 2T  

              

0.0 0.0  200.0 200.0 200.0  200.0 200.0 200.0  200.0 200.0 200.0 
0.0 0.5  145.43 90.93 99.72  200.0 90.93 115.54  145.43 90.93 99.72 
0.0 1.0  75.53 28.21 30.60  200.0 28.21 41.92  75.53 28.21 30.60 
0.0 1.5  38.10 10.46 10.51  200.0 10.46 15.78  38.10 10.46 10.51 

              

0.5 0.0  145.43 90.93 99.72  90.93 200.0 115.54  145.43 90.93 99.72 
0.5 0.5  200.0 28.21 41.92  90.93 90.93 76.87  75.53 200.0 99.72 
0.5 1.0  145.43 10.46 15.01  90.93 28.21 32.95  38.10 90.93 41.92 
0.5 1.5  75.53 4.77 6.10  90.93 10.46 13.64  20.30 28.21 15.01 

              

1.0 0.0  75.53 28.21 30.60  28.21 200.0 41.92  75.53 28.21 30.60 
1.0 0.5  145.43 10.46 15.01  28.21 90.93 32.95  38.10 90.93 41.92 
1.0 1.0  200.0 4.77 6.88  28.21 28.21 18.49  20.30 200.0 30.60 
1.0 1.5  145.43 2.64 3.48  28.21 10.46 9.36  11.58 90.93 15.01 

              

1.5 0.0  38.10 10.46 10.51  10.46 200.0 15.78  38.10 10.46 10.51 
1.5 0.5  75.53 4.77 6.10  10.46 90.93 13.64  20.30 28.21 15.01 
1.5 1.0  145.43 2.64 3.48  10.46 28.21 9.36  11.58 90.93 15.01 
1.5 1.5  200.0 1.73 2.16  10.46 10.46 5.76  7.08 200.0 10.51 
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Table A2 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 
(p = 2 and 0.7ρ = ± ). 

   ρ  

    -0.7    0    0.7  

δ1 δ2  PC1 PC2 2T   PC1 PC2 2T   PC1 PC2 2T  
              

0.0 0.0  200.0 200.0 200.0  200.0 200.0 200.0  200.0 200.0 200.0 
0.0 0.5  150.40 64.09 77.97  200.0 90.93 115.54  150.40 64.09 77.97 
0.0 1.0  82.17 15.44 18.98  200.0 28.21 41.92  82.17 15.44 18.98 
0.0 1.5  43.02 5.21 5.94  200.0 10.46 15.78  43.02 5.21 5.94 

              

0.5 0.0  150.40 64.09 77.97  90.93 200.0 115.54  150.40 64.09 77.97 
0.5 0.5  200.0 15.44 23.38  90.93 90.93 76.87  82.17 200.0 106.69 
0.5 1.0  150.40 5.21 7.35  90.93 28.21 32.95  43.02 64.09 38.73 
0.5 1.5  82.17 2.43 3.04  90.93 10.46 13.64  23.50 15.44 11.36 

              

1.0 0.0  82.17 15.44 18.98  28.21 200.0 41.92  82.17 15.44 18.98 
1.0 0.5  150.40 5.21 7.35  28.21 90.93 32.95  43.02 64.09 38.73 
1.0 1.0  200.0 2.43 3.23  28.21 28.21 18.49  23.50 200.0 35.25 
1.0 1.5  150.40 1.51 1.80  28.21 10.46 9.36  13.63 64.09 15.73 

              

1.5 0.0  43.02 5.21 5.94  10.46 200.0 15.78  43.02 5.21 5.94 
1.5 0.5  82.17 2.43 3.04  10.46 90.93 13.64  23.50 15.44 11.36 
1.5 1.0  150.40 1.51 1.80  10.46 28.21 9.36  13.63 64.09 15.73 
1.5 1.5  200.0 1.17 1.29  10.46 10.46 5.76  8.40 200.0 12.58 

