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Abstract 
 
A result based on a classic theorem of graph theory is generalized for edge-valued graphs, allowing 
determination of the total value of the spanning arborescences with a given root and containing a given 
arc in a directed valued graph. A corresponding result for undirected valued graphs is also presented. In 
both cases, the technique allows for a ranking of the graph edges by importance under this criterion. 
This ranking is proposed as a tool to determine the relative importance of the edges of a graph in 
network vulnerability studies. Some examples of application are presented. 
 
Keywords:  graphs; matrix-tree theorem; vulnerability. 
 
 

Resumo 
 
Um resultado baseado em um teorema clássico da teoria dos grafos é aqui generalizado para grafos 
valorados, permitindo a determinação do valor total das arborescências parciais com raiz dada que 
contenham um arco dado, em um grafo orientado valorado. Um resultado correspondente para grafos 
não orientados valorados é também apresentado. Em ambos os casos, a técnica descrita permite uma 
hierarquização por importância das ligações do grafo, sob este critério. Esta hierarquização é proposta 
como uma ferramenta para determinar a importância relativa das ligações de um grafo em estudos 
sobre vulnerabilidade de redes. Alguns exemplos aplicados são apresentados. 
 
Palavras-chave:  grafos; teorema “matrix-tree”; vulnerabilidade. 
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1. Introduction 

The study of maximal acyclic structures in directed and undirected graphs, especially those 
with spanning arborescences and trees, is a classical subject of graph theory, which we 
follow in this work in order to propose a theoretical tool for network vulnerability analysis. 
The basic notions and results of graph theory used in the theoretical developments can be 
found in Harary (1971), Berge (1973), Bondy & Murty (1976) and Gross & Yellen (2005). 
We will use the notation and concepts as in Berge. 

Since the publication by Tutte of the celebrated matrix-tree theorem (see for instance 
[Be73] ), the theoretical interest of the theme, especially in its relationship with algebraic 
graph theory, brought to the literature a number of important works such as those of Kelmans 
(1997), who early in 1965 had already published in the field. 

More recently, the interest contributed by applications such as communication networks and 
structural design has inspired a number of studies dedicated to the building of these structures, 
subject to various constraints such as total length of shortest paths, Wu et al. (2000), radius 
bounding, Serdjukov (2001), leaf degree, Kaneko (2001) and minimum diameter, Hassin & 
Tamir (1995). The structures of fullerene graphs, of interest in organic chemistry, discussed 
by Brown et al. (1996), also enhanced the interest in research on spanning trees. 

The formulation of algorithms for finding graph parameters related to spanning trees and 
arborescences resulted in works concerning the problem of the k most vital edges, Liang 
(2001), the unranking of arborescences, Colburn et al. (1996), the counting of minimum-
weight spanning trees, Broder & Mayr (1997) and the reliability improvement of a network 
through a single edge addition, Fard & Lee (2001). A work on digraphs and graphs concerning 
the effect of link addition and removal on the number of spanning arborescences and trees is 
found in Boaventura-Netto (1984). Some questions concerning edge-weighted graphs, where 
the arborescence weight is the product of the weights of its arcs, were first presented by Bott 
& Mayberry (1954) and more recently discussed by Chung & Langlands (1996). 

This work proposes a criterion for ranking the edges of a directed (undirected) graph based 
on the value of the spanning arborescences (trees) to which it belongs. To that end, we develop 
a technique using the approach of Boaventura-Netto (1984) and Colburn et al. (1996) to deal 
with edge-weighted graphs where the substructure weight is given by the sum of edge values. 

It is fitting to observe that the total weight of the spanning arborescences (trees) of a graph, 
calculated for each one as the sum of its edges, could be obtained as shown in Chung & 
Langlands (1996), substituting exponentials ew(i,j) for the link weights w(i,j) and taking 
logarithms at the end. While this calculation is theoretically very simple, it would easily 
cause overflow problems, unless both graph order and edge values were very small. On the 
other hand, the technique described in Boaventura-Netto (1984) and Colburn et al. (1996) is 
limited to equal values for every edge. 

