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Abstract 
 
Probabilities and odds, derived from vectors of ranks, are here compared as measures of efficiency of 
decision-making units (DMUs). These measures are computed with the goal of providing preliminary 
information before starting a Data Envelopment Analysis (DEA) or the application of any other 
evaluation or composition of preferences methodology. Preferences, quality and productivity 
evaluations are usually measured with errors or subject to influence of other random disturbances. 
Reducing evaluations to ranks and treating the ranks as estimates of location parameters of random 
variables, we are able to compute the probability of each DMU being classified as the best according to 
the consumption of each input and the production of each output. Employing the probabilities of being 
the best as efficiency measures, we stretch distances between the most efficient units. We combine 
these partial probabilities in a global efficiency score determined in terms of proximity to the efficiency 
frontier. 
 
Keywords:  decision aid, randomized ranks, data envelopment analysis. 
 
 

Resumo 
 
Probabilidades e chances relativas são aqui comparadas como medidas de eficiência de unidades 
tomadoras de decisão (DMUs). Avaliações de preferência, qualidade e produtividade costumam ser 
medidas com erros e estar sujeitas à influência de outras perturbações aleatórias. Reduzir as avaliações 
iniciais a postos e tratar estes como estimativas de parâmetros de locação de variáveis aleatórias 
permite calcular as probabilidades e chances relativas de cada opção ser classificada como a de maior 
preferência. Esta transformação amplia as distâncias entre as DMUs mais eficientes. As probabilidades 
e as razões de chances relativas delas derivadas podem ser combinadas em termos de proximidade à 
fronteira de excelência. Aqui se apresenta evidência de que os escores de eficiência derivados das 
probabilidades e chances relativas são mais correlacionados com as medidas que combinam que os 
escores derivados dos postos ou das razões de produtividade. 
 
Palavras-chave:  auxílio à decisão, postos aleatorizados, análise envoltória de dados. 
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1. Introduction 

When we fit an efficiency frontier to observed values, not taking into consideration that 
random factors affect the observations, we may generate false reference patterns. For this 
reason, it is customary to perform some analysis of sensitivity of the optimization results to 
small changes in the measurements. Within the field of DEA, this is considered, for instance, 
by Thompson et alii (1996), Simar & Wilson (1998) and Cazals, Florens & Simar (2002). 
We may take into consideration this probabilistic character of the measurements by treating 
them as estimates for location parameters of probability distributions. This is done here, in a 
DEA framework, by replacing, before calculating the efficiency frontier, the observed values 
by the probabilities, or by the odds, of the respective units being the most efficient. 

Another source of uncertainty not usually taken into account is implicit in the form of 
measurement of inputs and outputs. We may avoid that by starting with the simple orderings 
of the DMUs according to the volumes of outputs generated and the volumes of inputs 
consumed. The transformation into the probabilities of being the best will then perform a 
translation from an arithmetic to a geometric scale, reducing the distances between the 
DMUs ranked in the last positions and increasing the distances between the better ranked. 
This happens because, in general terms, anytime the rank increases one unit, the probability 
of being the best involves a product with one less large factor, replaced by a small factor. 

The terms output and input are here employed in a wide sense, of benefits that we desire to 
maximize and of resources employed whose unavailability would bound the growth of those 
benefits. Productivity ratios, for instance, may be put in the output side and risks to the 
environmental in the input side. But we can accept all kinds of variables, taking any sort of 
values. In fact, by measuring in terms of probabilities of being the best, we evaluate all 
variables in the same direction, so that we are able to consider any performance variable 
without the need of classifying into sets of inputs or outputs. 

In the next two sections, the basic model and the randomized approach are proposed. In 
Section 4, this approach is applied to a data set of production and costs of 15 fictitious 
hospitals created by Sherman (1984) and to another data set of inputs and outputs of 16 real 
Brazilian hydroelectric plants studied by Sant’Anna & Lins (1998). In Section 5, regression 
models relating the efficiency scores to the variables used in generating them are adjusted. It 
is verified there that, whether using uniform or normal distributions to randomize the ranks, 
the probability transformation, as well as the odds transformation, makes each factor to 
contribute with a significant effect to the aggregate efficiency score, property that does not 
hold if we derive efficiency directly from the vectors of ranks. 

