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ABSTRACT. The main goal of this manuscript is to introduce a discrete dynamical system defined by sym-
metric matrices and a real parameter. By construction, we rediscovery the Power Iteration Method from the
Projected Gradient Method. Convergence of the discrete dynamical system solution is established. Finally,
we consider two applications, the first one consists in find a solution of non linear equation problem and
the other one consists in verifies the optimality conditions when we solve quadratic optimization problems
over linear equality constraints.
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1 INTRODUCTION

Discrete dynamical system appears as a tool in order to understand differential equations from
numerically view point (for more details, see Galob (2007) and chapter 6 in Loneli & Rumbos
(2003)). The classical model, in finite dimensional space, is as follows:

xk+1 = F(xk) (1)

where F : Ω ⊂ Rn → Rn is an operator and Ω is a subset of the domain of the operator F (the
domain of F is denoted by dom(F)). According to the literature, the equation 1 is not exclusive
for differential equations, for example it appears in order to find fixed points for contractive
operators (remember, F is contractive if ‖F(x)−F(y)‖ ≤ λ‖x− y‖, with λ ∈ (0,1) and x, y ∈
dom(F)). For details about contractive operators, see classical books in functional analysis or
general topology or fixed point theorems as for instance Brezis (1983), Istrǎţescu (1981), Kelley
(1955). Other example is the autoregressive model (for more details see Shumway & Stoffer
(2017)).
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458 A DISCRETE DYNAMICAL SYSTEM AND ITS APPLICATIONS

Given a symmetric matrix A and a real number λ such that −λ−1 /∈ σ(A). We consider the
following operator Tλ : S→ S defined by

Tλ (x) =
(I +λA)x
‖(I +λA)x‖

(2)

where I is the identity matrix, S = {x ∈ Rn : ‖x‖ = 1} and σ(A) is the eigenvalue set of matrix
A. Note that, in this setting, I +λA is a non singular matrix. So, operator Tλ is well defined.

The focus of this manuscript is the operator defined by the equation 2, which is very interesting,
because:

1. when, either λ = 0 or A is the null matrix, the operator Tλ is the identity. Here, every x ∈ S
is a fixed point of Tλ .

2. when B = I +λA has a dominant eigenvalue (i.e there exists an eigenvalue α∗ such that
|α∗| > |α| for all eigenvalue α 6= α∗), the operator T was used in the famous Power Iter-
ation Method introduced by R. Von Mises and H. Pollaczek-Geiringer in 1929 (see Mises
& Pollaczek-Geiringer (1929)).

3. when |λ |−1 ∈ (na,+∞), where a=max{|ai, j| : A= [ai, j]} and n is the size of A, B= I+λA
is a strong monotone operator. Moreover, each eigenvector of A belonging to S is a fixed
point of T (we prove it in section 2).

1.1 The Power Iteration Method

In order to understand the Power Iteration Method, consider a function called “Rayleigh quotient”
which is defined, as follows, for each x 6= 0

r(x) =
〈x,Bx〉
〈x,x〉

. (3)

If x is an eigenvector, then Bx= r(x)x (i.e. r(x) is the corresponding eigenvalue of x). Suppose that
{vi}n

i=1 is a set of eigenvectors of B which is a basis of Rn, Bvi = λivi and |λ1|> |λ2| ≥ · · · ≥ |λn|.
Taking v0 6= 0 a vector with ‖v0‖= 1, we have that v0 = ∑

n
i=1 αivi.

Then,
Bv0 = α1λ1v1 +α2λ2v2 + · · ·+αnλnvn,

and so

Bkv0 = λ
k
1 (α1v1 +α2(

λ2

λ1
)kv2 + · · ·+αn(

λn

λ1
)kvn).
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Here, Bkv0
‖Bkv0‖

converges to v1, because limk→+∞(
λi
λ1
)k = 0 ∀i ≥ 2. The Power Iteration method is

elegant, simple and can be stated as follows

(PIM)


pick a starting vector x0 with‖x0‖= 1
For k = 1,2, · · ·
Let xk = Tλ (xk−1)

where A = 1
λ
(B− I)

but, convergence is only guaranteed if the following two assumptions hold:

1. Non singular matrix B has an eigenvalue that is strictly greater in absolute value than its
other eigenvalues.

2. The starting vector x0 has a nonzero component in direction of an eigenvector associated
with the dominant eigenvalue.