 

2. Some theoretical background 

When considering directed graphs, they will always have a root and we will call arcs their 
directed edges. The calculations will be based on a given vertex r which we call a root, in the 
sense of the definition used with directed graphs. Throughout the text, we will use the 
shorthand r-SPA for r-rooted spanning arborescence(s) and SPT for spanning tree(s). 
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Def. 2.1:  The Laplacian Q(G) = [qij] of a directed graph G = (X,U) is the matrix given by 

qij = d-(j)       i = j 
 qij = -aij         i ≠ j, 

where A(G) = [aij] is the adjacency matrix of G and d-(j) is the indegree of vertex j. 

With undirected graphs, we substitute the degree d(j) for the indegree d-(j). 

Def. 2.2:  The rth-vertex reduced Laplacian of G, Qr(G), is the matrix obtained from Q(G) by 
the removal of its rth line and column. 

Theorem 2.1 (Matrix-tree theorem): Given a directed (undirected) graph G and its 
Laplacian Q(G), the cardinality of the set Hr(G) of r-SPA (of SPT) is the value of the 
determinant of Qr(G) for a given r ∈ X (for any r ∈ X). 

Proof.  Berge (1973).  

Def. 2.3: A subset Rij(r) ⊆ Hr(G) of r-SPA from G is said to be associated with an ordered 
vertex pair (i,j) if we consider this set: 

• to be generated by the addition of (i,j) to G, if the arc (i,j) ∉ U; 
• to be eliminated by the removal of (i,j) from G, if the arc (i,j) ∈ U. 

The following theorem is an independent result of both Boaventura-Netto (1984) and 
Colburn et al. (1996). 

Theorem 2.2: Let G = (X,U) be a directed strongly-connected graph. Let (s,t), s, t ∈ X be a 
given ordered vertex pair and let G1 = G – (s,t) and G2 = G ∪ (s,t) be the graphs obtained 
from G respectively by the removal of arc (s,t) if (s,t) ∈ G, or by the addition of arc (s,t) if 
(s,t) ∉ G. Then the cardinality of Rst(r) as in Def. 2.3, is given by a matrix Br = [ r

ijb ] where 

  r
irb  = 0, r

iib  = 0 i ∈ X (1a) 

  r
rtb  = r

ttc    (1b) 

  r
stb  = r r

tt stc c−   s ≠ r, (1c) 

where the r
i jc  are the cofactors of Qr(G) or, more precisely, the elements of the transposed 

adjoint matrix 

  ( r
+Q )T = ( | Qr | Q-1)T = [ r

ijc ] (2) 

Proof. Two graphs G and G* (where G* = G1 or G* = G2) differing one from another by a 
single arc (s,t) will have their Laplacians differing by two elements on their tth columns, that is, 
qst (equal to 0 or –1) and qtt (whose value will change by one unity). The corresponding 
reduced Laplacians will differ from one another, either by two elements if s ≠ r or by 
one element if s = r as in this case the line and the column r will not be present. 

The number of r-SPA in Rij(r) will be the modulus of difference between the determinants of 
the two reduced Laplacians, Qr(G) and Qr(G*). We will then expand |Qr(G)| and |Qr(G*)| by 
their cofactors associated with the elements of their tth columns. 
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Let us define st
st

aK = ( 1)−  (we wish to note that we are using the adjacency matrix of the 
original graph G) to take into account the sign of the expansion terms concerned with (s,t). 
For the sake of clarity, we will isolate from the general sum the elements which change from 
one expansion to the other. 

