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Amostras de água foram coletadas em 10 pontos em trechos do leste do Quadrilátero Ferrífero 
(QF), que é uma região mineira situada no sudeste do Brasil. Os objetivos deste estudo foram 
encontrar possíveis relações entre carbono orgânico dissolvido (COD), metais e outros parâmetros 
físico-químicos medidos utilizando a rede neural de Kohonen como ferramenta para analisar esses 
dados geoquímicos multivariados na área estudada. As análises físico-químicas foram feitas in situ 
e em laboratório, onde as concentrações de COD e vários íons metálicos foram determinadas. 
A rede de Kohonen permitiu a visualização e interpretação mais amigáveis dos dados, além de 
definir relações entre eles. Assim, para os dados analisados, foi verificada relação entre COD e Fe 
e um possível efeito da sazonalidade na distribuição das amostras. Possíveis evidências litológicas 
puderam ser detectadas pela análise exploratória, especialmente se considerados os elementos 
Ca, Mg, Mn e Sr.

Water samples were collected at 10 points in parts of the eastern Quadrilátero Ferrífero (QF), 
located in a mining region in the southeast of Brazil. The aims of this study were to find possible 
relationships among dissolved organic carbon (DOC), metals and other parameters measured in 
the region studied and evaluate the Kohonen neural network as a tool to analyse this geochemical 
multivariate data set. Physico-chemical analyses were performed in situ and in the laboratory, 
where concentrations of DOC and a suite of metal ions were determined. The Kohonen neural 
network allowed an easier visualisation and interpretation of the results and helped to define the 
relationships among them. In this way, a relationship between DOC and Fe and a possible effect 
of seasonality on the distribution of the samples were indicated. Signs of lithology were detected 
in the analyses, especially considering the elements Ca, Mg, Mn and Sr.
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environmental geochemistry

Introduction

The Quadrilátero Ferrífero (QF) is a geological structure 
in the southeast of Brazil that is worldwide known for 
its mineral deposits.1 It covers an area of approximately 
7000 km2 in the Brazilian state of Minas Gerais and 
constitutes a southern extension of the Espinhaço Mountain 
Range, in the south-eastern part of the São Francisco 
Craton.1,2 In this region, iron and gold are the dominant 

products in the mining area, along with aluminium and topaz. 
It is remarkable that the QF has become the most important 
gold producer in the late seventeenth century, with a total 
production that probably exceeded 1300 t in history.3,4

The basal unit and surrounding areas of the QF 
are composed primarily of granitic gneisses. Above 
this basement, there are three units of supracrustal 
metasedimentary rocks called Rio das Velhas Supergroup, 
Minas Supergroup and Itacolomi Group. The Rio das 
Velhas Supergroup, considered as an Archean greenstone 
belt, is composed of phyllites, schists and volcanic 
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metasediments, which tends to release major elements 
such as Na, K, Ca, Mg, Mn and Fe, and trace elements 
such as Ni, Cr, Co and V. The Minas Supergroup comprises 
Proterozoic metasediments, which are source of Fe, Mn, 
Ca and Mg. The Itacolomi Group consists predominantly 
of quartzitic rocks.1,2

One of the consequences of mining and associated 
activities is the alteration of the elements cycle in the 
environment, which influences the availability of metals 
to organisms. This is exactly what occurs along the 
Quadrilátero Ferrífero, where the exploitation of iron ore, 
for instance, acts as an important source of major elements 
such as Fe and Mn, and trace metals. In addition, it is 
important to consider that gold mining can release As and 
Cu, which are present in minerals such as iron sulfides 
(pyrite, FeS2), copper sulfides (chalcopyrite, CuFeS2) and 
arsenic sulfides (arsenopyrite, FeAsS), often in paragenesis 
with gold.2,5

In the aquatic environment, the dissolved organic 
carbon (DOC) is considered a regulator of biotic and 
abiotic processes. It is operationally defined as the fraction 
of organic material that passes through a 0.45 µm filter.6 
The dissolved organic matter is a vital resource that will 
affect food webs either directly, by its use via organisms, 
or indirectly via mechanisms such as turbidity, pH and 
contaminant transportation.6,7 The DOC has the ability to 
decrease the toxicity of many metals while it reduces the 
availability of these elements to organisms by means of 
chemical bonds. This has particular importance given that 
the QF is a region rich in minerals and suffers from the 
impacts caused by mining. The variety of minerals is able to 
release a range of elements in the water bodies where they 
interact with dissolved organic matter, especially humic 
substances (HS), which constitute about 80% of the DOC 
in natural waters.8 Considering that the concentration of 
dissolved metal ions and organic material can influence 
the formation of metal-HS complexes, it is important to 
identify possible interactions between these chemicals and 
the organic material.9