The reader can verify that for B =

[
0 1
1 0

]
(matrix B is nonsingular and symmetric), the se-

quences generated by Power Iteration Method diverge for any stated point x (different to any
eigenvector of B), because does not have a dominant eigenvalue, but B̄ = I +(1/3)B is positive
definite (all its eigenvalues are strictly positive) and it has a dominant eigenvalue.

1.2 The Projected Gradient Method

The Projected Gradient method was introduced by Goldstein (for more detail see Goldstein
(1964)) for solving the following differentiable optimization problem

(P)

{
maximize f (x)
x ∈C

(4)

where f : C→ R is differentiable in each point of a nonempty closed subset C of Rn.

The essence of the Projected Gradient method is based on two facts:

1. First order Necessary Optimality condition: If x̄ is a solution of P, then 〈∇ f (x̄),d〉 ≤ 0,
∀d ∈ T (C, x̄) (Here T (C, x̄) is the tangent cone of C at x̄, for more details see Crouzeix
et al. (2011))

2. Orthogonal projection: If u is an orthogonal projection of v over C, then ‖u−v‖ ≤ ‖y−v‖,
∀y ∈C (in short u := PC(v)).

Now, given a symmetric matrix A, we know that all eigenvalues of A are real numbers and we
can consider n eigenvectors of matrix A as a basis of Rn. Moreover if we consider problem (P)
with f : Rn→ R defined by f (x) = 〈x,Ax〉 and C = {x ∈ F : 〈x,x〉 = 1}, where F is a subspace
of Rn generated by eigenvectors of matrix A. The optimal value is an eigenvalue of A and any
maximizer is a normalized eigenvector associated to the optimal value.
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Here, if x̄ ∈ C, then T (C, x̄) is an hyperplane in F defined by normal vector x̄ 6= 0 and contain
vector x̄ (from now on H(x̄,1) := TC(x̄)). So, the necessary condition is reduced to 〈∇ f (x̄),y−
x̄〉 = 0, ∀y ∈ H(x̄,1), which is equivalent to 〈(x̄ + λ∇ f (x̄))− x̄,y− x̄〉 = 0, ∀y ∈ H(x̄,1) and
∀λ 6= 0 fixed, which is also equivalent to x̄ = PH(x̄,1)(x̄+λ∇ f (x̄)), ∀λ 6= 0 fixed.

So,

xk+1 =
PH(xk+1 ,1)

(xk+λAxk)

‖PH(xk+1 ,1)
(xk+λAxk)‖

= xk+λAxk
‖xk+λAxk‖

= Tλ (xk)

If we define B = I +λA, then both matrices A and B have the same eigenvectors. Moreover, δ is
an eigenvalue of A and u an associate eigenvector (Au= δu) if and only if δu=Au= λ−1(B−I)u
if and only if Bu = (1+ δλ )u if and only if (1+ δλ ) is an eigenvalue of B and u an associate
eigenvector to it. In the next section we introduce an easy result which establishes that for each
symmetric matrix A and each λ 6= 0 such that 1+λδ > 0 for all eigenvalue δ of A, we have that
B = I +λA is a Symmetric Positive Definite (SPD) matrix. It implies that (1+λδ ) > 0, for all
eigenvalue δ of A.

In the section 2, we introduce a discrete dynamical system defined by symmetric matrices and
a real parameter λ . We show that, under some conditions on the parameter λ , any sequence
generated by the discrete dynamical system converges to a fixed point of the operator which
define the discrete dynamical system. Moreover, there is an equivalence between the fixed point
of the operator and the eigenvector of the symmetric matrix.

In section 3 we consider two applications, the first one consists in find a solution for the non
linear equation problem and the second one consists in verifies the optimality conditions when
we solve quadratic optimization problems over linear equality constraints.