We can correct the value of qtt in the new matrix by adding Kst to it: if (s,t) doesn’t exist then 
Kst = +1, else Kst = –1. For the new value of qst we will have to subtract Kst , given the 
negative sign of qst . Then we have, with Xr = X – {r}, 

r

r it it tt tt
i X ,i t

q c q c
∈ ≠

 
= +  
 
∑Q ,   (3) 

( )
r

r it it tt st tt
i X

(G*) q c q K c (s r)
∈

 
= + =  
 

+∑Q , (4a) 

( )
r

r it it tt st tt st st st
i X ,i s,t

(G*) q c q K q K c (s r)c ( )
∈ ≠

 
= + + + ≠  
 

−∑Q . (4b) 

The difference between (4a-b) and (3), affected by the sign of Kst, corresponds to the  
thesis.  

Def. 2.4: With G = (X,U) directed (undirected), we will call Br = [ r
ijb ], for every r ∈ X, the 

rth-spanning arborescence pertinence matrix, r-APM (B = [bij], for any r ∈ X, the spanning 
tree pertinence matrix, TPM). 

Example 2.1: Let G be the graph represented in Fig. 2.1, where the alphabetic ordering of 
the arc labels corresponds to the lexicographic ordering of the corresponding pairs: 

 
 

 

 

 

 

 

 
Fig. 2.1 – The graph G. 
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where the underlined bold entries are associated with void pairs (non-existent arcs in G). The 
addition of w = (1,4) to the graph, for instance, creates six new 1-SPA’s, which can be 
identified as acw, abw, bfw, agw, cfw and gfw. On the other hand (4,2) – that is, f – is in the 
graph but does not belong to any 1-SPA. 

The expressions (3) and (4a-b) can be applied to undirected graphs, by considering their 
symmetric adjacency matrices, to obtain the TPM. But we have two differences: 

• there is only one TPM B for a given graph, regardless of the choice of the root; 
• the choice of a root implies a directed structure: we thus have to consider pairs of 

symmetric elements in order to take all tree-forming possibilities into account. 

In the example below we have, for instance, b43 = 1 and b34 = 4 but we will want to find in 
both entries the sum corresponding to the sole structure containing (4,3) and the four 
structures containing (3,4). 

If we then consider the symmetric graph associated with the graph of Fig. 2.1, the matrix 
obtained from (1a-c) will be B’ but our final answer will be B = B’ + (B’)T. Both matrices 
are shown below, with the entries referred to in bold underlined characters: 

 0 5 5 8 0 5 5 8 
0 0 2 4 5 0 4 5 B’ = 0 2 0 4 

B = 5 4 0 5 
 0 1 1 0 8 5 5 0 

It is easy to calculate a reduced Laplacian determinant of the original undirected graph, 
whose value is 8. According to B, the addition of the edge (1,4) corresponds to 8 new trees, 
summing up to 16. But now we have a complete graph, for which we have the already-
known result of 44 -2 = 16 trees, Harary (1971). 

 
3. The generalization for valued graphs 

Now let G = (X,U) be an arc-valued directed graph with value matrix V = [vij]. 

Def. 3.1: The valued Laplacian Q(G) = [qij] of a valued graph G = (X,U) is the matrix 
given by 

  qii = ii
j i

v
≠
∑ ,    qij = -vij   (i ≠ j). 

A known result (see for instance Chung & Langlands (1996)) states that, if Hr(G) is the set of 
r-SPA on G, then the determinant of the valued reduced Laplacian verifies that 

  |Qr(G)| = v
∈ ∈
∑ ∏

r

ij
h H (G) (i,j) h

, 

where the weight of any arborescence is defined as the product of the values of its arcs. 
(If vij = 1 for every (i,j) ∈ U we have the result already given by Theorem 2.1). 