 

2. A Basic Model 

Though DEA evaluates all possible linear weights in the aggregation of resources and 
products, the weights are applied to measurements and the same product or resource may be 
measured differently from different points of view. Even when one side of the productivity 
ratio can be put in monetary terms, if the other side is measured in various ways, the 
efficiency frontier may vary. Simple transformations of only one variable may significantly 
change the final efficiency evaluations. Here is proposed a starting model with the 
measurement form fixed and all variables measured in the same direction. This can be done 
if the initial variables are only the ranks according to each relevant concept. If we have 
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previous measurements, ranking is automatically determined; otherwise, it is possible to 
derive full ranking from pairwise comparison. 

To derive global efficiencies from ranks, the aggregation procedure will consist in solving 
the linear programming problem of DEA oriented to the minimization of input, assuming a 
constant arbitrary input applied in all DMUs to generate as outputs the respective ranks. This 
implies measuring efficiency by the ratio from the best rank attained to the best possible 
rank, the number of DMUs. 

From this starting point, we may advance towards efficiency evaluations paying more 
importance to the variation of a chosen variable within a given range of values or to frontiers 
determined by changing the measurements of some variables. Thus, the dependence of the 
efficiency scores on the form of measurement may be exploited to inform about efficiency 
gains that production units may derive from a suitable choice of production functions. 

The example below leaves clear the dependence of the relative efficiency on the form the 
different variables involved are measured. We analyze the data provided by Sherman (1984). 
This data set has the property of measuring inputs in monetary terms, so that only the 
numerical values relative to the outputs are responsible for the indeterminacy in the implicit 
production function. Sherman (1984) builds a matrix of data on 15 fictitious hospitals, whose 
production is measured in terms of teaching units and patients attended, the patients 
classified into two groups, of regular cases and of severe cases. The input is supposed to be 
determined by a total cost measurement. Even so, there are different forms of combining the 
three outputs. 

Sherman (1984) data are generated in such a way that for seven of the fifteen hospitals, 
which will become the most efficient in his analysis, total cost is a linear combination of the 
number of teaching units, the number of regular patients and the number of severe patients. 
Thus, there is a most efficient constant contribution to final cost provided by each teaching 
unit, another most efficient constant contribution provided by each regular patient attended 
and another most efficient constant contribution provided by each severe case. But it is 
reasonable to believe, for instance, that there might be gains of scale and gains of iteration 
between different services that would make total cost grow less than proportionally as the 
attendance increases. 

There are DEA strategies to deal with such doubt. We may, for instance, apply a logarithmic 
transformation to slow down costs increasing and then compare the efficiency results derived 
from the different approaches. Table 2.1 presents Sherman (1984) data. Table 2.2 presents 
the efficiencies of the 15 hospitals derived from constant returns to scale analyses assuming 
the input measured, respectively, by the total cost and by the logarithm of the total cost. Its 
first column shows the efficiency measured by the ratio between the cost predicted by the 
equation that fits the seven first hospitals and the observed total cost. 

We can see in Table 2.2 that the first hospital, that was one of the best, becomes one of the 
less efficient as we transform the cost variable. Its efficiency would fall down from 100% to 
59%, just 1% above that of the less efficient hospital. On the other side, the tenth hospital in 
the rank resulting from DEA based on Total Cost, and the less efficient if the linear model 
used to generate the first seven hospitals would really correspond to full efficiency, becomes 
one of the fully efficient. 

The substitution of ranks for the values of the variables would provide a neutral evaluation, 
in the sense of not placing larger distances between the most preferable DMUs nor between 
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the less preferable. Starting from that, it is easy to determine, step by step, the effects of 
differentiating more strongly the units with extreme values in variables such as the number 
of regular patients or severe cases. 