2 A DISCRETE DYNAMICAL SYSTEM

We start this section with two elementary results.

Lemma 1. Let A be a no null symmetric matrix with size n and a = max{|ai j| : A = [ai, j]}. If
λ ∈ R with |λ |−1 > na, then (1+λβ )> 0 ∀β ∈ σ(A).

Proof. Take β̄ =max{|β | : β ∈ σ(A)} and consider an eigenvector x̄ such that β̄ = |x̄T Ax̄|. Then,

|β | ≤ β̄ = |x̄T Ax̄|= |∑
i, j

x̄ix̄ j〈ei,Ae j〉| ≤∑
i, j
|xi||x j||ai j|∀β ∈ σ(A)

So, we have that
|β | ≤ a∑

i, j
|xi||x j|= a(∑

i
|xi|)2

But n1/2 = argmax{∑i |xi| : ∑i |xi|2 = 1} (follows directly applying optimality conditions). It
implies that, |β | ≤ na < |λ |−1. And so the statement follows.
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Note that the eigenvalue set σ(A) of A exists, but its elements are unknown explicitly in the
previous Lemma.

Lemma 2. If A is a symmetric matrix and β̄ = max{|β | : β ∈ σ(A)}, then for all λ ∈ R with
|λ |−1 > β̄ , then matrix B = I +λA is a SPD matrix. Moreover, for each δ ∈ σ(B) we have that
Bu = δu and Au = λ−1(δ −1)u (i.e. σ(A) = λ−1(σ(B)−1)).

Proof. If β ∈ σ(A), then

Bx = (I +λA)x = x+λAx = (1+λβ )x

But, |λ |−1 > β̄ ≥ |β |. So, 1+λβ > 0 ∀β ∈ σ(A). Then, the statement follows.

From now, for each non null symmetric matrix A, define the following operator Tλ : S→ S (S =

{x ∈ Rn : ‖x‖= 1}) by

Tλ (x) =
(I +λA)x
‖(I +λA)x)‖

=
Bx
‖Bx‖

(5)

where λ ∈ R\{0} is such that −λ−1 /∈ σ(A) and B = I +λA.

Theorem 1. Let A be a non null symmetric matrix and λ ∈ R such that −λ−1 /∈ σ(A). A vector
x∗ is a fixed point of Tλ if and only if there exists δ ∈ σ(A) such that Ax∗ = δx∗ and x∗ ∈ S.

Proof. If x∗ is a fixed point of Tλ , then x∗ = Tλ (x∗) =
Bx∗
‖Bx∗‖ . So, ‖Bx∗‖ 6= 0 and ‖x∗‖ = 1. Let

σ(B) = {λ1, · · · ,λn} and let {u1, · · · ,un} ⊂ S be an eigenvector set of B such that Bui = λiui

∀i ∈ {1, · · · ,n}. Here, {u1, · · · ,un} is a basis of Rn, then x∗ = ∑
n
i=1 αiui = ∑i∈I αiui, where I =

{i ∈ {1, · · · ,n} : αi 6= 0}. Note that I 6= /0, because ‖x∗‖ 6= 0. On the other hand ∑
n
i=1 αiui = x∗ =

Tλ (x∗) = ∑
n
i=1

αiλi
‖Bx∗‖ui. Since {u1, · · · ,un} is a basis of Rn, then αi =

αiλi
‖Bx∗‖ ∀i ∈ {1, · · · ,n}. It

implies that ∀i ∈ I, 1 = λi
‖Bx∗‖ . So, ‖Bx∗‖= λi > 0 ∀i ∈ I. Finally,

Bx∗ = B(∑
i∈I

αiui) = ∑
i∈I

αiBui = ∑
i∈I

αiλiui = ‖Bx∗‖∑
i∈I

αiui = ‖Bx∗‖x∗

The statement follows from Lemma 2, taking δ = λ−1(‖Bx∗‖−1).