We want to define the weight of a given arborescence as the sum of its arc values, since it 
should be suitable for many applications and thus avoid going through exponentials as 
already discussed. As a consequence of Def. 2.3, we can observe that the exclusion 
(inclusion) of the arc (s,t) from (in) G implies the exclusion (inclusion) of r

stb  arcs (s,t) on the 
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elements of Rij(r) ⊂ Hr(G). Considering the entries of Br which are associated with arcs of G, 
the arc counting for the entire set of spanning arborescences will be 

  (n – 1) |Hr(G)| = r
ij

i, j
b

∈
∑

U
  (5) 

and we have, for the corresponding total value, 

  v(Hr(G)) = r
ij ij

i, j
b v

∈
∑

U
  (6) 

Now let us consider the valued graph Gst = G – (s,t) (Gst = G ∪ (s,t)) and its adjacency matrix, 
whose reduced Laplacian matrix will be st

rQ  and whose r-APM matrix we will call 
st r
r ij[ ]= βB . (We note that the r-APM matrix is a structural result that does not depend on arc 

values). An expression similar to (6) can be derived for the total value of its r-SPA’s. 

To define r-rooted spanning arborescence value matrices (r-APVM) r
r st[ ]= σS , r ∈ X, of the 

r-SPA disconnected by the removal (created by the addition) of the arc (s,t), we write 

  
n

r r r
st st ij ij ij

i, j 1
i j

K ( b )v
=
≠

σ = β −∑   (7) 

where in the case of (s,t) removal (addition) we will evidently have r
st 0β = r

st(b 0)= . The 
coefficient Kst has the same meaning as in the proof of Theorem 2.2. 

In a similar way we can build a spanning tree value matrix (TPVM). 

The counting matrices st
rB  can be determined by applying Theorem 2.2, but to do that we 

will need the corresponding reduced adjoint matrices st
r )+(Q . Since their determinants count 

the number of r-rooted arborescences in the modified graphs, we have for Gst , according to 
(1a-c) and (2), 

st st
r r st tt r r st tt st| | | | K c (s r), | | | | K (c c ) (s r),= + = = + − ≠Q Q Q Q  (8a,b) 

It follows immediately that 

 
rt T r rt 1 T
r r rt tt r
st T r st 1 T
r r st st r

[( ) ] [ (| | K b )( ) ] , (s r)

[( ) ] [ (| | K b )( ) ] (s r).

+ −

+ −

= + =

= + ≠

Q Q Q

Q Q Q
 (9a,b) 

if they exist: if for Kst = -1 (edge removal) and for given r, s, t we have r
st rb | |= Q  in (8a,b), 

every r-SPA will contain (s,t), then st
r| | 0=Q  and there will be no inverse. 

We have already obtained r
+Q  when calculating Br . As Qr and st

rQ  differ one from another 
by at most two elements in the same column, we can use the product form of the inverse 
(see for instance Hadley (1965)) to obtain the inverses st 1

r )−(Q  and their adjoints. To that 
end, we consider a transform matrix Est such that 

  st 1 1
r st r)− −=(Q E Q   (10) 
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Let us express both inverses through their column vectors, 

 st 1 st
r r j([ ] )( )− =Q q , 1

r r j([ ] )− =Q q ,  j ≠ r  (11a,b) 

On the other hand, Est can be written as 

 Est = ([er]1, …, [er]t-1, …, η, [er]t+1, …, [er]n), (12) 

where [er]i (i ≠ r) is the ith unit column vector without the rth component and 

 η = [ηi],    ηi = -yi / yt (i ≠ r, t),    ηt = 1 / yt , (13a,b) 

the vector y being given by 

  1 st
r r t[ ]−=y Q q .  (14) 

To calculate η, we observe that the changes brought to Qr by the addition or the removal of 
an arc (s,t) can be written as 

  st
r t[ ]q r t st r t[ ] K [ ]= +q e   (s = r) (15a) 

 st
r =Q  

  st
r t[ ]q r t st r t s t[ ] K ([ ] [ ] )= + −q e e  (s ≠ r) (15b) 