 
Table 2.1 – Hospitals Data 

Hospital Cost Teach units Regular patients Severe patients 
1 775.5 50 3 2 
2 816.6 50 2 3 
3 841.6 100 2 3 
4 800.5 100 3 2 
5 950.3 50 3 3 
6 1191.1 100 2 5 
7 1711.3 50 10 2 
8 884.8 100 3 2 
9 841.6 50 2 3 

10 2036.3 100 10 2 
11 1362.6 50 5 3 
12 1070 100 3 3 
13 1491.1 50 4 5 
14 898.7 50 3 2 
15 1070 100 3 3 

 

Table 2.2 – CRS Efficiency of the 15 Hospitals 

Hospital Predicted/Actual cost DEA using Total Cost DEA using ln (Total Cost) 
1 100% 100% 59% 
2 100% 100% 67% 
3 100% 100% 100% 
4 100% 100% 100% 
5 100% 100% 72% 
6 100% 100% 100% 
7 100% 100% 100% 
8 91% 90% 99% 
9 97% 97% 66% 

10 85% 92% 100% 
11 89% 89% 81% 
12 91% 91% 98% 
13 96% 97% 100% 
14 86% 86% 58% 
15 91% 91% 98% 
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3. Randomized Ranks 

After eliminating the uncontrolled disturbances implicit in the form of measurement, we may 
introduce in the analysis a controlled random component by considering the observations as 
location parameters of probability distributions and replacing the vectors of ranks by the 
vectors of probabilities of each DMU presenting the best performance according to each 
observed variable. The practical advantage of the transformation in probabilities of being the 
best is to increase the distances between the best-ranked units. This leads to efficiency 
frontiers simpler, in the sense of being affected by less observation units, and more 
informative, in the sense of making more variables affect the final result. In fact, different 
DMUs tend to become the best when we focus on different inputs and outputs, so that a 
transformation that increases the distances between the best ranked DMUs under each 
concept will tend to place in the frontier each variable, through a different DMU, and no 
more than one DMU per variable. 

There are also theoretical reasons to pass from ranks to probabilities of being the best. This 
leads, from the linear scale of ranks, to a scale closer to the exponential scales favored in 
situations such as those described by Lootsma (1983), where, in the elicitation of 
preferences, the worst ranked options are less carefully classified. This is a reason to avoid, 
after replacing probabilities by odds, proceeding in the direction of logodds. Applying 
logarithms, besides introducing negative values, increases spaces between values near zero, 
what would bring us back to a more equally spaced vector of values. 

The effect of substituting odds for probabilities, if all concepts are measured in the same 
direction, increasing from the least desirable to the most desirable observed value, is to 
accentuate the distances between the best-ranked DMUs. If, instead, we wish to adopt the 
distinction between input and output variables, probabilities may easily be adapted, by using 
in the position of input variable the probability of not being the unit consuming the maximum 
amount of resources instead of the probability of being the best. The distances between the 
most preferred DMUs will still be the largest. After transforming from probabilities to odds, 
such a natural transformation is no longer available. In fact, if we use the inverse odds to 
change the increasing direction of variables measuring resources consumption, the largest 
differences will, instead, separate the DMUs with low probabilities of being the best. 

Another choice to be made is that of the probability distribution of the random disturbances 
supposed to affect the observations. To keep focus on observed frontiers, we should adopt, 
for each random variable, a probability distribution with heavy concentration around its 
observed values and with a light tail. On the other side, to maximize the chance of rank 
inversion, we must raise the probability of the values over a neighborhood wide enough to 
entirely cover the actually observed set. The range of such distributions should be the same 
for all DMUs, to mean that the random disturbances may equally affect all measurements. 
We suit all these principles if the distribution around each measurement is a uniform 
distribution centered on it and with a range large enough to allow for the possibility of 
change of position between any DMUs under evaluation. This determines it as the range of 
the observed set. 