If there exists δ ∈ σ(A) such that Ax∗ = δx∗ and x∗ ∈ S, then ‖Bx∗‖ = 1+λδ . The statement
follows because Tλ (x∗) =

Bx∗
‖Bx∗‖ =

(1+λδ )x∗

1+λδ
= x∗.

Now, we are able to find the solution of the discrete dynamical system, for each non null
symmetric matrix A and λ = 1

na+1 , where n = size(A) and a = max{|ai, j| : A = [ai, j]}.

Initial step Given a non null symmetric matrix A.

n = size(A).

a = max{|ai j| : A = [ai j]}.
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462 A DISCRETE DYNAMICAL SYSTEM AND ITS APPLICATIONS

λ = 1
na+1 .

k = 0.

xk ∈ S.

Iterative step Calculate:

xk+1 = Tλ (xk) =
(I+λA)xk
‖(I+λA)xk)‖

= Bxk
‖Bxk‖

= Bkx0
‖Bkx0‖

k = k+1.

The following result establishes that the sequence generated by the discrete dynamical system
(the solution of the discrete dynamical system) is asymptotically stable for any starting point
x0 ∈ S.

Theorem 2. Let A be a non null symmetric matrix. For each x0 ∈ S, the sequence {xk} gener-
ated by the discrete scheme converges to an eigenvector of A belonging to S and the sequence
{〈Axk,xk〉} converges to its respective eigenvalue.

Proof. From Lemma 1, we have that B is a SPD matrix. It implies that Bxk 6= 0 for all k ∈ N
and so xk+1 = Bxk

‖Bxk‖
is well defined for all k ∈ N. Let {λ1, · · · ,λn} be the eigenvalue set of B

and {u1, · · · ,un} ⊂ S a respective eigenvector set. Without loss of generality consider 0 < λi ≤
λi+1 ∀i ∈ {1, · · · ,n− 1}. Since {u1, · · · ,un} is an orthonormal basis of Rn, then x0 = ∑

n
i=1 εiui.

Here, ‖Bkx0‖ = ‖∑
n
i=1 εiλ

k
i ui‖ = (∑i∈I ε2

i λ 2k
i )1/2, where I = {i ∈ {1, · · · ,n} : εi 6= 0}. Taking

j = max{i : i ∈ I} and I( j) = {l : λl = λ j}, then xk+1 = ∑i∈I
εiλ

k
i

(∑i∈I ε2
i λ 2k

i )1/2 ui. It implies that

xk+1 = ∑i∈I

εi(
λi
λ j

)k

(∑i∈I ε2
i (

λi
λ j

)2k)1/2
ui. Note that for any i ∈ I \ I( j) we have that 0 < λi

λ j
< 1. It implies

that, the sequence {xk} converges to ∑i∈I( j)
εi

(∑i∈I( j) ε2
i )

1/2 ui. It is easy to verify that the cluster point

is a normalized eigenvector of B associated to an eigenvalue λ j. Since A and B have the same
eigenvectors set, then the statement follows.

3 APPLICATIONS

In this section we consider two applications.

3.1 The Non Linear Equation Problem

This problem consists in find a feasible point of a nonlinear equation defined by a function
f : Rn→ R (here, f is twice differentiable on Rn) and λ ∈ R. The Mathematical Model is:

(NLEP) { Find x such that f (x) = λ (6)

Take x ∈ Rn, the representation of Taylor around x is

f (y)≈ f (x)+ 〈∇ f (x),y− x〉+(1/2)〈∇2 f (x)(y− x),y− x〉.
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Taking y = x+ td with ‖d‖= 1, we have that

f (x+ td)≈ f (x)+ t〈∇ f (x),d〉+(t2/2)〈∇2 f (x)d,d〉.

Using this approach, the problem consists in find a direction d such that the function h : R→ R
defined by h(t) = f (x+ td) has at least one real roots.

Definition 1. Given f : Rn → R be a function twice differentiable, let (x,λ ) ∈ Rn+1. A vector
d ∈ S is called a feasible direction for the problem (NLEP), if the function h defined by h(t) =
f (x+ td) = λ has at least one real root.