Then, premultiplying (15a,b) by 1
r
−Q  we obtain, for the tth column, 

           r t st r t[ ] K [ ]= +e q   (s = r) (16a) 

 1 st
r r t[ ]− =Q q  

           r t st r t r s[ ] K ([ ] [ ] )= + −e q q  (s ≠ r) (16b) 

According to (14), the first member of these equations is equal to y; then, from (16a,b) 
we have 

 yi = Kstqit    (i ≠ r, t)    and    yt = 1 + Kstqtt   (s = r) (17a) 

and 

 yi = Kst(qit - qis)    (i ≠ r, t)    and    yi = 1 + Kst(qtt - qts) (s ≠ r). (17b) 

Then, with (14) we obtain 

ηi = -Kstqit / (1 + Kstqtt)    (i ≠ t),   ηt = 1 / (1 + Kstqtt)  (s = r) (18a) 

ηi = -Kst(qit - qis) / (1 + Kst(qtt - qts)) (i ≠ t), ηt = 1 / (1 + Kst(qtt - qts))  (s ≠ r) (18b) 

and finally, from (10) and (12), 

  i
st
ij ij tj

q q q η= +  (i,j ≠ r; i ≠ t) (19a) 

  st
tj tj tq q η=   (j ≠ r), (19b) 

from which we obtain the corresponding adjoints. 
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These expressions cannot be used in the removal case for any arc (s,t) such that r
stb  = | Qr |, 

as already discussed: in this case we will have, from (6), 
r
stσ  = r

ij ij
(i, j) U

b v
∈
∑ . 

For undirected graphs, the change in the original Laplacian affects the columns s and t: we 
thus have to use the proper indexing to apply the procedure once more. 

 
The complexity 

The most time-consuming operations in the process are those associated with matrix 
inversions and products, which are at most O(n3). Each root r in a directed graph requires at 
most O(n3) operations for its r-APM to be obtained. (The same is required for the TPM of an 
undirected graph). These exigencies apply to each vertex pair (i,j) such that i ≠ j and j ≠ r for 
the determination of the r-APVM’s and, as a consequence, of the TPVM. Therefore the 
complexity in this last case is O(mn3). 

 

4. Some examples 

Example 4.1: Let us consider the following value matrices for the graph of Fig. 2.1 (which 
we will now denote G, since it is now arc-valued) and for the corresponding undirected graph 
G’: 

 0 4 5 0  0 4 5 0 
0 0 4 2 4 0 4 2 

V(G) = 
3 0 0 0 

V(G’) =
5 4 0 6 

 0 1 6 0  0 2 6 0 

Let s = r = 1. To find S1 entries, we will first work by inspection. 

The counting of 1-SPA given by Theorem 2.2 gives us |Q1| = 3. The three arborescences, 
with the values corresponding to V(G) and their total weights, are shown in Fig. 4.1 below: 

 
 

 

 

 

 

 

(11)   (10)   (12) 

Fig. 4.1 – The 1-SPA in G. 

 

4 4 4

4

2 

5 

2 2 6 

11 1

222 3 3 3
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We have, from (5) and (6), with B1 as from Example 2.1, 

 (n – 1) |Hr(G)| = r
ij

(i, j) U
b

∈
∑ = 3 + 1 + 1 + 3 + 1 = (3 x 3) = 9, 

 v(Hr(G)) = r
ij ij

(i, j) U
b v

∈
∑  = (3 x 4) + (1 x 5) + (1 x 4) + (3 x 2) + (1 x 6) = 33. 

We can see that this value is the total value of the nine arcs in Fig. 4.1, as 11 + 10 + 12 = 33. 

The arcs (1,2) and (2,4) belong to every 1-SPA, so their removal values are equal to this last 
result, 

1 1
12 24 .σ σ 33= =  

It is easy to find the remaining removal values, 1 1 1 1
13 23 42 43σ 11, σ 10, σ 0, σ 12= = = = : 

we can see that each one of these arcs belongs to a single arborescence. 