If the number of DMUs is small and we believe that rank inversions are more likely to occur 
than the allowed by the above rule, then we may add one or two fictitious DMUs in the 
extremes of the classification. Adding fictitious inefficient DMUs will just reduce a little the 
distances between the real DMUs. With no more than fifteen DMUs, we found out that this 
addition of supplementary DMUs in the less productive extreme will have no effective 



Sant’Anna  –  Data envelopment analysis of randomized ranks 

208 Pesquisa Operacional, v.22, n.2, p.203-215, julho a dezembro de 2002 

influence in the efficiency scores. But, by adding an efficient fictitious unit with the highest 
rank in every variable, we change substantially the results. This addition of an ideal DMU 
may be used to provide a pattern for comparison between the fully efficient DMUs. 

The value of each input and output of each DMU is replaced by the probability or odd of 
such unit presenting the best possible rank with respect to the utilization of such input or 
production of such output. This probability is computed, following the rules above set, under 
the hypothesis that the measurements are independent and uniformly distributed around the 
respective observed values, with range equal to the difference between the largest and the 
smallest among the observed measurements. Formally, what we do is to replace the valuation 
yik of the i-th DMU under the k-th input or output by the value of P[Xik ≥ Xjk, for all j ≠ i], 
this probability calculated following the assumption of each Xlk independently uniformly 
distributed on the interval [ylk – (max ymk – min ymk)/2, ylk + (max ymk – min ymk)/2]. Or by 
the odd, given by Oik = P[Xik ≥ Xjk, for all j ≠ i]/ (1 – P[Xik ≥ Xjk, for all j ≠ i]). The log-odds 
are the log(Oik). 

To evaluate the effect of the choice of the distribution, comparisons are made in the next 
section not only between probabilities and odds, but also between the uniform and normal 
assumptions. The assumption of normality will be, as in the uniform framework above set, 
combined with the hypotheses of independence and identical dispersion. But, in the normal 
case, following the usual practice, the dispersion will be derived from the sample standard 
deviation instead of the sample range. The standard deviation of the Xik will still be the same 
for all i, but will be assumed equaling the standard deviation of the sample (y1k, …, ynk). 

 

4. Efficiency Evaluation 

The transformations above discussed are here applied to two data sets. The first was that 
generated by Sherman (1984), presented in Section 2. The second, studied by Sant’Anna & 
Lins (1998), involves, for sixteen Brazilian hydro-electric plants, three input variables, 
Construction Cost, Representative Fall and Maximum Volume, and one output variable, the 
Guaranteed Power. The first input variable globally measures the resources spent, while the 
other two express restrictions to production that are relaxed as their values increase. 

Table 4.1 presents, for the hospitals data set, the odds of being the best derived from the 
vectors of ranks, assuming independent uniform distributions as described in Section 3. The 
columns in the left side of the table present odds generated considering only the 15 original 
hospitals and the columns in the right side present the odds of the same hospitals becoming 
the best when a hospital with rank 16 is added. Table 4.2 presents the same results for the 
procedure with the normal assumption. Table 4.6 presents the second data set and the 
corresponding odds. All odds are exhibited in a 10-3 approximation. 

Table 4.3 and Table 4.7 compare the DEA efficiency scores with those derived from 
probabilities of being the best calculated after randomization of the original values. Table 4.4 
and Table 4.8 compare the efficiency scores directly derived from ranks to those obtained 
through the randomization of ranks. 

Table 4.5 presents the efficiency scores derived from randomization of hospital ranks after 
an ideal fictitious hospital with maximum rank in every concept is added to allow for 
discrimination of the units that would otherwise receive an efficiency score of one. We can 
see in Table 4.5 that the presence of the ideal unit affects more the DEA scores. This happens 
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because the ideal unit presents a best rank with respect to all variables, inputs and outputs. 
The distance to the frontier in terms of productivity is cumulatively affected by the increase 
of the distance in the two aspects. 

The scores in all analyses, except those corresponding to DEA results, follow the same 
pattern, although a few changes in the reference units produce some order inversions. While 
in the hospitals data set, the efficient units are the same whether randomization is applied to 
ranks or to the initial values, among the hydroelectric plants, some will loose its position of 
fully efficient if we replace the original values by the ranks. 