We point out, in the case that f be a linear function. Here f (x) = 〈a,x〉 for a ∈ Rn \ {0}. In
this case, h(t) = f (x+ td) = 〈a,x〉+ t〈a,d〉. Note that d = a

‖a‖ is a feasible direction. Moreover,
x+ t̄d is the orthogonal projection of x over the hyperplane {x ∈ Rn : 〈a,x〉 = λ}, where t̄ =
(λ −〈a,x〉)/‖a‖.

Lemma 3. Let f : Rn→ R be a quadratic function and (x,λ ) ∈ Rn+1. The following statement
follows:

1. The matrix D = ∇ f (x)∇ f (x)T +2(λ − f (x))∇2 f (x) is symmetric.

2. If σ(D)⊂ (−∞,0), then the problem (NLEP) has no solution.

3. If σ(D)∩ (0,+∞), then the problem (NLEP) has at least one solution. Moreover, any
eigenvector associated to positive eigenvector, is a feasible direction.

4. If d is an eigenvector associated to null eigenvalue and 〈∇ f (x),d〉 = 0, then d is not a
feasible direction when f (x) 6= λ .

5. If d is an eigenvector associated to null eigenvalue and 〈∇ f (x),d〉 6= 0, then d is a feasible
direction.

Proof. If f is a quadratic function, then

f (x+ td) = f (x)+ t〈∇ f (x),d〉+ t2

2
〈∇2 f (x)d,d〉.

So, the equation f (x+ td) = λ has solution if the discriminant

〈Dd,d〉= (〈∇ f (x),d〉)2−4( f (x)−λ )
〈∇2 f (x)d,d〉

2
≥ 0.

All items follows because the discriminant need to be non negative, in order to find real roots of
the quadratic equation.

Pesquisa Operacional, Vol. 39(3), 2019



464 A DISCRETE DYNAMICAL SYSTEM AND ITS APPLICATIONS

3.2 Linearly Constrained Quadratic Programming Problems

This problem can be formulated as follows:

(LCQPP)

{
minimize (1/2)〈Qx,x〉−〈a,x〉
Px = b

(7)

without loss of generality Q is a n×n non null symmetric matrix, P is a m×n non null matrix,
a ∈ Rn and b ∈ Rm.

For the next result, we use the following notation: {λ1, · · · ,λn} is the eigenvalue set of matrix
PT P, {u1, · · · ,un} ⊂ S an eigenvector set (i.e. PT Pui = λiui ∀i), I(0) = {i : λi = 0} and span{ui :
i ∈ I(0)} is the subspace generated by {ui : i ∈ I(0)}. By convention span( /0) = {0}.

Lemma 4. If P is a non null matrix with size m×n, then

Ker(P) = Ker(BT B) = span{ui : i ∈ I(0)}.

Proof. If Ker(P) = {0}, then PT P is non singular and then I(0) = /0 and so span{ui : i ∈ I(0)}=
{0}. If not, take h∈Ker(P)\{0}, then Ph= 0 and so PT Ph= 0. It implies that h is an eigenvector
of PT P and so h∈ span{ui : i∈ I(0)}. Conversely, if h∈ span{ui : i∈ I(0)}, then h=∑i∈I(0) αiui.
Hence, PT Ph = ∑i∈I(0) αiBT Bui = 0. Then 0 = 〈PT Ph,h〉= ‖Ph‖2 and so Ph = 0.

Now, consider a matrix V such that V : Rn → Rn is the orthogonal projection over Ker(P) =
Ker(PT P). Matrix V can be calculated as follows: Apply our scheme and obtain σ(BT B) =
{λ1, · · · ,λn} and {u1, · · · ,un} such that Qui = λiui. Then V = ∏i∈I(I− uiuT

i ), where I = {i :
λi 6= 0}. The following result is important, because we can verify the condition 〈Qh,h〉 ≥ 0
∀h ∈ Ker(P), verifying that V T QV is semi definite positive (i. e. all its eigenvalues of V QV are
nonnegative real values).

Corollary 1. 〈Qh,h〉 ≥ 0 ∀h ∈ Ker(P) if and only if V QV is symmetric semi definite positive.