Due to the large number of variables generally analysed 
in environmental geochemistry studies, techniques of 
exploratory data analysis have been shown to be effective 
in identifying patterns in a group of data, facilitating the 
interpretation of results.10 An example of a tool developed 
for multivariate exploratory analysis is the Kohonen 
neural network (Self-Organising Maps, SOM), which 
is an artificial intelligence technique that has the ability 
to project high dimensional data in a space of lower 
dimension, without loss of the original information. It was 
developed by Teuvo Kohonen (Finland) and has a close 
relationship with the organisation of the cerebral cortex.11 

An important advantage of this tool is the ease of viewing 
and interpreting the data.12 To summarise, the Kohonen 
neural network comprises self-organising maps, which are 
formed by neurons arranged in a two-dimensional array. 
In fact, this is one of the main advantages of the Kohonen 
neural network, explicitly, the possibility of getting all data 
information (relationship between samples, variables and 
the influence of variables in samples) in a two-dimensional 
array. In addition, this characteristic is also one of the 
main advantages of this method compared with other 
exploratory approaches, such as Principal Component 
Analysis (PCA), where in most cases it is necessary to 
work with multidimensional spaces (more than two-
dimensional arrays) provided by the principal components 
(PC). Kohonen structures with higher dimensions are also 
possible, but are less common.11-13

In the Kohonen neural network, it is assumed that 
all the samples placed at the same neuron are similar 
to each other according to the aspect analysed. Another 
important attribute of this technique is the formation of 
clusters of samples that are considered to possess the same 
characteristics, because of its location in nearby neurons 
(neighbouring neurons).12

A picture representing the typical architecture of the 
Kohonen neural network is shown in Figure 1, where the 
neurons are represented by columns, or tubes arranged 
inside a box. In this type of representation, if a specific input 
data has n samples, n input vectors x will be obtained. These 
vectors x may be absorbance values of a spectrum, peaks 
of a chromatogram or intensity values of different physico-
chemical parameters of the water quality. It is important to 
note that the dimensionality of the vector is dependent upon 
the number of variables in the data, which means that the 
amount of weights of each neuron (w) will correspond to 
the number of vector elements of the input data.12

Figure 1. Representation of the typical architecture of the Kohonen 
neural network.
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The Kohonen network was not performed before in 
the study of metal ions and DOC in surface waters of 
Quadrilátero Ferrífero. Furthermore, this kind of study 
in the specific evaluated area was not found in scientific 
literature yet. Considering similar studies worldwide, it 
is possible to find successful applications of the SOM 
technique in multivariate data analysis.13,14 Notably, the 
Kohonen network has also been successfully used in 
fields ranging from ecology until the evaluation of the 
performance of a wastewater treatment plan.15-17

The present work was an initial study that aimed to 
investigate the levels of dissolved organic matter in some 
brown-coloured water bodies and its probable relationships 
with metal ions and other parameters measured in the 
eastern part of the QF. The application of a multivariate 
exploratory analysis for this kind of study in the region is 
an innovative to visualise the results and the relationships 
among samples and its variables in an easy and effective 
way

Experimental

Sampling and preliminary analyses

Ten sampling points were selected in upper Rio Doce 
River Basin based on the accessibility and on visual 
inspection of some water bodies. Areas with brown-
coloured waters were preferable in this process because they 
could indicate higher levels of dissolved organic matter. The 
study area comprised parts of the eastern QF and is shown 
on the map in Figure S1 (Supplementary Information). 
The physico-chemical parameters pH, temperature (T), 
total dissolved solids (TDS), redox potential (ORP), 
resistivity (Resis), conductivity (Cond) and turbidity (Turb) 
were evaluated in situ using a multiparameter equipment 
(Ultrameter II, Myron L Company) and a turbidimeter 
(DM-TU Digimed) previously calibrated.

It is important to note that in the studied area, Cwa and 
Cwb climates occur.18,19 Both climates are characterised by 
a dry winter. In the area where the Cwa climate occurs, the 
dry period is between April and September and the rainiest 
months are November and December. The areas where the 
Cwb climate occurs, the dry season is between May and 
August and the rainfalls are concentrated mainly between 
November and February. For this reason, more than one 
sampling at different times was performed for some points 
in order to evaluate possible influences of seasonality. 
However, there was a problem in one sampling of point 
1 because the swamp was totally dry in one winter field 
trip. Consequently, it was not possible to collect water 
for analyses at that time. From the data available in the 

literature,18,19 the dry season in this work was considered 
between April and September and the rainy season between 
October and March.