Examining the original data in Tables 2.1 and 4.6, we notice that ranks will overrate some 
small differences in the variables. This will result in some strong reductions in the probabilities 
of being the best and, consequently, in the efficiency scores derived from probabilities or 
odds. Plant 13, for instance, presents a low cost, in absolute terms that will warrant it 
efficiency above .9 when randomization is applied to the initial values. But, because there are 
6 units with lower costs, its efficiency falls to bellow .4 when observed values are replaced 
by ranks before randomization. The same happens to Hospital 11 in the first data set. 

Differences in the distributions of probabilities of being the best, due to ties in some input or 
output, will place them at different distances from the efficiency frontier. If we would 
consider tied, for instance, hospitals differing by only one patient, under the criteria based on 
the number of regular patients or the number of severe patients, or plants with differences of 
only 1m, under the criterion of representative fall, or only 1Mw, under the criterion of 
guaranteed power, we would get considerably different vectors of efficiency scores. In the 
hospitals data set, which presents a large number of ties, average ranks were used and 
probabilities equalized, while, in the hydroelectric plants data set, to accentuate this effect, a 
random order was used in the cases of ties. 
 

Table 4.1 – Hospitals Uniform Odds 

Based on Initial Ranks Adding One Best Unit 

Total Cost Teach units Regular P. Severe P. Total Cost Teach units Regular P. Severe P. 
0.534 0.000 0.005 0.000 0.327 0.000 0.003 0.000 
0.207 0.000 0.000 0.034 0.126 0.000 0.000 0.017 
0.092 0.167 0.000 0.034 0.054 0.081 0.000 0.017 
0.336 0.167 0.005 0.000 0.207 0.081 0.003 0.000 
0.007 0.000 0.005 0.034 0.003 0.000 0.003 0.017 
0.000 0.167 0.000 0.627 0.000 0.081 0.000 0.314 
0.000 0.000 0.501 0.000 0.000 0.000 0.278 0.000 
0.035 0.167 0.005 0.000 0.019 0.081 0.003 0.000 
0.092 0.000 0.000 0.034 0.054 0.000 0.000 0.017 
0.000 0.167 0.501 0.000 0.000 0.081 0.278 0.000 
0.000 0.000 0.223 0.034 0.000 0.000 0.127 0.017 
0.001 0.167 0.005 0.034 0.000 0.081 0.003 0.017 
0.000 0.000 0.126 0.627 0.000 0.000 0.072 0.314 
0.016 0.000 0.005 0.000 0.009 0.000 0.003 0.000 
0.001 0.167 0.005 0.034 0.001 0.081 0.003 0.017 



Sant’Anna  –  Data envelopment analysis of randomized ranks 

210 Pesquisa Operacional, v.22, n.2, p.203-215, julho a dezembro de 2002 

Table 4.2 – Hospitals Normal Odds 

Based on Initial Ranks Adding One Best Unit 

Total Cost Teach Regular P. Severe P. Total Cost Teach Regular P. Severe P. 
0.321 0.015 0.043 0.008 0.227 0.006 0.027 0.004 

0.176 0.015 0.004 0.081 0.129 0.006 0.003 0.054 

0.112 0.148 0.004 0.081 0.083 0.107 0.003 0.054 

0.238 0.148 0.043 0.008 0.171 0.107 0.027 0.004 

0.036 0.015 0.043 0.081 0.028 0.006 0.027 0.054 

0.012 0.148 0.004 0.279 0.010 0.107 0.003 0.220 

0.003 0.015 0.279 0.008 0.003 0.006 0.211 0.004 

0.070 0.148 0.043 0.008 0.053 0.107 0.027 0.004 

0.112 0.015 0.004 0.081 0.083 0.006 0.003 0.054 

0.002 0.148 0.279 0.008 0.002 0.107 0.211 0.004 

0.008 0.015 0.176 0.081 0.006 0.006 0.135 0.054 

0.021 0.148 0.043 0.081 0.017 0.107 0.027 0.054 

0.005 0.015 0.130 0.279 0.004 0.006 0.100 0.220 

0.050 0.015 0.043 0.008 0.038 0.006 0.027 0.004 

0.021 0.148 0.043 0.081 0.017 0.107 0.027 0.054 

 