We will next examine the case of (s,t) = (1,4) ∉ U addition to G, now working with the 
algebraic technique already discussed. We will be assigning the weight 1 to the new arcs. 

Here s = r = 1: with [q1]4 = [-1, 0, 1 ] and K14= +1 we apply (19a) to obtain η = [-1/3, 0, 1/3 ]. 
Thus with t = 4, we have 

1 0 -1/3 2/3 1/3 1/3 
0 1 0 0 1/3 0 E14 = 
0 0 1/3 

and  14 1
1( )− =Q  

1/3 1/3 2/3 
 
From (8a) and (9a), 14

1Q  = 9. Thus the 1-APVM is 

0 6 3 6 
0 0 3 3 
0 3 0 3 

14
1 =B

0 3 3 0 

We already have B1 from Example 2.2. Applying (7) with 1
14b = 0 we obtain for (i, j) ∈ U, a 

total weight of 1
14σ = 51. It is easy to verify that this value corresponds to the 6 new 

arborescences in Fig. 4.2, where (1,4) is dashed and the arc orientations are to be taken from 
the root (in white) on. 

 
 

 

 

Fig. 4.2 – New 1-SPA containing (1,4). 
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For the addition of (3,2) to G we obtain one new arborescence, ((1,3),(3,2),(2,4)) with value 8 
and for that of (3,4) (also to the original G), three new arborescences are created, with total 
value 9 + 7 + 10 = 26. 

The complete 1-APVM for this graph is S1 and the corresponding TPVM, obtained as 
already discussed, is '

1S  below: 

0 33 11 51  0 62 65 75 
0 0 10 33 62 0 50 57 
0 8 0 26 ,           '

1S  = 65 50 0 69 
S1

 = 

0 0 12 0  75 57 69 0 
 

Example 4.2: 

We will consider a subset of the central region of the city of Rio de Janeiro, represented by a 
directed graph where we might be interested in studying the impact on traffic of blocking off 
a given street, for public works or as a consequence of an accident. The vertices will be 
associated with the corners and the arcs with street segments between two corners, with the 
direction corresponding to the traffic flow, as in Fig. 4.3 below: 

 

 
Fig. 4.3 – Graph of a section of downtown Rio de Janeiro. 
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Table 4.1 – Percentual participation of arcs in arborescences with given roots. 

Root 1 4 9 15 30 37 44 
(19,12)   100.00  100.00  100.00  100.00 100.00 100.00  100.00 
(19,18)   100.00  100.00  100.00  100.00 100.00 100.00  100.00 
(24,19)   100.00  100.00  100.00  100.00 100.00 100.00  100.00 
(24,23)   100.00  100.00  100.00  100.00 100.00 100.00  100.00 
(31,24)   100.00  100.00  100.00  100.00 100.00 100.00  100.00 
( 5,13)    88.80   82.40   80.14   80.98  94.84  97.23   96.81 
(25,32)    87.99   81.13   78.70   79.60  94.46  97.03   96.58 
(20,25)    85.76   77.63   74.75   75.83  93.44  96.48   95.95 
(33,26)    79.73   68.15   64.05   65.58  90.65  94.98   94.23 
(44,31)    76.10   62.45   57.61   59.42  88.98  94.09   93.19 
(42,43)    75.60   61.67   56.73   58.58  88.75  93.96   93.05 
(38,39)    65.14   45.24   38.19   40.83  83.93  91.37   90.07 
(40,41)    64.62   44.42   37.26   39.94  83.69  91.25   89.93 
(26,27)    60.91   38.59   30.69   33.64  81.98  90.33   88.87 
(15,34)    60.40   37.79   29.78   32.78  81.75  90.20   88.72 
(35,36)    58.74   35.18   26.83   29.95  80.98  89.79   88.25 
(42,29)    58.53   34.85   26.47   29.61  80.88  89.74   88.19 
(34,35)    57.87   33.81   25.29   28.48  80.58  89.57   88.00 
(39,33)    56.77   32.08   23.34   26.61  80.07  89.30   87.69 
(39,40)    55.79   30.55   21.61   24.95  79.62  89.06   87.41 
(20,21)    55.03   29.35   20.26   23.66  79.27  88.87   87.19 
( 5, 6)    53.45   26.87   17.46   20.98  78.54  88.48   86.74 
(15,14)    52.21   24.92   15.25   18.87  77.97  88.17   86.39 
(23,22)    51.90   24.43   14.70   18.34  77.83  88.10   86.30 
( 9,16)    51.65   24.04   14.26   17.92  77.71  88.04   86.23 
( 2, 8)    51.11   23.20   13.31   17.01  77.46  87.90   86.08 
(29,30)    50.91   22.88   12.95   16.66   87.85   86.02 
( 8, 9)    50.86   22.80   12.25   16.58  77.35  87.84   86.01 
(11,10)    50.51   22.25    15.99  77.19  87.75   85.91 
(12,11)    50.26   21.85   11.79   15.56  77.07  87.69   85.83 
(18,17)    50.26   21.85   11.79   15.55  77.07  87.69   85.83 
( 4, 3)    50.00    11.34   15.12  76.95  87.63   85.76 
(11, 3)    11.34   21.45   11.34   76.95   