About 1 L of water was collected in accessible areas 
close to the water bodies (banks or on bridges) for the 
determination of sulfate, chloride (Cl) and alkalinity 
(Alc). The samples were kept refrigerated until laboratory 
analyses. The methodology used was based on standard 
methods proposed by the American Public Health 
Association (APHA).20 About 40 mL of water was collected 
for analyses of metals and about 20 mL for analyses of 
DOC. These samples were filtered through membranes 
of 0.45 µm and kept refrigerated at 4 ºC until analysis in 
the laboratory. As described by Grasshoff, Kremling and 
Ehrhardt,21 the storage of samples in plastic containers 
can cause interference in the results of carbon analyses. 
Therefore, it was chosen to keep the waters collected in 
amber glass bottles to avoid any changes by means of 
light in the humic material. After filtering the samples for 
analysis of metals, they were acidified by adding 3-4 drops 
of concentrated HNO3 to keep the metals in solution. All 
reagents used in this work were of analytical grade.

Metal analyses

The analyses of metals were performed in the 
Laboratory of Environmental Geochemistry (LGqA) at 
Federal University of Ouro Preto (UFOP). The metals were 
analysed by inductively coupled plasma optical emission 
spectrometry (ICP-OES Spectro / Ciros model CCD) in 
radial mode. Output power of the generator was 1250 W, 
the pumping rate was 2 mL min−1, the gas flow of the 
plasma was 12 L min−1 and the gas flow of the nebulizer 
was 0.90 L min−1. In all cases, argon was used as gas.

The calibration was performed in all cases using 
standard stock solutions with analytical purity grade and 
was evaluated by means of international reference material 
NIST 1643c. The elements determined were the major 
metals Al, Ca, Fe, K, Mg, Mn, Na and Ti; and the trace 
metals As, Ba, Be, Cd, Co, Cr, Cu, Li, Mo, Ni, P, Pb, S, 
Sc, Sr, V, Y and Zn.

DOC analyses

The analyses of DOC were performed in Niterói City 
at Federal Fluminense University (UFF, Brazil) with a 
TOC-Analyser V-CPH (Shimadzu, Japan). The method 
involved the determination of the total dissolved carbon 
(TDC) and the dissolved inorganic carbon (DIC) of the 
samples whereas the DOC was obtained by calculating the 
difference between the two values (TDC - DIC). For the 



Gontijo et al. 211Vol. 25, No. 2, 2014

determination of the TDC, the samples were introduced 
into a combustion tube, which was filled with an oxidation 
catalyst and heated to 680 ºC. Thereby, all components of 
the TDC are converted into CO2, which is detected by a 
cell of non-dispersive infrared (NDIR) in the end of the 
procedure.

The DIC was measured by the same equipment after 
acidification of the samples using HCl to a pH less than 3. 
At this point, all the carbonates were converted to CO2. At 
the end of the process, all CO2 was volatilised by bubbling 
air or nitrogen gas and detected by the NDIR cell.

Multivariate analyses

The technique used for exploratory analysis in this work 
was the Kohonen neural network. The aim of this method 
was to reduce the number of dimensions to be analysed 
and preserve the relevant original information in order to 
facilitate the observation and interpretation of the results. 
Some of the metal contents determined had to be excluded 
from Kohonen analysis because their values were below 
the limit of quantification (LOQ). Therefore, the data set 
was organised into a matrix of 16 samples (16 lines) and 19 
variables (19 columns). The samples represent the sampling 
points and the variables represent pH, DOC, Cond, Alc, 
ORP, T, Turb, Resis, TDS, Cl, Ba, Ca, Fe, K, Mg, Mn, Na, 
S and Sr values.

Before processing the data by the SOM algorithm, 
the entire data set was autoscaled for all variables, 
which means that the variance of the variables were 
normalised and the averages calculated to zero. The 
scaling of the variables is of vital importance in the 
application of Kohonen network, because its algorithm 
uses the Euclidean metric to measure distances between 
vectors. If a variable has values ranging between 0 and 
1000 and another variable has values ranging between 0 
and 1, for instance, the first will virtually dominate the 
organisation of the map because of the large impact on 
the measurement of distances. Hence, in most cases it is 
recommended that the variables are equally important. 
The pre-processing of data ensures that all variables have 
the same level of importance, allowing users to assess 
the significance of all variables in the samples. Since 
the variables investigated in this work refer to different 
physical and chemical measurements, the scaling of the 
data becomes obligatory.12

The Kohonen maps were created and initialised linearly. 
In this process, the eigenvalues and eigenvectors of the 
data were calculated. Then, the weight vectors of the map 
have been initialised over the largest eigenvectors of the 
covariance matrix in agreement with the size of the map, 

which is generally 2. The Kohonen neural network was 
trained with the data using the batch training algorithm, 
where the entire data set is presented to the map before 
any adjustment of weights is done. The neighbourhood 
function used in training was the Gaussian, the structure 
was hexagonal and shape of the map was planar.12

At the end of the process, a map was obtained that 
shows the grouping of the samples and the influence of 
the variables. The lighter colours in the neurons indicate 
higher values for that variable. The darker colours represent 
the lowest values for the same variable. It is important to 
mention that the neurons of the map of the variables were 
compared with the neurons of the map of groups of samples 
to evaluate which parameters are influencing a given 
sample. During the data training, architectures with several 
orders were tested (from 2 × 2 to 6 × 6) for evaluation of 
the groups of samples and it was chosen the architecture 
that had the best sample distribution in groups (which was 
more informative).