Table 4.3 – Hospital Scores for Randomization applied to Initial Values 

HOSPITAL   SCORE   
 DEA Uniform probability Uniform odd Normal probability Normal odd 

1 1 1 1 1 1 
2 1 0.81 0.76 0.94 0.9 
3 1 1 1 1 1 
4 1 1 1 1 1 
5 1 0.31 0.26 0.64 0.58 
6 1 1 1 1 1 
7 1 1 1 1 1 
8 0.9 1 1 1 1 
9 0.97 0.69 0.64 0.87 0.83 
10 0.92 1 1 1 1 
11 0.89 0.05 0.03 0.29 0.21 
12 0.91 1 1 1 1 
13 0.97 1 1 1 1 
14 0.86 0.45 0.4 0.69 0.65 
15 0.91 1 1 1 1 
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Table 4.4 – Hospital Scores for Randomization applied to Ranks 

HOSPITAL   SCORE   
 Rank Uniform probability Uniform odd Normal probability Normal odd 

1 1 1 1 1 1 
2 1 0.58 0.44 0.92 0.81 
3 1 1 1 1 1 
4 1 1 1 1 1 
5 0.94 0.10 0.07 0.48 0.41 
6 1 1 1 1 1 
7 1 1 1 1 1 
8 1 1 1 1 1 
9 0.95 0.33 0.22 0.73 0.62 
10 1 1 1 1 1 
11 1 0.60 0.48 0.86 0.79 
12 1 1 1 1 1 
13 1 1 1 1 1 
14 0.81 0.62 0.41 0.36 0.30 
15 1 1 1 1 1 

 

Table 4.5 – Hospital Scores with Ideal DMU Added 

HOSPITAL   SCORE    

 
Uniform 

DEA 
Uniform 

probability 
Uniform 

odd 
Normal 
DEA 

Normal 
probability 

Normal  
odd 

1 0.01 0.73 0.65 0.10 0.80 0.75 
2 0.03 0.33 0.25 0.17 0.49 0.43 
3 0.11 0.16 0.11 0.29 0.35 0.28 
4 0.13 0.51 0.41 0.31 0.63 0.57 
5 0.03 0.04 0.03 0.16 0.20 0.15 
6 0.39 0.59 0.47 0.54 0.70 0.63 
7 0.40 0.60 0.49 0.54 0.70 0.64 
8 0.11 0.16 0.09 0.28 0.35 0.28 
9 0.03 0.15 0.11 0.16 0.33 0.27 
10 0.40 0.60 0.49 0.54 0.70 0.64 
11 0.21 0.31 0.22 0.37 0.48 0.41 
12 0.11 0.16 0.09 0.27 0.35 0.28 
13 0.39 0.59 0.47 0.54 0.70 0.63 
14 0.01 0.03 0.02 0.08 0.16 0.13 
15 0.11 0.16 0.09 0.27 0.35 0.28 
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Table 4.6 – Hydroelectric Plants Data 

Original Values Uniform Odds Normal Odds 
Cost Fall Volume Power Cost Fall Volume Power Cost Fall Volume Power 

972 44 230000 414 0,000 0,131 0,000 0,458 0,003 0,129 0,002 0,300 
91 27 881 16 0,013 0,309 0,080 0,000 0,038 0,227 0,095 0,002 
75 35 10800 30 0,131 0,205 0,000 0,000 0,129 0,171 0,009 0,006 
68 167 145 110 0,205 0,000 0,205 0,080 0,171 0,004 0,171 0,095 

263 116 1150 130 0,000 0,000 0,012 0,131 0,009 0,006 0,038 0,129 
1086 79 190200 344 0,000 0,001 0,000 0,309 0,002 0,013 0,003 0,227 

