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How many lineages are there 
of the stingrays genus Hypanus 
(Myliobatiformes: Dasyatidae) and why 
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Stingrays genus Hypanus currently encompasses nine valid species from the 
Atlantic and Pacific oceans, though the phylogenetic relationships amongst some 
of them were based on a single mitochondrial gene and did not involve all putative 
Hypanus species. To address the monophyly of the genus and its relationship to 
other Dasyatinae genera, we sequenced the whole mitochondrial genomes of all 
species that supposedly belong to this genus and representatives of Dasyatinae, 
Neotrygoninae, and, as an outgroup, Fontitrygon (Urogymninae). Based on 
phylogenetic analyses, Hypanus is the sister-genus to all other Dasyatinae, and 
this subfamily is closely-related to Neotrygoninae within the family Dasyatidae. 
The species F. geijskesi is closely related to H. guttatus rather than to its congeners 
and should be allocated to Hypanus as H. geijskesi for the genus monophyly. After 
lineage delimitation analyses, we identified three species complexes composed 
of H. americanus, H. guttatus, and H. say, with two distinct evolutionary lineages 
within each, leaving the genus with 13 evolutionary units, of which six are 
currently under threat and only H. sabinus is of least concern. The urgency in 
identifying these new lineages lies in the fact they might already be under threat 
before being formally described.

Keywords: Atlantic Ocean, Conservation, Cryptic species, Diversification, 
Elasmobranchs.
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Diversification of Hypanus stingrays

As raias com ferrão do gênero Hypanus atualmente compreendem nove espécies 
válidas nos oceanos Atlântico e Pacífico, embora as relações filogenéticas entre 
algumas delas tenha sido baseada em apenas um gene mitocondrial e não envolvia 
todas as possíveis espécies de Hypanus. Para avaliar o monofiletismo do gênero 
e sua relação com outros Dasyatinae, sequenciamos os genomas mitocondriais 
de todas as espécies que supostamente compõem o gênero e representantes de 
Dasyatinae, Neotrygoninae e, como grupo externo, Fontitrygon (Urogymninae). 
Baseados em análises filogenéticas, Hypanus é o gênero-irmão de todos os outros 
Dasyatinae e essa subfamília é proximamente relacionada à Neotrygoninae 
dentro da família Dasyatidae. A espécie F. geijskesi é mais relacionada a H. guttatus 
que a outras congêneres e deve ser alocada em Hypanus como H. geijskesi para 
que o gênero seja monofilético. Após análises de delimitações de linhagens, 
identificamos três complexos de espécies formados por H. americanus, H. guttatus 
e H. say, com duas linhagens evolutivas distintas em cada, deixando o gênero com 
13 unidades evolutivas, das quais seis estão atualmente sob risco de extinção e 
somente o estado de H. sabinus é pouco preocupante. A urgência na identificação 
dessas linhagens reside no fato que podem já estar ameaçadas antes de serem 
formalmente descritas.

Palavras-chave: Conservação, Diversificação, Elasmobrânquios, Espécies 
crípticas, Oceano Atlântico. 

INTRODUCTION

Speciation in marine environments is usually a complex process involving geographic 
isolation and ecological adaptation (Bowen et al., 2013) mediated by an organism’s 
life history characteristics and biology (Craig et al., 2006). Some para- or sympatric 
lineages with incipient genetic differentiation might be considered as different species, 
not only populations (Avise, 2000; Potkamp, Fransen, 2019). This scenario has already 
been documented in some sharks (Corrigan, Beheregaray, 2009) and rays (Kashiwagi et 
al., 2012) that move extensively but are genetically restrained by environmental forces 
(Bowen et al., 2013). During the process of divergence, lineages incrementally acquire 
genotypic and phenotypic characteristics that make them distinct from each other, 
creating a grey zone where the definition of a species is ambiguous (De Queiroz, 2007). 
In such cases, a limited number of genetic loci are often insufficient to resolve taxonomic 
issues and semi-isolated lineages prevail until genomic studies are accomplished, making 
the delineation of species a challenging task. So, conservation should be a priority and 
not be constrained by a lack of clarity in species boundaries (Roux et al., 2016). 

Dasyatid stingrays are globally distributed batoids that vary in size (from 23 cm to 
2.2 m disc width), weigh up to 600 kg, and vary in disc shape from circular to rhombic. 
They primarily occur in coastal marine environments (down to 400 m), but can also be 
found in freshwater (Last et al., 2016b). Until recently, the genus Dasyatis Rafinesque, 
1810 was indicated as a paraphyletic group of stingrays based on morphological data 
(Rosenberger, 2001), and subsequent studies based on the mitochondrial gene NADH 

https://www.ni.bio.br/
https://www.scielo.br/ni


Neotropical Ichthyology, 22(1):e230046, 2024 3/31ni.bio.br | scielo.br/ni

Flávia F. Petean, Lei Yang, Shannon Corrigan, Sergio M. Q. Lima and Gavin J. P. Naylor

dehydrogenase 2 (mt-nd2) corroborated this hypothesis (Naylor et al., 2012). Last et al. 
(2016a) and Lim et al. (2015) revised Dasyatidae based on morphological and molecular 
data and divided it into four subfamilies (Dasyatinae, Hypolophinae, Neotrygoninae, 
and Urogymninae). Moreover, what was previously known as Dasyatis was separated 
into eight genera (Dasyatis, Pteroplatytrygon Fowler, 1910, Taeniurops Garman, 1913, 
Bathytoshia Whitley, 1933, Hemitrygon Müller & Henle, 1838, Hypanus Rafinesque, 
1818, Telatrygon Last, Naylor & Manjaji-Matsumoto, 2016, and Megatrygon Last, Naylor 
& Manjaji-Matsumoto, 2016) in the subfamily Dasyatinae, grouped by morphological 
similarities and molecular clusters. 

Despite the resurrection of a monophyletic Hypanus, the most species-rich 
Dasyatinae genus around the American continent, relationships among its species and 
their phylogenetic position within Dasyatidae were based on a single mitochondrial 
marker (mt-nd2), with few representatives per independent evolutionary lineage, and 
some missing ones due to lack of sampling (Last et al., 2016a). 

Currently, Hypanus encompasses nine recognized species: H. americanus (Hildebrand 
& Schroeder, 1928), H. berthalutzae Petean, Naylor & Lima, 2020, H. dipterurus (Jordan 
& Gilbert, 1880), H. guttatus Bloch & Schneider (1801), H. longus (Garman, 1880), H. 
marianae (Gomes, Rosa & Gadig, 2000), H. rudis (Günther, 1870), H. sabinus (Lesueur, 
1824), and H. say (Lesueur, 1817). Except for H. rudis from Guinea Gulf, on the western 
coast of the African continent, and H. dipterurus and H. longus from the Pacific Ocean, all 
other six species occur on the Atlantic coast of America. Even though six of these species 
were sampled and included in the analysis by Last et al. (2016a), the placement of H. 
marianae was not tested, and it was considered a Hypanus species based on morphological 
data, as well as H. rudis, which was recently corroborated as a Hypanus species by Petean 
et al. (2020), who also described a new one (H. berthalutzae). 