The software used to perform the multivariate analysis 
of Kohonen neural network was freely available on the 
internet.22

For comparison, a PCA analysis was also performed 
using the same set of data through the computing 
environment GNU Octave 3.6.4, freely available on the 
internet at page http://www.gnu.org/software/octave/; 
before data processing, the entire data set was autoscaled 
for all variables.

Results and Discussion

The location of the points, season and types of water 
bodies where the samplings were performed are shown 
in Table 1. From some lithological data and maps of the 
region, another table (Table 2) was created. This table shows 
the stratigraphic units, rocks in the region of the sampling 
points and some elements likely present in the waters 
sampled. It is important to consider that the points 9 and 
10 were collected in an area of environmental protection 
(Private Reserve of Natural Heritage of Caraça). The results 
of the parameters measured in the field and in the laboratory 
are shown in Table 3.

A Kohonen neural network with hexagonal grids was 
obtained after performing the multivariate analysis from 
the data set in Table 3. Architectures of several orders 
were evaluated (from 2 × 2 to 6 × 6) and the arrangement 
5 × 5 with 25 neurons had the best sample distribution in 
the map. In addition, after the Kohonen analysis, it was 
possible to notice the formation of 4 different groups that 
were circled as showed in the Figure 2. Furthermore, it 
is important to mention that samples located at the same 
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Table 1. Location, type of water body and period of sampling in the studied area

Point Sample
Coordinates

Description (location)
Type of water 

body
Season / Month / Year

Latitude Longitude

1
S1A

S 20o09’43.7’’ W 43o25’54.8’’
South plateau 

(near Caraça Moutain Range)
Swamp

Rainy / October / 2010

S1B Rainy / March / 2011

2

S2A

S 20o15’55.7’’ W 43o28’32.7’’ East of peak of Frazão Lake

Rainy / October / 2010

S2B Rainy / March / 2011

S2C Dry / August / 2011

3
S3A

S 20o27’51.8’’ W 43o35’26.0’’ Itatiaia Mountain Range Swamp
Rainy / November / 2010

S3B Dry / June / 2011

4
S4A

S 20o29’49.5’’ W 43o36’55.6’’ Garcia River River
Rainy / November / 2010

S4B Dry / June / 2011

5 S5 S 20o13’49.7’’ W 43o25’06.5’’
Ouro Fino Stream (near the village of 

Bento Rodrigues)
Stream Rainy / December / 2010

6 S6 S 20o16’33.9’’ W 43o25’51.3’’ Gualaxo do Norte River River Rainy / December / 2010

7 S7 S 20o16’50.0’’ W 43o26’25.5’’
Stream that flows into the Gualaxo do 

Norte River
Stream Rainy / December / 2010

8 S8 S 20o09’43.5’’ W 43o25’11.5’’ Brumado Stream Stream Rainy / March / 2011

9
S9A

S 20o06’22.1’’ W 43o28’27.2’’ Cascatinha (Caraça Mountain Range) Stream
Dry / May / 2011

S9B Dry / August / 2011

10 S10 S 20o05’52.9’’ W 43o29’23.4’’ Caraça Stream (Caraça Mountain Range) Stream Dry / May / 2011

Table 2. Stratigraphic units and lithology of the studied area; geological data from Dorr, Alkmim and Marshak23,24

