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Abstract

Let K, be the complete undirected graph with n vertices. A 3-cycle is a cycle consisting of 3 edges.
The 3-cycle polytope is defined as the convex hull of the incidence vectors of all 3-cyclesin K, . In
this paper, we present a polyhedral analysis of the 3-cycle polytope. In particular, we give severa
classes of facet defining inequalities of this polytope and we prove that the separation problem
associated to one of these classes of inequalities is NP-complete. Finally, it is proved that the 3-cycle
polytopeis a 2-neighborly polytope.

Keywords. polytope; cycle; facet; NP-completeness.
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1. Introduction

A 3-cycle is a cycle with three edges. Consider the following minimum weighted 3-cycle
problem: given agraph G = (V,E) and a‘weight’ function w: E — Q, find a3-cycle C of
G such that w(C) is as small as possible. This problem can easily be solved in polynomial
time by complete enumeration of the triangles G.

Let P(G) be the polytope defined as the convex hull of the incidence vectors of the 3-cycles
of G, thatis

P(G) = conv.hull{ ° €{0,1} : C isa3-cycle of G}.
The minimum weighted 3-cycle problem is clearly equivalent to the linear program
max{wx: x € P(G)},

as every minimum weighted 3-cycle yields an optimal vertex solution of the linear program
and vice versa. Since the minimum weighted 3-cycle problem is solvable in polynomial time,
it follows from the work of Grétschel, Lovasz & Schrijver (1981, 1993) that there exists a
polynomial time algorithm that solves the following problem:

Separation problem (SEP): given a graph G=(V,E) and a vector y e QF, decide
whether y belongsto P(G) or not, in the later case, find a vector ac QF such that
ax<ay foral xe P(G).

This agorithm for problem SEP provides an implicit description for P(G). Motivated by the
existence of an implicit description for P(G) , we attempt to find an explicit description of
P(K,) by aminimal system of linear inequalities. In this paper, we present several classes of
facet-defining linear inequalities for P(K,), we prove that it is NP-hard to solve the separation
problem for one of these classes, we show that the diameter of P(K,) is one. Unfortunately,
we did not succeed in our pursuit for a complete description of P(K,) by a reasonable
number of classes of linear inequalities. Using a computer we were able to verify that the
facet-defining inequalities presented provide a complete description for P(K;) (70 facets)
and P(K,) (896 facets). See Barahona & Grotschel (1986), Coullard & Pulleyblank (1989)
and Seymour (1979) for related studies concerning other cycle polytopes.

Let us introduce some definitions and notations. For a cycle C, define its incidence vector
2© €QF by letting yS =1 if eeC and 0 otherwise. Throughout this paper, we will confuse

acycle C with its incidence vector, e.g. we will say that a cycle C satisfies an inequality. Let
G = (V,E) be an undirected graph. For any two adjacent vertices u and v, denote by uv the

edge between u and v. A cycle C of G will be viewed as a set of edges but denoted by an
ordered list of vertices; eg. (v,V,,V;,V,) denotes the cycles containing edges
ViV, , VoV, VoV, , VY, . A 3-cycleis asimple cycle of length 3. For two subsets U and W of V,
we define the subset of edges (U:W) asfollows

U:W)={uweE:ueU andweW}

100 Pesquisa Operacional, v.23, n.1, p.99-109, Janeiro a Abril de 2003



Kovalev, Maurras & Vaxés — On the convex hull of 3-cycles of the complete graph

and 5(U):=(U :V-U). For asubset X of vertices, let E(X) be the set of edges in uv with
u,ve X, and vice versa, for a subset F of edges, let V(F) be the set of end-vertices of edges

in F. A cycle Cis called tight with respect to an inequality ax<b if ay© =b. Finally, for a
given subset of edges F and a given vector xeRE, we adopt the following notation

X(F) =2 X

ecF

In the next section, we present a few basic properties of P(K,,) and we establish an auxiliary

lemma which will be used several times in the rest of the paper for proving that an inequality
defines a facet of P(K,). In Section 3, we provide a complete description of P(K,) for
n<6 employing three classes of facet defining inequalities. Then, three new classes of facet
defining inequalities are introduced. Altogether, they allows to describe completely P(K).

We prove that it is NP-hard to solve the separation problem for one of these classes. Next,
we present a class of facet defining inequalities that generalizes four classes introduced
before and give an additional classes of facets for P(K,) with n>9. Finaly, in Section 4

we provethat P(K,) isa2-neighborly polytopefor al n> 4.