Precise delimitation and identification of these stingrays are crucial for their 
conservation since they are frequently the targets of fisheries where they are harvested 
for food and clothing (Costa et al., 2015; Last et al., 2016b; Ceretta et al., 2020; Oliveira 
et al., 2021). More than half of Hypanus species are evaluated as threatened in the Red 
List of Threatened Species by IUCN: three are Vulnerable (H. berthalutzae, H. dipterurus, 
and H. longus (Charvet et al., 2020; Pollom et al., 2020a,c)), one is Endangered (H. 
marianae (Pollom et al., 2020b)), and one is Critically Endangered (H. rudis (Jabado et 
al., 2021c)); three are classified as Near Threatened (H. americanus, H. guttatus, and H. say 
(Carlson et al., 2020a,b,c)); and only one is clearly under no risk of extinction: H. sabinus 
(Least Concern, Carlson et al., 2020d)). 

Another dasyatid genus, in the subfamily Urogymninae, with a similar pattern of 
species diversification in the Atlantic Ocean and facing risks of extinction is Fontitrygon 
Last, Naylor & Manjaji-Matsumoto, 2016, which currently contains six species (Last 
et al., 2016a). Four occur in western Africa: Fontitrygon margarita (Günther, 1870) 
(Vulnerable, Jabado et al., 2021a), F. margaritella (Compagno & Roberts, 1984) (Near 
Threatened, Jabado et al., 2021b), F. ukpam (Smith, 1863) (Critically Endangered, Jabado 
et al., 2021d), and F. garouaensis (Stauch & Blanc, 1963) (Critically Endangered, Jabado 
et al., 2021e) while two occur along the Northern coast of South America: F. colarensis 
(Santos, Gomes & Charvet-Almeida, 2004) (Santos et al., 2004) (Critically Endangered, 
Pollom et al., 2020d) and F. geijskesi (Boeseman, 1948) (Critically Endangered, Pollom et 
al., 2020e). Nevertheless, only three of these species were included in Last et al. (2016a) 
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Dasyatidae revision due to a lack of samples, and both American species were provisionally 
positioned in Fontitrygon. Despite the incomplete taxon sampling represented, the 
phylogenetic relationships provided by those authors indicated that some members of 
Fontitrygon might be misclassified, leaving it as a possible paraphyletic genus.

A useful genetic marker for investigating phylogenetic relationships and species 
identities is the mitochondrial DNA (mtDNA) due to its high evolutionary rate, maternal 
inheritance, intraspecific polymorphisms, and genes arrangement (Avise et al., 1987; 
Harrison, 1989; Boore, Brown, 1998; Satoh et al., 2016). Even though a phylogeny 
based on mtDNA is a story of modifications on a small portion of DNA of maternal 
transmission, it has not been puzzled by recombination (Avise et al., 1987). Species in 
which females are more stationary than males, mtDNA can provide distinct information 
than nuclear markers due to biased dispersal by sexes (Moritz et al., 1987). However, 
studies on H. americanus from Central America have shown little to no philopatric 
behavior, with both males and females contributing to gene flow (Corcoran et al., 
2013; Flowers et al., 2016; Schwanck et al., 2020). So, evolutionary studies on Hypanus 
stingrays based on mtDNA might tell a similar story to nuclear markers, to be further 
assessed. Recently, mitogenomes have been widely used for phylogenetic inferences 
in distinct metazoan clades: Diptera (da Silva et al., 2020), Rodentia (Abramson et al., 
2021), Coleoptera (Nie et al., 2021), and Elasmobranchii (Palacios-Barreto et al., 2023).

Since the massive use of molecular methods, such as DNA barcoding (Hebert, 
Gregory, 2005), to identify and classify species, organisms with comparable phenotypes 
that could have been considered as unique species are recognized as genetically diverse, 
a concept known as “cryptic species”. Sáez, Lozano (2005) described these as “groups 
of organisms that are morphologically indistinguishable from each other, yet found to 
belong to different evolutionary lineages”. Sphyrna gilberti Quattro, Driggers, Grady, 
Ulrich & Roberts, 2013 and Squalus suckleyi (Girard, 1855) are examples of shark species 
with circumtropical distributions in which morphological analyses subsequently to 
identifications of genetic lineages corroborated the existence of more than one entity 
(Ebert et al., 2010; Quattro et al., 2013; Gaither et al., 2016).

A concept to be explored is that of taxonomic gap, in which there is a space between 
the extant biodiversity and what is actually known about it (Dubois, 2010; Raposo et 
al., 2020). This gap regards both the universe of unknown species and those susceptible 
to changes due to more studies. As many authors have said, “taxonomic stability is 
ignorance” (Dominguez, Wheeler, 1997; Benton, 2000; Dubois, 2010;) since with 
more data and analyses the gap might increase or decrease in a continuous progress 
of Science. It is indisputable that the lack of specimens that could serve as vouchers for 
each molecular sample could have consequences for taxonomy (Amorim et al., 2016) 
due to the impossibility of checking the morphology of all individuals. However, given 
the urgency in closing this taxonomic gap to recognize the world’s biodiversity before 
more extinctions take place, even tissue samples could corroborate the once-existing 
variety of species (Engel et al., 2021).

Due to the taxonomic uncertainties in Dasyatinae (Lim et al., 2015; Last et al., 2016a; 
Pavan-Kumar et al., 2022), the absence of a complete sampling of all Hypanus species 
in other published works, and the risks of extinction these stingrays are facing, our goal 
is to use mitogenomes to define the relationships among Hypanus species, identifying 
possible cryptic ones, and their relationships to other Dasyatinae genera. Afterward, 
species can be properly identified and (re)evaluated for adequate conservation measures. 

https://www.ni.bio.br/
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MATERIAL AND METHODS

Sampling, DNA isolation, and sequencing. To test the monophyly of the genus 
Hypanus and the subfamily Dasyatinae, we sampled 124 specimens from all nine valid 
species belonging to Hypanus, six representatives of almost all Dasyatinae genera 
(Hemitrygon akajei (Bürger, 1841), Telatrygon acutirostra (Nishida & Nakaya, 1988), 
Pteroplatytrygon violacea (Bonaparte, 1832), Batytoshia lata (Garman, 1880), Taeniurops 
grabatus (Geoffroy St. Hilaire, 1817), Dasyatis hypostigma Santos & Carvalho, 2004; 
except Megatrygon), and both Neotrygoninae genera (Taeniura lymma (Fabricius, 1775) 
and Neotrygon kuhlii (Müller & Henle, 1841)). As outgroup, we included representatives 
of each Fontitrygon species, subfamily Urogymninae (one sample of F. margarita, F. 
margaritella, F. garouaensis, and six of F. geijskesi; except F. colarensis and F. ukpam). Species 
distributions and sampling localities are provided in Tab. 1 (details in Tab. S1) and 
sample locations of Hypanus and Fontitrygon in Fig. 1. Valid names and distributions 
were obtained from Last et al. (2016a) and Eschmeyer’s Catalog of Fishes (Fricke et al., 
2023). Nearly all tissues were collected in fish markets, making it unfeasible to preserve 
most of the specimens; however, we performed barcode analyses (described below) to 
compare clades to examined specimens deposited in collections. Lineages for which 
we could provide vouchers are H. americanus, H. berthalutzae, H. geijskesi, H. guttatus, 
H. sabinus, and H. say; even though there is no voucher for H. marianae, tissues came 
from the specimens identified and collected by Costa et al. (2022). Before mitochondrial 
gene capture, samples were genetically identified based on Sanger sequencing of the 
mitochondrial marker mt-nd2, as described by Petean et al. (2020), and compared to 
the database from Naylor et al. (2012). After capture, we performed barcode analyses 
comparing to data from GenBank (detailed as it follows) as another approach to verifying 
species’ identities. When we directly removed tissues from specimens through diving 
or trawling, we morphologically identified them. Data collection was under SISBIO 
permit 54254-3 and supported by Atlantis Divers in Fernando de Noronha, Brazil.