Point Unit Some rocks present in the region Elements probably present in water

1

Caraça metaconglomerate, phyllite and quartzite Na, K, Ca, Si and Al

Quebra Osso banded iron formation and metachert Fe, Al, Ca, Mg and Ti

Piracicaba phyllite, dolomite and schist Ca, Mg, Na, K, Al and Fe

Itabira schist, phyllite, itabirite and dolomite K, Si, Ca, Mg, Fe and Al

2
Itacolomi metaconglomerate, phyllite and quartzite Si, Al, Na, K and Ca

Piracicaba phyllite, dolomite and schist Ca, Mg, Na, K, Al and Fe

3 Itacolomi metaconglomerate, phyllite and quartzite Si, Al, Na, K and Ca

4
Nova Lima schist, metamafic rocks and metagraywacke K, Si, Fe and Mg

Itacolomi metaconglomerate, phyllite and quartzite Si, Al, Na, K and Ca

5

Maquiné schist, conglomerate and phyllite Si, Al, Na, K and Ca

Dom Silvério Mn formation Mn

Caraça phyllite and metaconglomerate Si, Al, Na, K and Ca

6

Itacolomi metaconglomerate, phyllite and quartzite Na, K, Ca, Si and Al

Piracicaba schist, phyllite and dolomite Ca, Mg, Na, K, Al and Fe

Itabira schist, phyllite, itabirite and dolomite Fe, Si, Al, Na, Ca and Mg

7

Itacolomi metaconglomerate, phyllite and quartzite Si, Al, Na, K and Ca

Piracicaba phyllite, dolomite and schist Ca, Mg, Na, K, Al and Fe

Itabira schist, phyllite, itabirite and dolomite Fe, Si, Al, Na, Ca and Mg

8 Piracicaba phyllite, dolomite and schist Ca, Mg, Na, K, Al and Fe

9 Caraça metaconglomerate, phyllite and quartzite Si, Al, Na, K and Ca

10 Caraça metaconglomerate, phyllite and quartzite Na, K, Ca, Si and Al



Gontijo et al. 213Vol. 25, No. 2, 2014

neuron or at neighbouring neurons form groups with 
similar characteristics. The map of the variables is shown 
in Figure 3, where the grayscale bars beside the maps 
indicate the intensity of each parameter evaluated. The 
lighter colours in these bars mean higher values and a higher 
importance in the formation of the groups for each variable.

It can be noted from Figure 2 and Figure 3 that K, 
temperature and Cl were the parameters responsible for 
making the samples S1B, S3A and S5 get closer and, 
therefore, form group I. These parameters were important 
because they had higher values for the samples of group 
I considering the data obtained in this exploratory study. 

Although Cl was not measured for the sample S3A, 
the SOM algorithm estimates missing values during its 
training process. In this way, it is possible to infer about 
the behaviour of missing values.25 

Potassium is a lithophile element that participates in 
the formation of silicates, feldspars and micas (biotite and 
muscovite), which are mineral constituents of rocks as 
gneisses and schist’s. Muscovite and biotite (that have K in 
their structure) are still part of the composition of quartzite 
rocks. Consequently, evaluating the lithotype of the region 
studied (Table 2) it can be noticed that the presence of K in 
the analyses is an indication of lithological contribution of 
this element for the waters in the studied area. The higher 
values detected for this element in group I may be explained 
by the fact that sampling of the samples S1B, S3A and S5 
were performed in the rainy season (Table 1), where K is 
more leached by high precipitation.

In the environment, Cl can originate both from the 
weathering of rocks and by man’s influence via sewage 
discharges.26 In all samples, the concentrations of Cl were 
very low, ranging from 0.50 mg L−1 to 4.66 mg L−1. As the 
rocks of the region do not have Cl in their composition, 
probably the source of Cl can be atmospheric and/or from 
plants and animals (biogenic origin). It is important to note 
that the samples S1B and S8 may have some anthropogenic 
influence due to the proximity of a village (Santa Rita 
Durão). The breeding could influence the sample S2B 
because this type of activity is common in the region and 

Table 3. Results of the physico-chemical parameters and metals analysed in natural waters of the upper Rio Doce River basin (Quadrilátero Ferrífero)

Sample pH
DOCa,e / 

(mg L−1)

Tempera-

ture / oC
Alcb,f

Condg / 

µS

ORPh / 

mV

Turbi / 

NTU

Resisj / 

kΩ
TDSk / 

(mg L−1)

Cla / 

(mg L−1)

Baa / 

(µg L−1)

Caa / 

(mg L−1)

Fea / 

(µg L−1)

Ka / 

(mg L−1)

Mga / 

(mg L−1)

Mna / 

(µg L−1)

Naa / 

(mg L−1)

Sa / 

(mg L−1)

Sra / 

(µg L−1)

S1A 5.92 2.79 24.0 NDc 10.8 155 6.57 90.4 6.9 0.98 8.7 1.22 4342.0 0.98 0.16 112.6 1.3 0.34 4.8