2. Basicresults

Let us start with some observations which will be useful |ater.

Lemma 1. If all 3-cyclesof a K, induced by the subset of vertices {u,v,w,t} cV satisfy an
equality ax="b then

Ay =y = 8,

Ay = 8y = &,

Q= 8y = 8g,
Ay + Ay +aw = -

Proof. Let usconsider al 3-cyclesof a K,

By +ay +ay =/,

Aty T8y =B,

By + 8y + 8y = f,

a, +a, +a =p.

Summing up any two of these equalities and subtracting the two others, we get

ay —ay = 0,
By — 8w =0,
8y —ay =0.
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Lemma 2. If all 3-cycles of a Kg induced by a subset of vertices ScV satisfy an equality
ax=Db,then a, = /3 forall u,ve S

Proof. Applying Lemma 1 to al 4-cliques defined on S, we deduce a, = £/3 for al
uveS o

Proposition 1. For n>5, {Xe QF :x(E):3} isthe affine hull of P(K,).

Proof. Suppose that al 3-cycles of K, satisfy an eguality ax= £. By scaling, we may
assumethat =3 andby Lemma2 ax= g isprecisdy x(E) =3.

n
Remark 1. For n>5, the dimension of P(K,) is [Zj—l. For n=5, thisdimension is 9.

The incidence vectors of the ten 3-cycles of Kg are linearly independent. The polytope
P(Ks) isa9-dimensional simplex whichisdefined x(E) =3 and

X(6(X))<2 foreach X cV,|X|=2. (1)

Moreover, these inequalities define facets of P(K;). Indeed, nine of the ten 3-cycles of Kg
are tight with respect to a given inequality from (1).

3. Facet defining inequalities

In the rest of the paper, in order to prove that a valid inequality | defines afacet of P(K,),
we proceed as follows. Consider the linear variety defined by x(E) =3 and I, if the set of
3-cycles that are tight with respect to | does not span this variety, then they belong to a
proper subvariety, i.e. they satisfy another equality J =ax= g suchthat|, Jand x(E) =3 are
independent. By adding an appropriate linear combination of x(E) =3 and | to J we can fix

two coefficients of J to 0. Finally, using the fact that al tight 3-cycles with respect to |
satisfy J we derivethat a, = f =0 fordl ecE.

Proposition 2. For each edge uv € E, thelinear inequality
X, 20 )
defines a facet of P(K,) whenever nx 6.

Proof. Suppose that all tight 3-cycles with respect to (2) (that is, all 3-cycles not containing
the edge uv) satisfy an inequality ax= 4. Applying Lemma 2 to al Kg not containing the
edge uv we deducethat a, = #/3 for al e E-{uv} . Finally, fixing #=0 and a,, =0 we
get a, = =0 foral ecE. o
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Lemma3. Let u,veV and n>6 if all tight with respect to
X(ou)-uv)—-x, =0 (3)

3-cyclesof K, satisfy ax= £ then

ay =&,
a,, =2p/3-a =a,, fordlweV-{uV},
a, = f/3=a, foral ee E-5(u).

Proof. The 3-cycles of K,_, not containing u are tight with respect to (3), thus they satisfy
ax=f. Using Lemma 2 we derive a, = f/3=a, for al ee E-5(u). Now, al 3-cycles
(u,v,w) with weV —{u,V} are tight with respect to (3) yielding a,, =2£/3-a,, for al
weV —{u,V} .o

Proposition 3. For each edge uv e E, the inequality (3) defines a facet of K, whenever
n>6.

Proof. First apply Lemma 3, then fix two coefficients f=a, =0, yielding a, =a; =0. o

The set of al integer solutions of the system X(E) =3, (2) and (3) is exactly the set of all
3-cyclesof K,,.

Proposition 4. For each subset X <V suchthat 2<| X [<|V |/2, theinequality
X(5(X)) <2 4

defines a facet of P(K,) whenever n> 6.
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Proof. Let us suppose that all tight 3-cycles with respect (4) belong to a proper subvariety
defined by x(E) =3, (4) and ax= 4. Notethat al 3-cyclesof a K, containing two vertices

u,ve X and two other u,veV —X are tight with respect to (4). Applying Lemma 1 to
these K,, weobtain

a,=a, =8 foraluveX andw,teV-X

ayy =8y foralue X andweV - X

with & +2a, = §. By fixing a =a, =0, weget =0 and a, =0, for al edge ec E. o

Using a computer code, we have been able to enumerate all facets of P(K). This polytope
has 70 facets and is completely defined by inequalities (2), (3), (4) and x(E) = 3.