From genomic DNA extraction to the alignment of protein-coding gene sequences 
of mitochondrial genomes, all protocols and procedures followed Li et al. (2013, 2015) 
and Petean et al. (2020). Extracted DNA was sheared to 500 bp in an M220 Focused-
ultrsonicator (Covaris, Inc., Wobuern, Massachusetts, USA) as the first step for library 
preparation, followed by the selection of > 200 bp fragments with solid-phase reversible 
immobilization beads (Li et al., 2015). We performed a series of reactions in each sample 
for mitochondrial gene capture using biotinylated RNA baits (Mycroarray, Ann Arbor, 
Michigan) (Li et al., 2013). For sequencing, we deployed an Illumina MiSeq Next 
Generation Sequencer and, from each read, removed low-quality reads (with Phred 
quality scores lower than 30; Illumina 2011, https://www.illumina.com/documents/
products/technotes/technote_Q-Scores.pdf) and adaptors using Trim Galore 0.6.4 
(Krueger, 2020) then mapped to the mitochondrial genome of a closely-related species, 
Hemitrygon akajei (NC_021132), from the GenBank using Geneious 7.9.1 (http://www.
geneious.com). Finally, we used a pipeline (MitoAnnotator, (Iwasaki et al., 2013)) to 
annotate sequences, which are available on GenBank under accession numbers provided 
in Tab. S1.

https://www.ni.bio.br/
https://www.scielo.br/ni
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Species N Sampled locality Distribution

Hypanus americanus (Hildebrand & Schroeder, 1828) 8 Virginia (USA) to Nicaragua NWA: Massachusetts (USA) North of South America

*Hypanus berthalutzae Petean, Naylor & Lima, 2020 23 From Pará to Bahia (Brazil) SWA: Pará to São Paulo (Brazil)

Hypanus dipterurus (Jordan & Gilbert, 1880) 4 Baja California (Mexico)
EP: Hawaii (USA), California (USA) to northern Chile, 
including the Galápagos Islands

*Hypanus geijskesi (Boeseman, 1948) 6 North of Brazil WA: Venezuela and Suriname to Northern Brazil

Hypanus guttatus (Bloch & Schneider, 1801) 34 From Belize to Bahia (Brazil) EA: Gulf of Mexico to Paraná (Brazil)

Hypanus longus (Garman, 1880) 4 Baja California (Mexico)
EP: Baja California (Mexico) to Ecuador, including the 
Galápagos Islands

*Hypanus marianae (Gomes, Rosa & Gadig, 2000) 29 From Ceará to Bahia (Brazil) SWA: Northeastern Brazil

Hypanus rudis (Günther, 1870) 4 Senegal and Ghana EA: Gulf of Guinea

Hypanus sabinus (Lesueur, 1824) 4
South Carolina and 
Mississippi (USA)

NWA: Delaware (USA) to Gulf of Mexico

Hypanus say (Lesueur, 1817) 8
South Carolina and 
Mississippi (USA)

WA: Massachusetts (USA) to Brazil

Telatrygon acutirostra (Nishida & Nakaya, 1988) 1 Ariake Bay (Japan) WP: China and southern Japan

Hemitrygon akajei (Müller & Henle, 1841) 1 Ariake Bay (Japan) WP: China and Japan to Malasia

Taeniurops grabata (Geoffroy St. Hilaire, 1817) 1 Senegal
EA: Mediterranean Sea, Madeira, and Canary Islands to 
Angola

Pteroplatytrygon violacea (Bonaparte, 1832) 1 California (USA) Cosmopolitan in tropical and warm temperate seas

Bathytoshia lata (Garman, 1880) 1 Hawaii (USA)
Indo-West Pacific, Hawaii (USA), Eastern Atlantic, and 
Mediterranean Sea

Dasyatis hypostigma Santos & Carvalho, 2004 1 Uruguay SWA: South of Brazil

Neotrygon kuhlii (Müller & Henle, 1841) 1 Malasia
WP: Solomon Islands, Red Sea, Indo-West Pacific: East 
Africa, east to the Philippines and Mariana Islands, 
north to Japan, Australia, and New Caledonia

Taeniura lymma (Forsskål, 1775) 1 Indonesia
Red Sea, Indo-West Pacific: East and South Africa, east 
to the Philippines and Papua New Guinea, north to the 
Philippines, south to northern Australia

*Fontitrygon garouaensis (Stauch & Blanc, 1962) 1 Nigeria EA: Nigeria and Cameroon

Fontitrygon margarita (Günther, 1870) 1 Senegal EA: Senegal to Congo

Fontitrygon margaritella (Compagno & Roberts, 1984) 1 Senegal EA: Mauritania to Angola

Total 135    

TABLE 1 | Sampled species of the genera Hypanus, Telatrygon, Hemitrygon, Taeniurops, Pteroplatytrygon, Bathytoshia, Dasyatis, Neotrygon, 

Taeniura, and Fontitrygon, their location and geographic distributions. *non-sampled species by Last et al. (2016). EA: Eastern Atlantic, NWA: 

Northwestern Atlantic, SWA: Southwestern Atlantic, EP: Eastern Pacific, WA: Western Atlantic, WP: Western Pacific.

https://www.ni.bio.br/
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Phylogenetic reconstructions. To study the relationships within the genus Hypanus, 
its relationships within the subfamily Dasyatinae, and to Neotrygoninae, the whole 
mitogenome sequences of all 135 specimens were aligned in GENEIOUS 7.9.1 using 
the MUSCLE algorithm (Edgar, 2004). After annotation we identified and excluded 
from all sequences the mitochondrial control region (CR), tRNA, and rRNA. Control 
region was deleted because it is highly variable among individuals and its coverage after 
mitochondrial capture was too low; RNAs regions were eliminated because the indels 
present in these regions make alignment difficult. The final alignment had 11,471 base 
pairs in 13 protein-coding genes. 

To select the best-fitting model of molecular evolution we used PartitionFinder2 
(Lanfear et al., 2017) and selected the best scheme for each protein-coding gene 
under Bayesian Inference Criteria: GTR+gamma+invariant sites for mt-nd1 and 
mt-nd5, HKY+gamma for mt-nd2, mt-atp8, mt-atp6, mt-coiii, mt-nd6, and mt-cytb, 
HKY+gamma+invariant sites for mt-nd3, mt-nd4l, and mt-nd4, and TN93+gamma 
for mt-coi and mt-coii. Maximum Likelihood analyses were conducted using RAxML 
version 8. (Stamatakis, 2014) in CIPRES Science Gateway (Miller et al., 2010), with 
bootstrap and consensus calculations based on a 1000-generation search of tree space. 