S1B 5.30 1.40 24.1 4.3 26.8 102 4.10 39.5 15.6 4.49 1.3 0.76 253.1 0.11 0.03 32.4 0.3 0.11 2.1

S2A 6.64 2.62 25.0 ND 28.6 108 7.29 35.0 17.9 2.41 14.7 1.35 11.5 0.32 0.65 31.6 0.3 0.09 6.4

S2B 6.16 1.17 27.4 11.9 19.5 58 32.60 48.6 12.5 4.49 54.3 2.05 36.9 0.32 0.79 4.4 0.5 0.13 7.7

S2C 7.70 1.51 22.4 5.0 11.2 268 64.80 87.6 7.2 0.50 6.9 1.54 77.6 0.06 0.45 35.7 0.3 < LOQd 3.1

S3A 6.33 ND 22.7 7.6 19.8 109 2.81 50.3 12.4 ND 9.9 0.83 82.2 2.50 0.25 78.7 0.6 0.17 8.8

S3B 6.29 3.88 18.0 5.0 7.8 211 3.74 98.2 6.6 ND 8.1 2.00 10.6 0.45 0.33 72.6 1.0 0.45 12.7

S4A 7.45 2.71 19.1 17.5 41.2 59 36.80 24.1 26.1 ND 7.7 2.42 68.8 0.60 1.47 9.8 1.0 0.14 11.8

S4B 6.73 0.72 16.0 18.4 39.8 207 0.99 24.9 26.4 ND 9.4 4.06 65.2 0.36 1.99 6.4 1.5 0.27 16.7

S5 7.09 1.40 24.4 6.0 7.5 79 34.30 132.1 4.7 2.66 6.7 0.52 70.5 1.90 0.15 21.7 0.4 0.07 2.1

S6 7.25 1.48 25.7 36.4 127.3 45 267.00 0.0 80.7 2.33 27.3 6.27 680.0 0.95 2.40 105.3 12.3 3.15 11.0

S7 6.89 1.38 22.2 8.9 35.5 62 279.00 28.2 22.5 0.66 20.8 2.48 356.3 1.86 0.88 234.6 2.5 0.22 4.3

S8 7.30 < 0.50 21.4 8.9 20.5 61 9.67 48.0 13.1 4.66 10.4 1.37 71.7 0.18 0.62 2.0 0.4 0.07 3.9

S9A 5.40 3.83 15.6 2.0 8.0 247 1.24 119.7 5.2 0.50 5.9 1.65 469.4 0.48 0.14 8.3 1.5 0.19 2.1

S9B 6.22 2.20 16.8 3.0 4.6 183 ND 189.9 3.0 0.75 1.3 0.30 104.0 0.12 0.14 3.9 0.3 < LOQ 0.9

S10 5.75 3.63 13.9 2.5 5.0 218 0.79 172.7 4.0 ND 6.0 0.92 119.1 0.26 0.09 5.6 1.0 0.09 2.0

aStandard deviation calculated by replicate analyses was less than 10%; bGiven in mg CaCO3 L
−1; cND: Not determined; dLOQ: Limit of quantification; eDOC: dissolved organic 

carbon; fAlc: alkalinity; gCond: conductivity; hORP: redox potential; iTurb: turbidity; jResis: resistivity; kTDS: total dissolved solids.

Figure 2. Map of groups of samples (natural waters) obtained by Kohonen 
neural network.
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it could be seen during the field trips. These three points 
were the ones with the highest concentrations of Cl, with 
values above 4 mg L−1.

The summer in the southern hemisphere (December to 
March) corresponds to the period where higher volumes of 
precipitation are recorded considering the studied area.19 
Consequently, Cl and K can be more leached by water from 
rainfalls and showed higher concentrations. This explains 
higher values in group I along with temperature. The second 
sampling of point 3 (S3B) plots in group II because the 
sampling was done in the dry season (June 2011, Table 1). 
From Figure 3, it can be noticed that the variables DOC 
and Fe indicated higher concentrations at neurons in the 
same location. These higher values influenced the positions 
of the samples in group II and suggest that Fe has positive 
relationship with DOC considering the samples analysed in 
this paper. This observation could indicate a complexation 
between these variables, since Fe can effectively bind 
organic matter, especially humic substances.27,28 Although 
a mining region, some elements that were expected to be 
present in larger quantities were found below the LOQ 
(e.g., As and Cu, with LOQ values of 57.7 µg L−1 and 
4 µg L−1, respectively). An explanation for this fact could 
be that the waters were collected in areas of environmental 
protection (as in the case of points 9 and 10) without any 
evident anthropogenic influence. Consequently, it was not 

possible to indicate if there are relationships among these 
elements and dissolved organic matter in the samples using 
the Kohonen neural network.

The values for DOC in the samples ranged from 
0.72 mg L−1 to 3.88 mg L−1. The highest values for DOC 
were detected in a swamp (sample S3B) and in a stream 
(sample S9A), located in Itatiaia Mountain Range and 
Caraça Mountain Range, respectively. The lowest value 
was detected in Brumado Stream (sample S8).