 

Table A3 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 
(p = 3 and 12 13 23 0.3ρ ρ ρ= = = ). 

   chart 

δ1 δ2 δ3 PC1 PC2 PC3 PC12 PC13 PC23 2T  
          

0.0 0.0 0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.0 1.5 58.34 12.07 52.12 13.73 41.73 13.23 13.43 
0.0 0.5 1.5 34.25 23.60 29.75 18.42 21.43 17.05 13.87 
0.0 1.0 1.5 20.88 50.61 17.77 20.39 11.67 17.98 11.56 
0.0 1.5 1.5 13.29 113.25 11.16 18.01 6.83 15.24 8.21 

          

0.5 1.0 0.0 58.34 43.17 200.0 36.91 80.48 61.90 46.50 
0.5 1.0 0.5 34.25 131.43 158.05 44.27 46.97 133.87 52.04 
0.5 1.0 1.0 20.88 185.14 93.58 30.95 25.78 114.19 32.56 
0.5 1.0 1.5 13.29 69.98 52.11 15.82 14.35 46.27 15.16 
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1.0 0.0 0.0 100.80 150.54 29.75 109.10 35.78 40.84 42.34 
1.0 0.5 0.5 34.25 185.14 93.58 49.17 39.01 114.19 48.16 
1.0 1.0 1.0 13.29 200.0 200.0 20.12 20.12 200.0 25.94 
1.0 1.5 1.5 6.13 185.14 93.58 8.94 8.14 114.19 10.39 

          

1.5 0.0 0.0 58.34 113.25 11.16 64.00 12.82 15.24 15.21 
1.5 0.0 0.5 34.25 196.11 17.77 49.94 15.12 26.78 19.50 
1.5 0.0 1.0 20.88 82.37 29.75 24.69 15.73 33.08 17.19 
1.5 0.0 1.5 13.29 27.30 52.12 11.01 14.35 25.26 11.07 

 

Table A4 – The ARL values for the standard 2T  chart and for the 2T  chart based on PCVs 
(p = 3 and  12ρ = 0.8, 13ρ = 0.5, 23ρ = 0.2). 

   chart 

δ1 δ2 δ3 PC1 PC2 PC3 PC12 PC13 PC23 2T  
          

0.0 0.0 0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
0.0 0.0 1.5 100.18 12.26 20.61 16.21 26.05 9.10 10.69 
0.0 0.5 1.5 60.60 21.35 4.91 22.39 6.04 4.65 5.14 
0.0 1.0 1.5 37.02 39.68 1.99 26.80 2.26 2.28 2.40 
0.0 1.5 1.5 23.32 77.57 1.25 26.51 1.32 1.39 1.42 

          

0.5 1.0 0.0 62.76 68.33 60.33 51.50 47.76 50.22 41.37 
0.5 1.0 0.5 43.65 182.43 25.14 60.79 21.82 36.80 27.64 
0.5 1.0 1.0 30.80 135.82 11.75 40.82 10.60 16.63 13.02 
0.5 1.0 1.5 22.13 45.08 6.20 20.21 5.68 7.05 5.89 

          

1.0 0.0 0.0 97.78 190.00 4.86 119.41 6.48 7.00 8.24 
1.0 0.5 0.5 41.20 194.73 47.49 58.91 31.86 66.80 40.24 
1.0 1.0 1.0 18.69 151.38 104.04 26.63 24.15 111.82 29.41 
1.0 1.5 1.5 9.45 100.79 8.00 12.66 4.68 10.75 5.54 

          

1.5 0.0 0.0 55.69 178.67 1.76 74.39 2.06 2.19 2.40 
1.5 0.0 0.5 38.89 140.50 2.40 50.49 2.76 3.12 3.28 
1.5 0.0 1.0 27.60 46.87 3.62 24.16 3.84 4.27 4.10 
1.5 0.0 1.5 19.95 16.82 6.08 10.99 5.39 5.06 4.37 
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Table A5 – Data for the illustrative example. 