Bayesian Inferences were carried out in BEAST 2.5 (Bouckaert et al., 2019) using 
Yule model as the prior tree as we are not considering known extinctions (μ = 0) and 

FIGURE 1 | Sampling locations of all Hypanus and Fontitrygon lineages (new name combinations are used in the figure, as discussed in the 

text). A. Hypanus americanus, H. aff. americanus, H. berthalutzae, H. longus, and H. rudis; B. H. guttatus, H. aff. guttatus, and H. geijskesi; C. H. 

marianae, Fontitrygon garouaensis, F. margarita, and F. margaritella; D. H. say, H. aff. say, H. dipterurus, and H. sabinus.

https://www.ni.bio.br/
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there is a reasonable sampling for analyses (ρ = 1) (Drummond, Bouckaert, 2015) in 
1,000,000,000 generations with 5 chains resampled every 10,000. The software MEGA 
X (Kumar et al., 2018) was used to calculate uncorrected genetic p-distances and analyze 
intra- and interspecific genetic differences between Hypanus lineages. 

Lineage delimitation methods. By analyzing the relationships among species, we 
noticed some valid species could be either paraphyletic or have long branches within 
them, suggesting possible distinct lineages. Therefore, we decided to do five species 
delimitation analyses within the clades of H. guttatus and H. say independently: multiple- 
and single-threshold Generalized Mixed Yule Coalescent (m-GMYC and s-GMYC, 
Fujisawa, Barraclough, 2013), multi-rate Poisson Tree Process (mPTP, Kapli et al., 
2017), Bayesian Poisson Tree Process (bPTP, Zhang et al., 2013), and Assemble Species 
by Automatic Partitioning (ASAP, (Puillandre et al., 2021). For each clade’s data (H. 
guttatus and H. say) we selected an outgroup based on the results of our phylogenetic 
analysis and Last et al. (2016a): Hypanus marianae for H. guttatus and H. sabinus for H. 
say analyses. Most of these analyses (except ASAP) are performed on a tree topology: 
both GMYC methods rely on an ultrametric tree, which was built under a Bayesian 
Inference analysis in BEAST 2.5, and both PTP on a tree with nucleotides’ substitutions, 
built with a Maximum Likelihood analysis in RAxML version 8. For such phylogenetic 
analyses before delimitation ones, we used jModelTest2 (Darriba et al., 2012) to select 
the best molecular evolution model for each clade. The ASAP method depends on an 
alignment matrix instead of a tree. For more details on delimitation methods, refer to 
Petean et al. (2020). 

DNA Barcode analyses. The mitochondrial protein-coding gene region cytochrome 
c oxidase subunit I (mt-co1) was identified and extracted from some sequences for 
comparisons to those available at GenBank (Tab. S2). The goal was to use the molecular 
clusters as support for the verification of taxonomic status when vouchers were available 
for at least one sequence in a clade. Sequences of Fontitrygon geijskesi sampled by this 
study were aligned with a sample from Guyana (GN17902) and four samples from 
Rodrigues-Filho et al. (2020) (GenBank numbers MN105749, MN105812, MN105813, 
MN105819), who provided a voucher for the species. The alignment was performed 
in MEGA X using the MUSCLE algorithm, which had 587 base pairs, 12 F. geijskesi 
samples, and one outgroup. The genetic p-distance was also performed in MEGA X 
and, to estimate species identities based on sequences’ similarities, a Neighbor-Joining 
(Saitou, Nei, 1987) tree was built in GENEIOUS 7.9.1 with 1,000 bootstrap replicas and 
edited in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

The same barcode analyses were performed for the three clades containing species-
complexes (H. guttatus, H. say, and H. americanus) identified by abovementioned analyses 
and Petean et al. (2020). Hypanus berthalutzae (GN18496) was used as an outgroup for 
all independent analyses, except for H. americanus, for which it was also the ingroup and 
H. guttatus (GN18434) was then used as an outgroup. 

For H. guttatus, besides the 33 samples from this study, we included 52 mt-co1 
sequences from GenBank, totaling 85 samples (and one outgroup) in 524 base pairs. To 
analyze the clade containing H. say, we extracted the mt-co1 region from mitogenomes 
of this species, H. dipterurus, and H. sabinus and added 13 mt-co1 sequences from H. say, 
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two H. dipterurus, and eight H. sabinus from GenBank. The alignment had 40 samples 
(and one outgroup) in 547 base pairs. Finally, to investigate H. americanus, we not only 
added 38 mt-co1 sequences from GenBank, but we also included 23 H. berthalutzae, four 
H. longus, and four H. rudis, in a total of 77 samples as the ingroup in 599 base pairs.

RESULTS

Phylogenetic inferences. The genus Hypanus sensu Last et al. (2016a) was recovered as 
monophyletic and sister to all other genera (except Megatryon, not sampled for this study) 
within the subfamily Dasyatinae (Fig. 2), which is a sister-group to Neotrygoninae. 
These results were already suggested by Last et al. (2016a) and are now corroborated 
by mitogenomes through the same resulting topologies by Maximum Likelihood 
and Bayesian Inference phylogenetic analyses with all nodes’ values higher than 88% 
bootstrap and 0.995 of posterior probability. Maximum Likelihood and Bayesian 
Inference trees topologies with all taxa and nodes values are available in Figs. S3 and 
S4, respectively.

FIGURE 2 | Maximum Likelihood tree topology of mtDNA with representatives of Hypanus species, dasyatine genera, neotrygonine genera, 

and urogymnine genus Fontitrygon as an outgroup. New name combinations are used in the figure in red, as discussed in the text. For each 

node, the maximum likelihood bootstrap value is given first, followed by the Bayesian inference posterior probability. Clade A (H. americanus 

complex) taken from Petean et al. (2020).
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There are clear unique lineages that correspond to valid species names: Hypanus 
berthalutzae, H. dipterurus, H. longus, H. marianae, H. rudis, and H. sabinus. Hypanus 
americanus, the Southern stingray, nonetheless, is not a single evolutionary lineage (Clade 
A in Fig. 2), as suggested by previous mitogenomes delimitation analyses and haplotype 
network based on mt-nd2 (Petean et al., 2020; Figs, 2–3, respectively), which showed 
8 unsampled haplotypes and mutational steps between both lineages, while there are 
four between H. berthalutzae and H. rudis; and a phylogeographic study based on the 
mitochondrial control region by Richards et al. (2019) that found three populations of 
this species in the USA’s coast and Caribbean. The species H. marianae, which was not 
included in the previous molecular study (Last et al., 2016a), is a monophyletic lineage 
and sister to the clade containing H. americanus sensu lato, H. longus, H. berthalutzae, and 
H. rudis. This clade is, then, closely-related to a group containing H. guttatus, which 
now is suggested to harbor two lineages: one distributed from Central America to the 
south of Brazil and another of specimens from Belize (Clade B in Fig. 2). 

Two species of Hypanus occur along the Pacific coast, H. dipterurus and H. longus, 
both with similar evolutionary histories since they are independent sister-groups to 
Atlantic clades: H. say and H. berthalutzae + H. rudis, respectively. Moreover, within the 
clade H. say, there is a clear divergence of two lineages separated by the Peninsula of 
Florida (Clade C in Fig. 2).

Six representatives of Fontitrygon geijskesi, subfamily Urogymninae, which was 
not included in the Dasyatidae revision by Last et al. (2016a), formed a sister-clade 
to H. guttatus, within the genus Hypanus, but not Fontitrygon. So, for Hypanus to be 
monophyletic, this species should be reclassified as Hypanus geijskesi. The subfamily 
Urogymninae is then represented by three Fontitrygon species occurring in Africa, 
which formed a cluster: F. margarita, F. margaritella, and F. garouaensis. 