During the second sampling in Caraça (sample S9B) 
the concentration of DOC obtained was only 2.2 mg L−1, 
much lower compared to the first sampling, where it was 
3.83 mg L−1. A possible explanation for this observation 
could be the sampling at the end of the dry season after more 
than 4 months with low average volumes of precipitation, 
around 36 and 42 mm month−1.19 As a result, the water level 
in aquifers and the amount of water in soils probably were 
low at that time (base-flow situation). Therefore, a smaller 
amount of humic material was transported by the direct 
reaction of rainfalls into the water bodies of the region 
(surface and interflow). Therefore, the DOC concentration 
was lower, especially if considering that the main source 
of the DOC at that time was probably the groundwater, 
which has lower concentrations of dissolved organic matter 
compared to the top-most soils.29 On the other hand, the first 
sampling was performed at the end of the rainiest months 

Figure 3. Maps of the distribution of individual variables obtained by Kohonen neural network. The colour bars indicate the intensity of the measured 
variable: the lighter the colour, the more intense the variable value.
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with volumes of precipitation exceeding 210 mm month−1, 
mainly between November and February.19 Consequently, 
the amount of water available was higher and a greater 
concentration of humic material was leached into streams 
due to a higher volume of water at that time. It is important 
to consider that in base-flow situations, the concentration of 
DOC decreases and other factors may also have influenced 
the results.29

Looking at point 1 (samples S1A and S1B) it can be 
seen (Table 3) that the levels of dissolved organic matter 
were higher (sample S1A) in the beginning of the rainy 
season compared to the values at the end of the rainy season 
(sample S1B). A hypothesis to explain this behaviour could 
be the effect of dilution after the water body dries out in 
the dry season, as seen in the third field trip to this point. 
In this way, a large amount of DOC probably is carried 
into the swamp during first rainfalls (in the beginning of 
the rainy season). This organic matter could be originated 
from the degradation of living organisms in the dry winter 
period. After the rainiest months between November and 
February, the DOC concentration decreases by dilution 
effect. In addition, the organic matter from the dry season 
was already almost completely decomposed at that time. 
This would explain the decrease of DOC at point 1 in the 
end of the rainy season. At this point it is important to 
consider that Steinberg29 describes that in the onset of the 
rainy season the concentration of DOC rises rapidly with 
the discharge.25

Group II was formed by having higher values of DOC, 
Fe, Resis and ORP. At point 1 (especially for sample S1A), 
the presence of banded iron formations (BIF), which are 
covered frequently by canga (the Brazilian name for 
a ferruginous breccia surface formation, consisting of 
fragments of hematite, cemented by goethite), phyllites 
and schist’s explain the higher Fe contents. However, it is 
important to note that the content of Fe was lower in the 
sample S1B, what could be explained by the dilution effect 
as previously explained. The sample S2C was in this cluster 
due to a high redox value, which was the dominant factor 
for the composition of group II.

All samples from group III had waters more alkaline 
than other groups. Therefore, it was possible to affirm that 
the pH was the predominant variable for its formation (Sr 
was also important for the formation of this cluster). In 
addition, for being a large group there is some heterogeneity 
among some of its samples. The sample S6, for instance, 
was highlighted by a water more alkaline and containing 
higher concentrations of S. The highest value for this 
element is probably due to the presence of sulfide rocks 
upstream of this point. The highest alkalinity may be 
explained by increased concentrations of carbonate, which 

is evidenced by the presence of Ca and Mg. These ions 
may originate from dolomite rocks, which are part of the 
lithology units of Piracicaba and Itabira.

Considering only the samples S6 and S7, it can be 
observed that they had higher concentrations of Ca, Mg and 
Mn (lighter colours in the bottom right neurons of these 
three variables in Figure 3). These values may indicate a 
common lithological origin, especially because Ca, Mg, and 
Mn are lithophile elements that participate in the formation 
of dolomites and schists. These kind of rocks are present 
upstream of these two sampling sites (S6 and S7). It is 
remarkable that these samples had higher values of Na, 
which along with Ca, Mg and Mn were responsible for 
increased levels of TDS. All of these five variables were 
responsible for the fact that samples S8 and S2A were far 
away from samples S6 and S7 in a same group.

The higher levels of Sr were observed in the cluster 
formed by the samples S4A, S4B, S6 and S7. Sr has 
similar chemical properties like Ca and Mg and can replace 
both elements within their minerals. Consequently, the 
presence of dolomite in the lithological groups of Itabira 
and Piracicaba and of phyllites and schists in the Nova 
Lima and Itacolomi lithological groups could explain the 
presence of Sr in the collected samples. For this reason, 
the relationship observed among Ca, Mg and Sr may be an 
indicative of their lithological origin.