For the next result, consider L = {x ∈ Rn : Px = b} and f : Rn → R defined by f (x) =
(1/2)〈Qx,x〉−〈a,x〉.

Theorem 3. The problem LCQPP has a solution if and only if

E = {z ∈ Rn+m : Cz = c} 6= /0 and 〈Qh,h〉 ≥ 0 ∀h ∈ Ker(B) (8)

where C =

[
Q PT

B 0

]
and c =

(
a
b

)
. Moreover, if z̄ = (x̄, ȳ) ∈ E, then x̄ is a solution of

LCQPP.

Proof. If x̄ is a solution of LCQP, then the KKT optimality conditions imply that ∇ f (x̄)+PT ȳ =
Qx̄− a+PT ȳ = 0 and Bx̄ = b. So, Cz̄ = c for z̄ = (x̄, ȳ). The first order necessary optimality
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condition tells us that (Qx̄− a)T h = 0 ∀h ∈ Ker(B) (because the tangent cone of L in the point
x̄ is equal to kernel of P, denoted by Ker(P)). So, for any h ∈ Ker(P), x = x̄+h ∈ L and f (x) =
f (x̄+h) = f (x̄)+(1/2)〈Qh,h〉 ≥ f (x̄) and so 〈Qh,h〉 ≥ 0.

Now, if E = {z ∈ Rn+m : Cz = c} 6= /0 and 〈Qh,h〉 ≥ 0 ∀h ∈ Ker(P), then taking z̄ = (x̄, ȳ) ∈ S
we claim that x̄ is a solution of LCQP. Indeed, Cz̄ = c implies that Px̄ = b and Qx̄−a = −PT ȳ.
Defining f (x) = (1/2)xT Qx−aT x, we need to show that f (x)≥ f (x̄) for all x such that Px = b.
Note that for h = x− x̄ we have that Ph = 0. So hT (∇ f (x̄)) = hT (Qx̄− a) = −hT PT ȳ = 0. It
implies that f (x) = f (x̄+h) = f (x̄)+(1/2)hT Ah≥ f (x̄) and the claim follows.

4 NUMERICAL EXPERIMENTS

Here, we show numerical experiments using a program code written in SciLab software. Of
course, this program code is very simple and developed by an amateur in Computer Science
(Wilfredo Sosa).

The following numerical experiment concern to verify optimality condition when we solve
linearly constrained quadratic programming problems. If

A =


0 2 7 −17
2 8 −6 −6
7 −6 −6 0
−17 −6 0 −2

 , a =


1
2
3
4

 , b =

[
3
2

]
and B =

[
2 0 −1 2
0 1 2 1

]
.

Running our program code in SciLab, we obtain the spectral set σ(BT B) = {9,6,0,0} and the
respective eigenvector set is


−0.6666667
1.351(10−08)

0.3333334
−0.6666667




2.371(10−08)

0.4082483
0.8164966
0.4082483



−7.366(10−10)

0.9128709
−0.3651484
−0.1825742




0.7453560
0

0.2981424
−0.5962848




By definition

V = (eye(4,4)−CP(:,1)∗CP(:,1)′)∗ (eye(4,4)−CP(:,2)∗CP(:,2)′)

Again applying our program code to V ∗A∗V we have that

σ(V ∗A∗V ) = {19.018037,9.7597408,0,0}

It implies that, the vector

z̄ = (0.6662676,0.4182381,0.2992118,0.9833383,7.3928963,5.0168612)

is solution of Cz = c, and so x̄ is solution of LCQP (z̄ = (x̄, ȳ)).

Also, we applied our scheme for find eigenvalues and eigenvectors of symmetric matrixes. We
simulate symmetric matrices and then calculate their eigenvalues and eigenvectors using our
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466 A DISCRETE DYNAMICAL SYSTEM AND ITS APPLICATIONS

program code. We build symmetric matrices as follows: Given each two matrices (data), the first
one D is a diagonal matrix and the second one V is an unitary matrix (i.e. V TV = VV T = I),
then we define A := V DV T , here diagonal entries of D are the eigenvalues of A and the column
vectors of V are eigenvectors of A. We generate V using Gram-Schimidt process.