Delimitation of lineages. Candidate species of both species complexes, H. guttatus 
and H. say, were analyzed by combining all five delimitation methods (Figs. 3–4); 
analyses of H. americanus complex were performed by Petean et al. (2020). The observed 
new lineages, sister to known species, are named as affinis to those they are closely 
related to. We kept the valid name according to the type-locality of each species: type 
of H. guttatus from Brazil, so H. aff. guttatus from Central America; and type of H. say 
from Egg Harbor (USA), H. aff. say from the Gulf of Mexico.

We selected those results which were more consistent among methods, with similar 
branches’ division, and those that provided the least number of lineages within a species 
complex to avoid over-splitting taxa due to mere genetic structure. mPTP and ASAP 
were the most conservative analyses suggesting only two lineages within each species 
complex; however, while bPTP agreed with mPTP in delimiting H. say two lineages, 
it was a less stringent method when analyzing H. guttatus data, pointing to 25 entities 
(almost one per individual). Both GMYC methods, single and multiple thresholds, 
resulted in similar groupings within each complex and proposed only one or two 
lineages more than we accepted.

Intraspecific average pairwise distances vary from 0.036% in H. longus to 0.26% in H. 
aff. guttatus (Tab. 2), while in interspecific average pairwise, the smallest distances are 
0.82% between H. rudis and H. berthalutzae, 0.83% between H. americanus and H. aff. 
americanus, and 0.95% between H. say and H. aff. say (Tab. 3). Interestingly, the distance 
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FIGURE 3 | Candidate species of the clade Hypanus guttatus species complex (Clade B), according to five 

lineage delimitation analyses using the mtDNA. Possible species found in each analysis are portrayed as 

colored boxes in columns. In blue, H. guttatus; red, H. aff. guttatus. The same colors are used to represent 

sampled specimens in the map to the right: H. guttatus, blue circles in the Brazilian coast; H. aff. guttatus, 

red circles in Central America. Blue star is the holotype location of the valid species, which was not 

sampled, in southeastern Brazilian coast.
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FIGURE 4 | Candidate species of the clade Hypanus say species complex (Clade C), according to five 

lineage delimitation analyses using the mtDNA. Possible species found in each analysis are portrayed as 

colored boxes in columns. In blue, H. say; red, H. aff. say. The same colors are used to represent sampled 

specimens in the map to the right: H. say, blue circles in USA’s Eastern coast; H. aff. say, red circles in 

Gulf of Mexico. Blue star is the holotype location of the valid species, which was not sampled, in USA’s 

Northeastern coast.
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between two geographically distant species as H. longus, from the Pacific, and H. rudis, 
from Africa is only 2.4% (Petean et al., 2020), while H. sabinus has the highest distances 
to all other Hypanus lineages (11.74% from H. dipterurus is the smallest).

Species % of average divergence within each species

H. americanus 0.092

H. aff. americanus 0.070

H. longus 0.036

H. rudis 0.098

H. berthalutzae 0.121

H. marianae 0.068

H. guttatus 0.200

H. aff. guttatus 0.262

H. geijskesi 0.167

H. dipterurus 0.163

H. say 0.061

H. aff. say 0.047

H. sabinus 0.134

% Hamer Haffamer Hlon Hrud Hbert Hmari Hgut Haffgut Hgeij Hdipt Hsay Haffsay Hsab

Haffamer 0.83

Hlon 2.69 2.69

Hrud 3.11 3.12 2.40

Hbert 3.08 3.14 2.43 0.82

Hmari 4.91 4.94 4.61 4.96 4.95

Hgut 6.84 6.86 6.72 7.01 6.94 7.19

Haffgut 7.02 7.04 6.88 7.21 7.11 7.24 1.37

Hgeij 6.49 6.44 6.40 6.67 6.56 6.97 5.35 5.53

Hdipt 11.24 11.20 11.02 11.16 11.15 11.14 11.57 11.75 11.71

Hsay 10.89 10.89 10.60 10.80 10.85 10.66 11.13 11.28 11.08 4.57

Haffsay 10.97 11.01 10.80 11.00 11.06 10.83 11.35 11.53 11.39 4.76 0.95

Hsab 13.05 13.03 12.80 12.93 12.96 13.55 13.21 13.38 13.01 11.74 11.81 11.89

Dhypo 14.06 14.09 13.85 14.09 14.07 13.91 14.20 14.32 14.02 13.50 13.06 13.19 14.77

TABLE 2 | Pairwise average distances of mitogenome within Hypanus species in %.

TABLE 3 | Pairwise distances of mitogenome between pairs of species in %. Hamer, Hypanus americanus; Haffamer, H. aff. americanus; Hlon, 

H. longus; Hrud, H. rudis; Hbert, H. berthalutzae; Hmari, H. marianae; Hgut, H. guttatus; Haffgut, H. aff. guttatus; Hgeij, H. geijskesi; Hdipt, H. 

dipterurus; Hsay, H. say; Haffsay, H. aff. say; Hsab, H. sabinus; Dhypo, Dasyatis hypostigma.
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DNA Barcoding. By analyzing the protein-coding region mt-co1 of 11 samples 
of “Fontitrygon geijskesi”, we obtained a monophyletic group by a Neighbor-Joining 
analysis with 100% of bootstrap value (Fig. 5), a result similar to that using mitogenomes. 
Besides, the genetic distances among all sequences varied from 0 to 0.17%, with an 
average of 0.03% (Tabs. 4, S5). Given the genetic similarity of these sequences and since 
Rodrigues Filho et al. (2020), from which came four of those samples, could provide a 
voucher specimen for one of them, we have enough support to suggest that it is indeed 
a valid species. However, it should be considered as Hypanus geijskesi due to its close 
relationship to H. guttatus, as suggested by the abovementioned phylogenetic analyses.

Regarding the species H. guttatus, the scenario is convoluted: the lineage H. aff. guttatus 
identified by mitogenomic delimitation analyses was supported by the inclusion of more 
samples, as shown by the Neighbor-Joining tree with 89.2% of bootstrap value (Fig. 
6). The genetic distance between these two samples (GN13939, GN13946) was 0.38%, 
which was the same distance between GN13946 and ten other samples (GN19470, 
MN105788, MN105792, MN105794, MN105808, MN105817, MN105869–71, 
MN105875), while the distance between GN13939 and the same ten samples was 

FIGURE 5 | Neighbor-Joining tree based on mt-co1 from samples identified as Hypanus geijskesi, with H. berthalutzae as an outgroup. Nodes’ 

numbers correspond to bootstrap values in percentage; only those higher than 85% are shown.

% H. berthalutzae H. geijskesi

H. geijskesi 4.6 0.03 (±0.03)

TABLE 4 | Average pairwise distances of the mitochondrial marker mt-co1 between eleven samples of 

Hypanus geijskesi, with H. berthalutzae as an outgroup for comparison. Values in %: interspecific in first 

cell; intraspecific in second bold cell (with standard error estimate in parenthesis).
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0.76%. However, the distances between these two (GN13939, GN13946) and the other 
73 were higher than 1.15%, distances between nine of those abovementioned (except 
GN19470) and the others varied from 0.76% to 0.95%, and distances between those 73 
samples varied from 0 to 0.19% (Tabs. 5, S6). 