 

The figure shows the graph and a table with weights given to different streets according to 
their importance to traffic flow. Pedestrian-only streets were suppressed. Table 4.1 shows 
the percentual values of the participation of some arcs in sets of arborescences with given 
roots. It is interesting to note that the arcs are chiefly the same in the examples shown, but 
the percentual values show significant changes from one root to another. This table does not 
include arcs (e.g. (1,5)) which are the unique exit for a vertex as they obviously belong to 
every partial arborescence. 

 
Example 4.3: 

This last example deals with the French commutation network TRANSPAC, Bulteau (1997). 
The vertices correspond to French cities. In Fig. 4.4 below, the position of vertices in the 
plane is approximately that of the corresponding cities. The more important edges have 
values equal to 2 or 3; the remaining ones have value 1. 
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Fig. 4.4 – The TRANSPAC network. 

 
Here we are interested both in the effect of an eventual edge failure and in the gain one could 
obtain by building a new connection. The evaluative measure in both cases will be the 
number of spanning trees associated with the concerned edge, which belongs to the network 
in the first case and is projected to be built in the second case. 

Tables 4.2 and 4.3 below show, respectively, the number of spanning trees associated with 
fifty vertex pairs, both in the first and in the second case. 
 

Table 4.2 – Percentual increase in number of spanning trees associated with a new edge. 

Edge  % increase Edge  % increase Edge  % increase Edge  % increase Edge  % increase 
( 6,21)    329.75 ( 3,20)    313.42 (16, 3)    302.86 ( 1, 3)    282.16 (13,19)    270.33 
(20, 6)    324.18 (21,16)    313.29 ( 1,16)    302.26 ( 8,19)    279.40 (13, 5)    269.38 
(13,21)    322.81 ( 1,20)    312.42 (16, 6)    297.86 ( 8, 5)    277.66 (19,20)    267.20 
( 6, 8)    321.35 ( 8,13)    311.92 ( 1, 8)    297.57 (19, 6)    276.78 (16,19)    262.88 

(20,21)    319.06 (13, 1)    309.71 ( 3, 8)    295.37 ( 3,19)    275.59 ( 7, 6)     259.82 
(13,20)    317.30 (21, 3)    309.49 (13,16)    292.18 (19, 1)    274.61 ( 6,12)    258.63 
(20, 8)    317.19 ( 1,21)    308.54 (21, 5)    290.02 ( 6, 5)    273.36 (11, 6)    258.09 
( 3, 6)    316.82 (13, 3)    307.85 ( 6,13)    289.41 ( 1, 5)    273.32 ( 6,27)    256.25 
( 6, 1)    316.60 (16,20)    307.14 (20, 5)    287.29 ( 3, 5)    271.88 (24, 6)    255.31 

( 8,21)    313.65 ( 8,16)    306.80 (21,19)    283.39 (16, 5)    271.48 ( 7,20)    254.33 
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Table 4.3 – Percentual removal of spanning trees associated with a removed edge. 