46 75 1900 56 0,309 0,006 0,006 0,025 0,227 0,028 0,028 0,053 
118 69 385 39 0,002 0,012 0,131 0,000 0,019 0,038 0,129 0,009 
107 68 900 39 0,006 0,025 0,046 0,001 0,028 0,053 0,071 0,013 
27 197 28 23 0,458 0,000 0,309 0,000 0,300 0,002 0,227 0,004 

414 91 26500 138 0,000 0,000 0,000 0,205 0,004 0,009 0,004 0,171 
321 50 8904 103 0,000 0,080 0,001 0,046 0,006 0,095 0,013 0,071 
87 187 1088 51 0,025 0,000 0,025 0,002 0,053 0,003 0,053 0,019 
83 53 14650 55 0,046 0,046 0,000 0,006 0,070 0,070 0,006 0,028 
79 23 3642 17 0,080 0,458 0,002 0,000 0,095 0,300 0,019 0,003 

135 78 7 55 0,001 0,002 0,458 0,012 0,013 0,019 0,300 0,038 
 

Table 4.7 – Plants Scores for Randomization applied to Ranks 

PLANT   SCORE   
 Rank Uniform probability Uniform odd Normal probability Normal odd 

1 1 1 1 1 1 
2 1 0.98 0.85 1 0.98 
3 1 0.78 0.66 0.89 0.81 
4 1 0.91 0.76 1 1 
5 0.97 0.41 0.31 0.63 0.54 
6 0.96 0.75 0.68 0.80 0.76 
7 1 0.83 0.73 1 0.93 
8 0.91 0.41 0.31 0.60 0.52 
9 0.93 0.22 0.16 0.48 0.39 
10 1 1 1 1 1 
11 0.92 0.54 0.45 0.64 0.58 
12 0.97 0.33 0.25 0.54 0.46 
13 0.7 0.10 0.08 0.31 0.24 
14 0.95 0.26 0.19 0.54 0.43 
15 1 1 1 1 1 
16 1 1 1 1 1 
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Table 4.8 – Plants Scores for Randomization applied to Initial Values 

PLANT   SCORE   
 DEA Uniform probability Uniform odd Normal probability Normal odd 

1 1 1 1 1 1 
2 0.475 1 1 1 1 
3 0.66 0.90 0.86 0.97 0.96 
4 1 1 1 1 1 
5 1 0.96 0.94 1 0.89 
6 0.82 0.52 0.29 0.58 0.41 
7 1 0.91 0.9 0.99 0.98 
8 0.615 0.98 0.98 0.995 0.99 
9 0.6 0.96 0.95 0.99 0.985 
10 0.87 1 1 1 1 
11 0.84 0.20 0.18 0.65 0.61 
12 1 0.62 0.59 0.88 0.86 
13 0.4 0.94 0.94 0.98 0.98 
14 0.92 0.71 0.66 0.91 0.88 
15 0.5 1 1 1 1 
16 1 1 1 1 1 

 
Examining the original data in Tables 2.1 and 3.6, we notice that ranks will overrate some 
small differences in the variables. This will result in some strong reductions in the 
probabilities of being the best and, consequently, in efficiency scores derived from 
probabilities or odds. 

If we would consider tied, for instance, hospitals differing by only one patient, under the 
criteria based on the number of regular patients or the number of severe patients, or plants 
with differences of only 1 m, under the criterion of representative fall, or only 1 Mw, under 
the criterion guaranteed power, we would get considerably different vectors of efficiency 
scores. In the hospitals data set, which presents a large number of ties, average ranks were 
used and probabilities equalized, while, in the hydroelectric plants data set, to accentuate this 
effect, a random order was used in the cases of ties. 

 

5. Explanatory Power 

It is expected that stretching the distances between the preferred DMUs and measuring 
efficiency in terms of proximity to the excellence frontier will result in scores representing 
more closely the probabilities of being the best than those derived from enveloping variables 
that do not emphasize excellence so strongly. An objective evaluation of such relation may be 
obtained through the regression of the efficiency vector on the variables entering the analysis. 