FIGURE 6 | Neighbor-Joining tree based on mt-co1 from samples identified as Hypanus guttatus, with H. berthalutzae as an outgroup. Nodes’ 

numbers correspond to bootstrap values in percentage; only those higher than 85% are shown. Examined vouchers with an asterisk.
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Therefore, based on these results, we suggest that, besides the lineage H. aff. 
guttatus, there could also be some hybridization or incomplete lineage sorting driving 
the evolution of H. guttatus, which could be undergoing diversifications into distinct 
ecological niches (Nosil, Harmon, 2009); such processes could only be understood 
through more sampling and markers. Given the data we have, we can corroborate the 
lineage H. guttatus by examination of three vouchers by one of us (FFP) (GN18451, 
GN18458–9; deposited at the fish collection at Universidade Federal do Rio Grande do 
Norte under respective codes CIUFRN 4442, 4449–50).

Through the extraction of the mt-co1 region from samples of the species-complex H. 
say, the result agrees with our previous outcome: groups separated by the Peninsula of 
Florida (Fig. 7), with high bootstrap values for each clade, H. say and H. aff. say, of 97% 
and 97.5%, respectively. The genetic p-distances between both lineages varied from 
0.93% to 1.09%, while within lineage values ranged from 0 to 0.31% (Tabs. 6, S7). 
For the lineage occurring on USA’s East coast, which should bear the name H. say, one 
of the samples (MH378605) came from a specimen deposited at the Smithsonian Fish 
Collection (USNM433289), from a place close to type’s location. This specimen was 
examined by FFP, who identified it as H. say, thus serving as a voucher for the lineage.

Sequences of the species H. dipterurus and H. sabinus were analyzed together with 
H. say complex, and analyses suggested the southernmost sample of H. dipterurus (MH 
194454, from the Peruvian coast, Pacific Ocean) could be another lineage since it has an 
average of 3.84% of genetic distance to the other five samples of H. dipterurus from Baja 
California and California coast. Moreover, the inclusion of eight sequences of H. sabinus 
still leaves it monophyletic, with samples from both the East coast of the USA and the 
Gulf of Mexico. One of these samples (MT 455431) was extracted from a specimen 
deposited at the Smithsonian Fish Collection (USNM 426256), which was examined by 
FFP, hence could serve as a voucher for the clade.

Within H. americanus species-complex there seem to be two sympatric clades: one that 
should bear the species name, H. americanus (82.9% of bootstrap value) (Fig. 8), since mt-
co1 sequences of some analyzed specimens by FFP at the Smithsonian Fish Collection 
(USNM 433102, USNM 433338–9) fall within it (KT 075327, MH 378683–4) and they 
were collected close to the species type-locality. The other clade is composed of three 
samples (two previously identified as H. aff. americanus by Petean et al. (2020), and one 
sample deposited at GenBank, MG837920). Genetic distance among these three H. aff. 
americanus samples is 0, and their distance to other H. americanus vary from 0.33% to 
0.67%; while distances within H. americanus vary from 0 to 0.17%. Regardless of which 
H. americanus clade, sequences belonging to this species-complex have more than 1.5% 

% H. berthalutzae H. aff. guttatus H. guttatus

H. aff. guttatus 5.73 0.38 (±0.26)

H. guttatus 5.92 1.27 0.19 (±0.07)

TABLE 5 | Average pairwise distances of the mitochondrial marker mt-co1 between 85 samples of 

Hypanus guttatus and H. aff. guttatus, with H. berthalutzae as an outgroup for comparison. Values in %: 

interspecific below diagonal; intraspecific bold diagonal (with standard error estimate in parenthesis).
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FIGURE 7 | Neighbor-Joining tree based on mt-co1 from samples identified as Hypanus say, H. dipterurus, and H. sabinus, with H. berthalutzae 

as an outgroup. Nodes’ numbers correspond to bootstrap values in percentage; only those higher than 85% are shown. Examined vouchers 

with an asterisk.

TABLE 6 | Average pairwise distances of the mitochondrial marker mt-co1 between six samples of 

Hypanus dipterurus, 13 H. sabinus, 18 H. say and three H. aff. say, with H. berthalutzae as an outgroup for 

comparison. Values in %: interspecific below diagonal; intraspecific bold diagonal (with standard error 

estimate in parenthesis).

% H. berthalutzae H. dipterurus H. sabinus H. say H. aff. say

H. dipterurus 10.76 1.43 (±0.29)

H. sabinus 15.61 13.47 0.19 (±0.11)

H. say 11.06 5.63 13.92 0.15 (±0.1)

H. aff. say 10.60 5.12 14.05 1.21 0

distance to any other sequence belonging to H. berthalutzae, H. longus, and H. rudis (Tabs. 
7, S8). Besides, some sequences previously identified and submitted to GenBank as H. 
americanus should be reallocated to H. berthalutzae (MK085594, MK085604, MK085629, 
MK085636, MK085638, MK085641, MK085657, MK085659, MK085662, MK085669, 
MK085672, MK085684, MK085742, MN105805, MN105821, MN105822, MN105823, 
MN105824, MN105839, MN105842, MN105845, MN105846, MN105847). Some of 
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these sequences were used by Rodrigues Filho et al. (2020) to suggest the existence of 
two lineages of H. americanus in Northern Brazil; and one of them was described as H. 
berthalutzae (H. americanus 1). The clade they called H. americanus 2 is what we identified 
as H. americanus. The lineage identified by Petean et al. (2020) and hereby sustained as 
H. aff. americanus was not sampled by those authors. 

FIGURE 8 | Neighbor-Joining tree based on mt-co1 from samples identified as Hypanus americanus, H. berthalutzae, H. rudis and H. longus, with 

H. guttatus as an outgroup. Nodes’ numbers correspond to bootstrap values in percentage; only those higher than 85% are shown. Examined 

vouchers with an asterisk.
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DISCUSSION

Phylogenetic considerations. Hypanus was recovered as monophyletic by using 
mitochondrial genome sequences of all species previously attributed to it in addition 
to another species that was provisionally allocated in Fontitrygon by Last et al. (2016a) 
due to a lack of sampling and morphological similarities. These authors revised the 
family Dasyatidae and used the mt-nd2 gene to identify chondrichthyans’ lineages, as 
suggested by Naylor et al. (2012). Our results indicate the use of this marker is reliable 
for identifying Chondrichthyes species, especially when resources are unavailable for 
genome sequencing. Some lineages suggested to belong to Hypanus, but unsampled by 
Last et al. (2016a), were hereby included. Hypanus marianae was identified as a Hypanus 
species, as implied by morphological similarities by Last et al. (2016a), and it is a sister-
species to the clade containing H. americanus species complex, H. longus, H. rudis, and 
H. berthalutzae, a recently described species (Petean et al., 2020) whose phylogenetic 
position was also corroborated by the inclusion of representatives of the whole genus.