Edge  % removal Edge  % removal Edge  % removal Edge  % removal Edge  % removal 

  (10,22)      89.66   (14,17)      82.48   (26,14)      80.00   (27,10)      78.15   (14, 9)      76.37 

  (14,10)      88.88   (23,18)      82.07   (26,18)      79.51   (25,14)      78.13   ( 7,10)      76.33 

  (18,10)      88.08   (18,17)      81.29   ( 9,10)       79.49   (23,17)      77.92   ( 4,14)      76.32 

  (10,17)      86.89   (23,22)      81.06   (24,10)      79.49   (18,15)      77.73   (18, 9)      75.95 

  (14,22)      85.90   (22,26)      81.03   (24,22)      79.06   (11,10)      77.47   (15, 9)      75.83 

  (14,18)      85.85   (14,23)      80.89   (15,14)      78.98   (25,18)      77.27   (12,22)      75.26 

  (18,22)      85.06   (10,28)      80.54   (10, 4)       78.97   (12,10)      77.23   (18, 4)      75.24 

  (22,17)      84.56   (25,10)      80.45   (22,25)      78.47   (23,26)      76.66   (22,11)      75.03 

  (10,23)      83.45   ( 2,10)      80.30   (10,15)      78.39   (28,17)      76.63   (17,24)      75.03 

  (10,26)      82.60   (22,28)      80.17   (28,14)      78.23   (22,27)      76.47   (17, 2)      75.01 

 
We can see that a number of the pairs giving a strong increase in the number of spanning 
trees contain 2-degree vertices, which can be easily associated with the level of connectivity. 
From these it is interesting to observe that 1 and 3 are geographically near one another. Thus 
the building of an edge (1,3) should therefore have a good cost-benefit ratio, since it would 
increase the number of spanning trees in the graph by a factor of 2.82. 

On the other hand, the most critical edge in terms of failure is (10,22), which has value 3 and 
connects two high-degree points (10 is Paris). The participation of vertices in pairs which are 
important both for building new edges and in terms of edge failures is given by Table 4.4. 
 

Table 4.4 – Participation of vertices in important pairs. 

Vertex contribution for important new edges  Vertex participation in failure-critical edges 
1 12 8 14 15 0 22 0  1 6 8 7 15 0 22 8 

2 0 9 0 16 12 23 0  2 1 9 1 16 6 23 4 

3 12 10 0 17 0 24 0  3 6 10 11 17 4 24 2 

4 0 11 0 18 0 25 0  4 0 11 0 18 6 25 1 

5 0 12 0 19 0 26 0  5 0 12 0 19 0 26 4 

6 12 13 10 20 14 27 0  6 6 13  5 20 7 27 0 

7 0 14 0 21 14 28 0  7 0 14 6 21 7 28 2 

 

5. Conclusions 

In this work, we have presented a technique for evaluating the relative importance of the 
edges in a directed (undirected) edge-weighted graph by using as a criterion the weights of 
the spanning arborescences (spanning trees) associated with each pair of vertices, as defined 
in the text. We consider this criterion to be a useful tool for ranking both existent edges 
according to the importance of their eventual failure in a network, and non-existent edges 
according to their positive influence within the planning of network improvements. 

When dealing with this subject, we took into account the needs of some applications related 
to the fields of communication and transportation, as we found them expressed by authors 
working in spanning arborescences and trees. 
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