If the final scores are influenced by all the variables in the analysis, not only the linear model 
will present high values for the statistics R2 and F of goodness of fit, but also the p-values 



Sant’Anna  –  Data envelopment analysis of randomized ranks 

214 Pesquisa Operacional, v.22, n.2, p.203-215, julho a dezembro de 2002 

relative to all explanatory variables will be small. Tables 5.1, 5.2 and 5.3 present coefficients 
of determination R2, F statistics and maximal p-values. Table 5.1 refers to regressions whose 
dependent variables are scores derived from probabilities and odds based on the ranks for the 
15 hospitals data. For the measures based on the original values, the relations are similar, 
with a consistent reduction in the values of the goodness of fit indices. 

Table 5.2 relates scores and probabilities generated by adding to the hospitals data set a 
fictitious hospital with a best rank of 16 with respect to every variable. The addition of this 
unit results in a strong improvement in all the models fit. This improvement would occur 
also with the original data replacing the ranks. 

Table 5.3 presents the results of the adjustment of the regression of the efficiency scores of 
the hydroelectric plants. In this case, the models fit very well, even without the addition of 
the ideal unit. 

We can notice, in the three tables, that, although the vectors of efficiency scores follow the 
same pattern, there is a clear improvement in the regression fit as we pass from ranks to 
probabilities and another gain, not so strong, as we pass from probabilities to odds. After 
randomization is applied, all variables become significant in the determination of the efficiency 
scores, what did not happen for the efficiency computation based directly on the ranks. 

We can also notice that the procedure based on the uniform distribution with the common 
range determined by the sample range, also, systematically presents better adjustment than 
the normal procedure. 

 
Table 5.1 – Hospital Models Fit 

 Ranks Uniform 
probability Uniform odd Normal 

probability Normal odd 

R2 38% 73% 75% 70% 74% 
F 1.5 6.7 7.5 5.8 7.0 
Max p-value 0.22 0.02 0.03 0.02 0.02 

 

Table 5.2 – Fit for Scores Resulting from Addition of Ideal Hospital 

 Uniform probability Uniform odd Normal probability Normal odd 

R2 97% 98% 89% 92% 

F 78.8 150.1 21.3 29.2 
max p-value 0.02 0.02 0.02 0.02 

 

Table 5.3 – Hydroelectric Plants Models Fit 

 Ranks Uniform 
probability Uniform odd Normal 

probability Normal odd 

R2 0.40 0.89 0.92 0.86 0.90 
F 1.8 23.3 36.4 17.4 23.9 
max p-values 0.17 0.0008 0.0002 0.0004 0.0002 
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6. Conclusion 

Since the distance to the efficiency frontier depends on the forms of measurement of the 
concepts involved, it is important to have a reference model. The models based on the 
ordering of the units and its probabilistic variants offer a baseline from which we may 
proceed to the identification of differences between DMUs associated to the form of 
measurement taken for each particular input or output. 

Different sources of variation can be identified in the equalization of distances involved in 
the ranking procedure: reducing distances between effective values and artificially creating 
distances between effectively tied DMUs. Taking ranks as a starting point and trying to 
associate eventual posterior changes to the effects of these two sources constitute an effective 
and easy to follow strategy of searching for better transformations. 

Combining the variables in terms of probabilities of being the best, and in terms of odds 
derived from these probabilities, by detaching more clearly the points in the frontier, helps 
relating the global efficiency scores to the classifications according to the particular 
variables. The results here obtained when the global measure of efficiency combines 
probabilities derived from measured values are only in special units different from those 
obtained when the probabilities are derived from ranks. 

The evidence collected here supports the idea that odds, by stretching even more than 
probabilities the distances between the preferable DMUs, provide clearer explanation for the 
results of aggregation in terms of proximity to the excellence boundary. The use of the 
uniform distribution results in final scores slightly more related to the vectors of probabilities 
of being the best according to the particular variables isolatedly. The addition of an ideal 
unit, besides allowing to discriminate inside the set of fully efficient units, seems to increase 
the relation of the final scores to the partial classifications. 
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