For the monophyly of the genus Hypanus, the species “Fontitrygon geijskesi” should 
be considered a member of Hypanus, as it is found to be sister to H. guttatus. Due to 
morphological similarities, this species was expected to be related to its African congeners 
F. margarita, F. margaritella, and F. garouaensis (Last et al., 2016a). However, we suggest 
the reallocation of F. geijskesi to the genus Hypanus with a new name combination as 
Hypanus geijskesi (Boeseman, 1948). This result had already been observed by Rodrigues 
Filho et al. (2020) on a Neighbor-Joining analysis using the mitochondrial marker 
COI (mt-co1), in which “F. geijskesi” specimens resulted as a sister group to H. guttatus 
within the genus Hypanus; however, their analysis lacked a phylogenetic inference of 
its relationships to other Hypanus lineages. Through a combination of mt-co1 sequences 
by Rodrigues Filho et al. (2020) to those hereby provided, we noticed H. geijskesi 
intraspecific distances ranging from 0 to 0.17% and, as they have provided a voucher 
for one of their samples, we have support for the species reallocation. This change leaves 
the genus Fontitrygon with five species, of which four occur in the African continent and 
one in South America (F. colarensis, not sampled by this study).

% H. guttatus
H. 

berthalutzae
H. 

americanus
H. aff. 

americanus
H. rudis H. longus

H. berthalutzae 6.09 0.17 (±0.08)

H. americanus 7.18 1.83 0.04 (±0.02)

H. aff. americanus 6.68 1.69 0.50 0.00 (±0.00)

H. rudis 6.47 0.59 1.96 1.79 0.17 (± 0.11)

H. longus 5.51 1.48 2.34 2.17 1.29 0 (± 0.00)

TABLE 7 | Average pairwise distances of the mitochondrial marker mt-co1 between 46 samples of 

Hypanus berthalutzae, 20 H. americanus, three H. aff. americanus, four H. rudis, and four H. longus, with 

H. guttatus as an outgroup for comparison. Values in %: interspecific below diagonal; intraspecific bold 

diagonal (with standard error estimate in parenthesis).
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As already suggested by Lim et al. (2015), Last et al. (2016a), and Pavan-Kumar et 
al. (2022), but including more representatives of the subfamily Dasyatinae, we also 
recognized its monophyly and close relationship to Neotrygoninae, with Hypanus 
as the sister-group to all other genera within the first subfamily; and the subfamily 
Urogymninae, represented by the genus Fontitrygon, supporting the subfamilies’ rooting.

Two Hypanus species that used to have the largest geographic distributions, H. 
americanus sensu lato (Petean et al., 2020) from Massachusetts (USA) to São Paulo (Brazil) 
and H. guttatus from Mexico to Southeastern Brazil, are now recognized to encompass 
more than one lineage each. The lineage of H. americanus sensu (Petean et al., 2020) 
occurring at the Brazilian coast was recently described as H. berthalutzae, a sister-species 
to H. rudis in Eastern Atlantic. What was left of H. americanus in Central and North 
America also represents more lineages, as suggested by our phylogenetic analyses (Clade 
A, Fig. 2), delimitations done by Petean et al. (2020) (Figs. 2–3), and phylogeographic 
studies by Richards et al. (2019) (Figs. 1–2). Richards et al. (2019) found three lineages 
of H. americanus occurring in the USA and Caribbean; however, based on our smaller 
sampling and distinct markers (that did not involve the mitochondrial control region used 
by those authors), we noticed two sympatric clades (Fig. 1A) where they named “Clade 3” 
(Richards et al., 2019) (Figs. 1–2) and we could not recover their “Clades 1 and 2”.

The second species with a wide distribution, H. guttatus, has also been shown to 
contain two lineages, as presented here and by Rodrigues Filho et al. (2020). Therefore, 
two wide-ranging marine coastal species were recently shown to occupy smaller areas 
than previously described, with currently valid species probably harboring more than 
one lineage and increasing the known diversity within the genus Hypanus.

Lineage delimitations. Based on five distinct lineage delimitation methods 
(sGMYC, mGMYC, mPTP, bPTP, and ASAP), we analyzed two clades within 
Hypanus that showed deeper divergences in phylogenetic analysis than what is expected 
for intraspecific evolution, since branches are longer between these lineages than within 
each one of them (Schwartz, Mueller, 2010).

Within the clade composed of H. guttatus, a species that supposedly occurs from 
Mexico to Southeastern Brazil, all analyses suggested a deeper divergence separating 
Central America’s samples from Brazilian ones than those within each area of 
occurrence. This scenario was also observed by Rodrigues Filho et al. (2020), besides a 
high genetic similarity among stingrays southern of the Amazon river mouth (0.19% 
of mt-co1 intraspecific distance, Tab. 5, Fig. 3), which would be left under the valid 
name H. guttatus due to the species’ type-locality: “Brazil”. We infer that, even though 
H. guttatus is a marine and estuarine species that tolerates low salinities environments, 
the great freshwater and nutrients influx of the Amazon system may be a barrier for 
these stingrays, which resulted in isolated northern and southern lineages ( Rocha, 2003; 
Hoorn et al., 2010). It was also shown by Tosetto et al. (2022) that the small number 
of species in common between the Caribbean Sea and the Brazilian coast demonstrates 
their high isolation by the Amazon River Plume. This differentiation suggested by 
genetic analysis might be supported by morphological dissimilarities as well, such as 
morphometric differences in nostrils, spiracles, and caudal structures (FFP, pers. obs.; 
review in progress).
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With regards to H. say, the lineage from the eastern coast of the USA has a different 
evolutionary history than that from the Gulf of Mexico, which is supported by all 
genetic analyses conducted here. Morphological differences could also justify this 
finding, such as differences in snout and caudal morphometries (FFP, pers. obs.; review 
in progress), leaving the lineage from eastern USA under the valid species name H. say 
according to its type-locality (New Jersey, USA), and that occurring in the Gulf of 
Mexico as H. aff. say until further analyses can be performed, and its taxonomic status 
evaluated. These results agree with the biogeographic proposals of Spalding et al. (2007) 
as both populations occur in the Warm Temperate North Atlantic province but in 
distinct ecoregions and separated by the Floridian one. The southernmost portion of the 
Florida Peninsula is known to have a detached ecosystem from the adjacent USA coast 
(Bowen, Avise, 1990). This can also be seen in H. americanus in which samples from 
the Bahamas (~50 Km from the US coast) are more closely related to those from the 
US Virgin Islands than those from Florida (Richards et al., 2019). Despite these results, 
gene transfer among lineages cannot be ruled out, which could result in hybridization 
and species not achieving reproductive isolation. As a consequence, there would be a 
disagreement between gene trees and species trees, a situation that might be underlying 
the evolution of freshwater stingrays Potamotrygoninae, as well as incomplete lineage 
sorting and diversification times (Fontenelle et al., 2021). These hypotheses should be 
further tested with nuclear genetic data (Petean and collaborators, working in progress). 

The phylogenetic analysis of manta rays based on mitogenomes and nuclear exons 
(White et al., 2018) found pairwise distances between Mobula birostris (Walbaum, 1792) 
and M. alfredi (Krefft, 1868) as 0.4%; even though this distance might seem small for 
two species, their taxonomic identities as distinct species had already been suggested 
by morphometric, meristic, two mitochondrial, and one nuclear gene (Marshall et 
al., 2009; Kashiwagi et al., 2012). Likewise, the pairwise distances between the three 
cryptic lineages of Hypanus and the valid species to which they currently belong are 
small: between H. guttatus and H. aff. guttatus, 1.37%, H. say and H. aff. say, 0.95%, 
and H. americanus and H. aff. americanus, 0.83%. Simultaneously, the largest distance 
between two Hypanus species is 13.55% in H. sabinus and H. marianae. Interspecific 
genetic distances within the genus vary from 0.82% (H. berthalutzae and H. rudis, Petean 
et al., 2020) to 13.55%, which is a high variation. However, intraspecific variations in 
Hypanus range from 0.047% in H. aff. say to 0.26% in H. aff. guttatus, which are values 
at least four times smaller than the interspecific distances.