Proposition 5. Let G=(V,E) beagraphand let
Q(G)z{XeRE X(3(X)) < 2foral X cV,2<| X |<|V |—2}.
The separation problemfor Q(G) is NP-complete.

Proof. We provide a polynomial reduction from the problem MAXCUT which is proved to
be NP-hard (Garey, Johnson & Stockmeyer, 1976). Its formulation follows. Given an
undirected graph H = (V,F) and a positive integer k, find a subset of vertices X <V such

that | 6(X) |> k. One can transform an instance of the MAXCUT problem in an instance of
the separation problem for Q(K,) as follows. Suppose without loss of generality. that no
vertex of H has a degree larger than k (otherwise one can find a cut of cardinality larger than
k in linear time). Then, consider areal valued vector x € RF defined as follows

_[2Ik if ecF
~|oifecE-F

Clearly, thereisasubset X <V such that (4) separates x from Q(K,,) if and only if thereis
acut of cardinality larger than kin H. This concludes the proof of Proposition 5. o

Proposition 6. For each subset of four vertices {u,v,w,t} <V, theinequality

X(8(u) —{uv,um}) — X, + X(5(W) —{wt,um}) — X, 20 S
defines a facet of P(K,) whenever n>7.

Proof. Consider the complete subgraph K,_; which does not contain the vertex v. Since it
has at least 6 vertices, as in the proof of Proposition 3, we can show that a, =0 for each
edge e of this subgraph, and thus £ = 0. Analogously, one can show that the same equality
holds for all edges of the subgraph K,_, which does not contain w. It remains to fix a,,.
Note that =0 and consider one of the two 3-cycles containing the edge vw and which is
tight with respect to (5), namely (u,v,w) or (u,t,w). We obtain a,, =0. o
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Proposition 7. For each subset of three vertices {u,v,w} cV, theinequality

X(S(U) ~{UV, UM}) + 2X = Xy = Xy 2 0 (6)
defines a facet of K,, whenever n>7.

Proof. The proof is similar to that of Proposition 3. First, consider the complete subgraph
K,_; which does not contain the vertex v and then the one which does not contain w. Finaly,

consider the 3-cycle (u,v,w) which is tight with respect to inequality (6) and contains the
edge wv. O

Proposition 8. For a pair of vertices {u,v} cV, and each simple cycle C containing all
vertices of V-{u,v} the inequality

X(6 () —{uv}) + x(6(v) —{uv}) + 2x(C) > 2 @)
defines a facet of P(K;) .

Proof. Consider a K, induced by u,v and any two non consecutive verticesw and t of the
cycle C. Using Lemma 1 we derive a, =a, =& and a,, =a, =a, for each v,weC. It
remains to fix the coefficients of the edges of the cycle C. Let us consider a 3-cycle (v, w,t)

which contains only one edge wt of C. This 3-cycle is tight with respect to (7) implying
a, = f—2a. Findly, we fix a =a, =0. and by considering a tight 3-cycle (u,v,w), we
deduce f=0 and a, =0 for eachedge ecC. o

Using a computer code, we have been able to enumerate all 896 facets of P(K,). This
polytope is completely defined by inequalities (2)-(7) and equality X(E) =3. Note that six
classes of inequalities are necessary to describe completely P(K-) . Note that, for n>8, the

inequality (7) is not valid since it is violated by any 3-cycle consisting of vertices of C and
not containing any edge of C.
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Now, we present a class of facet defining inequalities that generalizes the classes (3), (5) and
(6). Given apositive integer k, alist §,T;, (i =1,...,k) of digoint subsets of V, we define the
following subsets of edges

H :v-LkJs T, Est =U(S:T), Esz=U(S:T),

i=1 i i%]
Ess=U(§:9), Err =U®:T), By s =U :T).
Consider the following inequality
2(X(Ess) + X(Er 1)) —X(Es1) + X(Eﬁ) +X(Ey 5)20 (8)

Proposition 9. If n>5, |H |+k >5, and at least one of the following conditions holds:
1. k>2
2|5 =1
3T =2

then (8) defines a facet of P(K,).