1. The first matrix was built with 10 eigenvalues equal to -30; 10 eigenvalues equal to zero;
and 10 eigenvalues equal to 30.

2. The second matrix was built with 20 eigenvalues equal to -2000; 20 eigenvalues equal to
zero; and 20 eigenvalues equal to 2000.

3. The next matrix was built with eigenvalues following the rule λi+1 = λi +1, starting with
λ1 =−29 until λ59 = 29 and λ60 = 0.

4. The next matrix was built with 20 eigenvalues equal to -3000; 10 eigenvalues equal to -3;
20 eigenvalues equal to zero; 10 eigenvalues equal to 3; and 20 eigenvalues equal to 3000.

5. The next matrix was built with 50 eigenvalues equal to -100 and 50 eigenvalues equal to
100.

Of course, our scheme finds all eigenvalues and a eigenvector set. Unfortunately, the Power
Method Iteration does not run for generated matrices, because the first four matrices has null
eigenvalues and the last one has as absolute value of all eigenvalues equal to 100 (it is not
dominant eigenvalue matrix).
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[2] CROUZEIX J, KERAGEL A & SOSA W. 2011. Programación Matematica diferenciable.
Universidad Nacional de Ingenieria.

[3] GALOB O. 2007. Discrete Dynamical Systems. Springer Verlag, Berlin Heidelberg.

[4] GOLDSTEIN AA. 1964. Convex programmin in Hilbert space. Bulletin of The American
Mathematical Society, 70: 709–710.
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APPENDIX

In this section we present a program code of our scheme written in SciLab Software. Of course,
this program code is very simple and we do not use numerical strategies in order to reduce the
time of compilation or reduce the accumulation of errors. For theses reason, we do not compare
our program code with others in the literature, because it is not our subject. Criterions for the
program code are the following:

1. Try to find a great eigenvalue in absolute value, for do it we find j such that abs(A( j, j))≥
A(i, i) ∀i 6= j.

2. For build a matrix B, we consider α = 10 and L = ((max(abs(AA))∗n)1/2)+1.

3. If abs(A)< 10−8, then, we consider matrix A as a null matrix.

4. The error to find an eigenvalue will be less to 10−16.

The following function calculate an eigenvector of a symmetric matrix A.

function av = fav(A)

[m n] = size(A);
x = zeros(n,1);
amin = A(1,1);

amax = amin;

imax = 1;

imin = 1;

x(1) = 1;

for j = 2:n

if A(j,j) > amax then
amax = A(j,j)

imax = j

end
if A(j,j) < imin then

amin = A(j,j)

imin = j

end
AA = A;

if abs(amin) > amax then
AA = -AA;

imax = imin;

end
L = ((max(abs(AA))*n)ˆ{1/2}) + 1;

B = 10*(eye(n,n)+(1/L)*AA);
x(imax) = 1;

sw = 0;

while sw == 0

y = x;

x = B*x/norm(B*x);
er = abs(x’*A*x-y’*A*y);
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if er < 10ˆ{-16} then
sw = 1;

end
end
av = x;

endfunction

function valor = fvalor(A)

w = max(abs(A));
valor = 1;

if w < 10ˆ{-08} then
valor = 0

end
endfunction

The main part of the code is the following. Of course, it is necessarily read a matrix DC.

A = DC;

[m n] = size(A);
CP = [ ];

AV = [ ];

V = eye(n,n);
for i = 1:n

ws = fvalor(A);

if ws == 0 then
x0 = zeros(n,1);
x = x0;

x(1) = 1;

for j = 2:n

w2 = x0;

w2(j) = 1;

if norm(V*w2) > norm(V*x) then
x = w2

end
end
av = V*x/norm(V*x);
l = 0:

end
if ws == 1 then

u = V*fav(A);

av = u/norm(u);
l = av’*DC*av;

end
CP = [CP av];

AV = [AV;l];

V = (eye(n,n) - av*av’)*V;

A = V*A*V;

end
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