There are many definitions of what “cryptic species” are and, even though there is 
still no consensus on their meaning (Struck et al., 2018), they could be “erroneously 
classified (and hidden) under one species name” (Bickford et al., 2007). Both sibling 
lineages to currently valid species H. guttatus and H. say are yet undescribed due to 
a lack of taxonomic studies and poor sampling. Subtle differences between species, 
with some of them being separated only by morphometrics, suggest a conservative 
morphology, making it more difficult to identify the species complex despite the 
allopatric pattern. Therefore, molecular markers such as mtDNA can be used to confirm 
species identification. Scenarios of cryptic speciation, with DNA sequences showing 
deep genetic divergences and morphological data revealing subtle diversity, have 
been observed in many non-elasmobranch fish clades: bonefish Albula Scopoli, 1777 
(Colborn et al., 2001), catfish Noturus Rafinesque, 1818 (Egge, Simons, 2006), tubenose 
goby Proterorhinus Smitt, 1900 (Neilson, Stepien, 2009).
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Genetic data have also been showing a higher species diversity in Elasmobranchs 
than formerly known, indicating the necessity of taxonomic work (Richards et al., 
2009, 2019; Dudgeon et al., 2012; Borsa et al., 2016; Henderson et al., 2016; Sales et al., 
2019; Fahmi et al., 2021; Gonzalez et al., 2021; Vilasboa et al., 2022; Kottillil et al., 2023). 
Through the combination of distinct tools, species’ hypotheses have been corroborated 
by independent studies, such as Gymnura van Hasselt, 1823 (Yokota, Carvalho, 2017, 
morphology; Rodrigues Filho et al., 2020, genetics; Vilasboa et al., 2022, genetics), 
Aetobatus Blainville, 1816 (Richards et al., 2009, genetics; White et al., 2010, 2013, 
morphology and genetics; Sales et al., 2019, genetics), Rhizoprionodon Whitley, 1929 
(Springer, 1964, morphology; Mendonça et al., 2011, genetics, Pseudobatos Last, Séret 
& Naylor, 2016 (Rutledge, 2019, morphology; Sandoval-Castillo, Beheregaray, 2020, 
genetics).

Our findings regarding these independent evolutionary units in Hypanus are only 
hypotheses of possible species as morphological and ecological data are recommended 
to be included since the use of exclusively molecular tools might lead to over or under-
estimations of species (Carstens et al., 2013). This is due to species delimitation methods 
being unable to distinguish deep structure as a result of population-level processes or 
species boundaries (Sukumaran, Knowles, 2017). Therefore, to avoid failure, we are not 
describing any species until more data can be combined (Carstens et al., 2013).

Conservation. There is no threshold of genetic distances between lineages that 
should be regarded as populations and those that should receive a species status, since this 
is a faint boundary (De Queiroz, 2007; Roux et al., 2016). As mitochondrial evolution 
rates are slower in elasmobranchs than in other vertebrates (Martin et al., 1992), those 
mtDNA differences found here may represent distinct species. It is undoubtful that 
more studies are needed for a resolution of their taxonomic status; however, despite 
being categorized as species or populations, these lineages should be considered for 
conservation purposes (Henderson et al., 2016).

The urgency in identifying these lineages is because each entity in a threatened species 
complex might be even more endangered than the nominal species as a whole, and may 
need distinct conservation measures (Bickford et al., 2007). All current valid Hypanus 
species have been recently evaluated by elasmobranch specialists at IUCN (2020). Of 
the 13 evolutionary units identified in this study, only one is clearly under low risk, 
H. sabinus (Least Concern), while six are under some risk of extinction, with criteria 
used to evaluate each species threatened category in parenthesis: Hypanus berthalutzae 
(A2d), H. dipterurus (A2d), and H. longus (A2d) are Vulnerable, H. marianae (A2cd) 
is Endangered, and H. rudis (A2d) and H. geijskesi (A2d) are Critically Endangered. 
A concerning situation regards the three species-complexes (H. americanus (A2bd), 
H. guttatus (A2d), and H. say (A2bd)) since they had their threatened status recently 
evaluated and were considered as Near Threatened (Carlson et al., 2020a,b,c). However, 
after this and previous studies (Petean et al., 2020; Richards et al., 2019; Rodrigues Filho 
et al., 2020), we recognized each of them might be, at least, two evolutionary lineages. 
Therefore, the possible restriction of each clade’s geographic range could have an 
impact on their threatened categories, with consequences on management proposals. 
The recently described H. berthalutzae is the most recent example of this scenario since 
it was considered H. americanus and encompassed the largest species distribution within 
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the genus. Soon after its description, the species was evaluated and already classified as 
Vulnerable (Charvet et al., 2020), thus demonstrating that lineages currently unknown 
can already be under threat before their formal description and evaluation as a species.

Throughout evolution, some lineages might be described as species due to 
population isolation, while others present high genetic variability and each may be 
named Evolutionarily Significant Unit (ESU) (Coates et al., 2018) in an attempt to 
identify independent entities for conservation and perpetuation of their evolutionary 
history (Diniz-Filho et al., 2013; Hoezel, 2023). These ESUs should be the focus of 
management efforts (Ryder, 1986; Waples, 1991, 1995; Moritz, 1994).

Currently, conservation aims mostly on valid species, ignoring genetic diversity. Due 
to the existence of several species concepts and species’ delimitation methods, there are 
many conflicts within taxonomy; besides, scientists do not comply on how to deal with 
ESUs leading to difficulties in actually applying measurements (Coates et al., 2018). 
Therefore, we suggest the evolutionary lineages hereby identified, even if not formally 
described as species, to be treated as ESUs and thus be the target of threat evaluation.

To conclude, based on 13 protein-coding mitochondrial genes, there is enough 
support for the monophyly of the resurrected genus Hypanus by Last et al. (2016a) after 
the description of a new species (H. berthalutzae) and the transference of Fontitrygon 
geijskesi to Hypanus, becoming Hypanus geijskesi due to its close relationship to H. 
guttatus. Besides the recognition of a cryptic species within H. americanus by Petean et 
al. (2020), we have also identified evolutionary lineages that represent currently known 
species, as well as suggested two putatively new ones not detected until now, which 
are sister-lineages to H. guttatus and H. say, thus reducing their geographic distribution, 
with possible impacts on their conservation status. 

These results leave the genus Hypanus with 13 independent evolutionary units, of 
which 10 are valid species and three “affinis” to their siblings (H. aff. americanus, H. aff. 
guttatus, and H. aff. say). Further formal descriptions of these new lineages will have 
consequences on their conservation status since current areas of distribution of valid 
species will decrease with their division into more than one entity, leading to an urgency 
in evaluating their threatened status and proposing conservation measures, actions that 
could already begin with ESUs before descriptions. Even though we have delimited 
some evolutionary lineages within the genus, maybe more could be found with wider 
sampling. Finally, to rigorously evaluate these species complexes, morphological studies, 
the examination of type series, and ecological niche modeling should be performed to 
better define these stingray species and their geographic distributions.
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