Proof. We distinguish two cases.
Casel: k>2.
Consider one after another all K, obtained by picking a vertex in each subset
S.T,S; and T, forij=1,..k i=. By applying Lemma 1 for each of these K, we get
the following equalities
Ay =& foreechg € §,t €T,
a5, = & foreachs € §,t; €T, withi = |
A =8y =8 foreachs €S, s; € St €T ,t; €T, withi = |

[RAd]
yt+a,+tay=p0
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Let {s,,....5} and {t;,...,t} be two subsets of vertices such that 5T, and t;<T; for
al j=1,...,k. For i=1,...,k, define P;:= Hu {s} U {t1,t5,...,ti}. By hypothesis
|Pi] = [H|+k+1 >6, hence by applying Lemma 3 to the complete subgraph induced
by P; we derive

a,, =a,=2p/3-a veH

Ay =y =& =8 ile{l..k}, j=1, vyweH.

Note that any 3-cycle with two vertices in T; and one in S (or the reverse) satisfy
(8), therefore

ag =ay =p-2a forechi=1..k,r,5€,q€eT.

Fixing two coefficients f=a,=0, we get a,=as=a,=0. This concludes Case 1.

Case 2: k=1. Wedistinguish two subcases.

1SiI=1.

If |T¢|=1 then the proof of Proposition 3 applies. Otherwise, let t;,q; be two
verticesin T;. We can apply Lemma 1 on the subgraphs induced respectively by
the subsets of vertices P;= {s;} u{ti} WH and Q= {s} v{ag} v H and
derive

Ay =&
ay, =2813-a =25 foreachve H
ay =28, =p/3=3a; foreachv,weH
and
ayq =a’ foreachve H
a,, =2p/3-a;=a’, foreachv,weH
&, =8y = f13=2'
Hence, a',=a,, a;=as and we deduce that a';=a;. These equalities do not

depend on the choice of the vertices t;, g;. Finaly, note that all 3-cycles having
two verticesin T, and onein S, satisfy (8), hence

aq =P—28 =3, forexch t,,qeT,
By fixing f=a,=0, we get a,=a;=a,=0.

1S >2.

In this subcase, |T1|> 2 because one of the three conditions of the proposition
must hold. Choose two vertices s;,5:€S;. For each of them we can provide the
same proof asin the case |S;|=1 and show that
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ag, =& foreacht €T,

ay, =2p13-a =4q, foreachve H

au =28, =p13=3 foreachv,we H

aq =F-28 =3, foreacht,q €T,
and

8y, =21 foreacht, T,

ag,, =2p13-a;=a), foreachve H

ay =8, =p/3=2a’; foreechv,weH,t eT,
a, =pf-2a=2a), foreacht,q T,

We get a's=a; and a'4,=a4, and deduce a'1=a; and a',=a,. Fixing f=a,=0, we
concludes a,=az=a,=0. o

Proposition 10. Let C and C' be two simple cycles covering all vertices of K,, and such that
if uv and vw belongs to C, then uw belong to C'. The inequality

X(C)-x(CH<1 (9)
defines a facet of P(K,,) whenever nis odd and n>9.

Proof. Let e=uv, €=wteC be two edges such that the K4 induced by the subset of vertices
{u,v,w,t} has only the edges uv and wt in common with C and C'. Every 3-cycles of this K,
are tight with respect to inequality (9). Using Lemma 1 for every such K, we show that

a, =3 foreacheeC
a,=a, foreecheeE-{CuUC?
a +2a, = f.

Next, consider the 3-cycles (e,€,€") withe,e e Cand €' e C'. They are also tight with respect
to inequality (9), yielding that as+2a,= 4 and ag-=az. Hence, the following equalities holds

at2a,=4 and az+2a,=f

Finally, we fix a=2,=0, and concludes ff =a;=0. o

4. Neighbourhood relation on P(K,)

A polyhedron P is said to be k-neighborly if each k-subset S < vert(P) defines a face
F=conv(S) such that S=vert(F).

Proposition 11. P(K;) isa 2-neighborly polytope whenever n>4.

Proof. Given any two 3-cycles x=(viVpv3) and X'=(V' V' ,V'3), the incidence vector of the
subgraph obtained as the union of X' and X' cannot be written as a convex linear combination
of any other 3-cycles. Therefore, the intersection of conv(vert(P(K,)-{x',x"})) and aff({X',x"})
isempty. In other words, conv({x',x"}) is a 1-face (an edge) of P(K,).
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Following Grunbaum (1967), we conclude that each 3-face of P(K,) is a simplex, the
diameter of P(K,) is equa to 1, and the number of 1-faces of P(K,) is equa to

n(n-1)(n-2)/6
R

Furthermore, notice that for a linear program over P(K,), the problem of finding the best
neighbour of an extreme point is equivalent to the complete enumeration.
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