  Observations         
#  1 2 3 4 5  iS  12S  S  2

1S  2
2S  ( )2 2

1 2max ,S S  
               

1 X1 9.79 9.72 10.44 10.51 10.04  0.13 -0.01 0.01  0.11 0.13 0.13 
  X2 10.59 10.56 10.71 10.48 11.28  0.10       
               

2  9.62 11.91 8.92 9.72 9.11  1.43 0.57 0.19  1.17 0.49 1.17 
   9.85 11.07 9.57 10.09 9.67  0.36       
               

3  10.44 10.17 8.78 8.84 8.87  0.66 0.51 0.53  0.87 1.10 1.10 
   11.53 10.33 10.26 8.48 9.99  1.19       
               

4  9.88 10.02 8.92 10.34 11.05  0.60 0.20 0.12  0.48 0.23 0.48 
   10.84 10.57 9.80 11.21 10.55  0.27       
#   #  #  #  #  #   #  #  #   #  #  #  

31  10.93 9.73 9.35 11.19 10.47  0.61 -0.01 0.08  0.60 0.20 0.60 
   10.76 10.41 11.26 11.10 10.52  0.13       
               

32  10.76 8.82 10.41 11.25 10.75  0.87 0.14 0.07  0.85 0.18 0.85 
   10.64 10.48 10.28 11.14 10.75  0.11       
               

33  11.09 10.29 10.96 12.51 9.89  1.00 -0.12 0.36  1.69 0.31 1.69 
   11.37 10.34 10.63 9.73 10.13  0.38       
               

34  10.61 10.24 10.73 9.02 11.80  1.01 0.40 0.24  1.03 0.32 1.03 
   10.24 10.48 10.23 10.07 11.62  0.40       
               

35  10.99 9.49 9.35 11.37 11.31  1.00 0.43 0.28  1.05 0.41 1.05 
   10.94 9.65 10.53 11.52 10.80  0.47       
               

36  11.27 9.93 11.04 8.87 8.29  1.71 0.87 0.53  1.38 0.64 1.38 
  11.64 10.63 11.34 10.44 9.41  0.76       
               

37  10.79 10.62 9.50 10.24 10.63  0.27 0.21 0.08  0.34 0.39 0.39 
  10.70 10.01 9.47 10.48 11.29  0.48       
               

38  10.60 10.10 10.68 9.22 8.43  0.93 0.31 0.13  0.78 0.24 0.78 
  10.54 10.15 10.79 10.51 9.51  0.25       
               

39  11.52 7.45 10.03 10.32 10.70  2.35 0.27 0.26  1.88 0.11 1.88 
  10.91 10.10 10.73 10.58 10.07  0.14       
               

40  9.87 8.15 11.72 9.03 8.44  2.05 0.86 0.57  1.96 0.78 1.96 
  10.02 9.38 11.19 10.17 9.14  0.64       
               

41  9.48 10.55 10.92 9.47 11.84  1.02 0.28 0.31  1.02 0.95 1.02 
  11.52 11.11 10.80 10.81 12.28  0.38       
               

42  11.13 10.97 10.70 11.53 9.34  0.70 0.47 0.15  1.09 0.59 1.09 
  11.34 11.23 11.02 11.33 9.63  0.53       
               

43  10.56 10.07 10.13 12.94 9.68  1.69 0.56 0.30  1.81 0.59 1.81 
  10.84 11.08 10.43 12.04 10.84  0.36       
               

44  10.60 7.82 10.22 9.12 11.84  2.32 0.68 0.82  1.86 0.50 1.86 
  11.44 10.43 10.46 9.84 11.59  0.55       
               

45  8.37 10.99 10.12 8.98 10.41  1.16 0.35 0.09  0.98 0.15 0.98 
  10.10 11.20 10.63 10.24 10.66  0.18       

#: Sample Number 