Finally, group IV was formed due to higher 
concentrations of Ba found at point S2B. The highest 
values of this element can be explained due to the increased 
leaching at the rainy season, which was the period of 
sampling (March). The concentrations of Ba decreased 
considerably in the samplings performed in the dry season 
or during the beginning of the rainy season, as explained 
for other parameters before. The temperature also showed 
a higher value at this point, which is explained by the 
sampling done in the summer time.

Considering the seasons of the year, it may be noted that 
all samples of group I were collected in the rainy season 
(summer), which presented higher temperatures and higher 
levels of Cl and K (probably as a result of leaching), as shown 
by the lighter colours in Figure 3 and discussed before. Most 
samples in group II were collected in the dry period (winter). 
Hence, lower temperatures (darker colours in Figure 3) were 
observed in this group if it is compared to others groups. 
Group III is heterogeneous and samples were collected 
during the rainy and dry seasons. Group IV refers to the rainy 
period, where the sample S2B had higher temperatures and 
higher concentrations of Ba, as mentioned before.

No relationship was observed between the formation of 
clusters and the type of water body (swamp, lake, stream 
or river). This can be shown by groups II and III, where 
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samples were taken from rivers, streams and lakes and 
plotted within the same group.

To evaluate a possible influence of sulfate concentration 
on the DOC content in this exploratory study, sulfate was 
analysed from seven selected samples, since it is known 
that S is a compositional part of the humic substances 
(Figure 4).30 However, this study was unable to demonstrate 
an influence due to the low number of analyses. As sulfate 
was not measured for most samples, it was not included 
in the SOM analysis.

Part of the sulfate in the waters of the QF comes from 
the oxidation of sulfides such as pyrite (FeS2), which are 
abundant in rocks such as schist’s and amphibolites in the 
region. Among the anthropogenic sources of sulfate in 
surface waters, the discharge of domestic and industrial 
effluents and the use of coagulants in treated waters are 
known.26

For comparison and to validate and show the important 
applicability of Kohonen neural network in this study, a 
PCA analysis of the same data set (Table 3) was performed. 
The results of the PCA analysis is shown in Figure 5 and 
Figure 6, which represent the scores and loadings plots of 
PC1×PC2.

It was necessary to use 11 PC to explain 99.31% of 
the data set variability with the PCA approach and the 
first and second components explained only just 56.5% of 
variance (Figure 5 and Figure 6). To analyse all information 
in the data, it would be necessary to observe the principal 
components in all possible combinations, that could be 
in a two or three-dimensional way. This certainly would 
be a hard task, and would make data evaluation and, 
consequently, data interpretation very difficult. In this way, 
the Kohonen neural network exhibited the great advantage 
of projecting all data in a two-dimensional space without 
loss of information.

Figure 5 shows the samples separated in seven groups. 
It can be seen that the samples of the groups IV, V and 
VI were located in the same quadrant (left bottom). The 
same samples formed the group II in the Kohonen analysis 
(Figure 2) showing a similarity between the results of the 
two methods. The samples S9A, S9B and S10 are quite 
near in both methods indicating similarities among them. 
The group I in the PCA scores plot (Figure 5) is composed 
by the same sample (S2B) of the group IV in the Kohonen 
map (Figure 2).

These similarities between both methods show the 
ability of Kohonen network to explore the data with 
robustness and reliability. Figures 2 and 5 are not able to 
present exactly the same relationships because only little 
more than half of the data variability is presented with the 
PCA approach (Figure 5).

In the loadings plot (Figure 6), it can be observed 
that Fe and DOC are near indicating some similarity 
between them, although they are presented in different 
quadrants. The argument for the scores plot is valid here, 
since all variance in the data set is not represented. The 

Figure 4. Concentration of sulfate in selected water samples from the 
Quadrilátero Ferrífero.

Figure 5. Scores plot on PC1 and PC2 in the study of dissolved organic 
matter and metal ions in waters from the eastern Quadrilátero Ferrífero, 
Brazil.

Figure 6. Loadings plot on PC1 and PC2 in the study of dissolved 
organic matter and metal ions in waters from the eastern Quadrilátero 
Ferrífero, Brazil.
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relationships among DOC, Fe, ORP and Resis in Kohonen 
map (Figure 3) are also demonstrated in the loadings plot 
(Figure 6).

In general, the main tendencies (greater similarities or 
differences among samples or variables, and the influences 
of variables in samples) of the data set were shown by 
both the Kohonen neural network and the PCA methods, 
although the PCA was not able to present all data variance 
while Kohonen neural network expressed it very efficiently 
in a two-dimensional space.

Conclusions

The multivariate exploratory data analysis by the 
application of Kohonen neural network was effective in 
this study, especially considering an easy and friendly 
data interpretation, with complex nonlinear relationships. 
Furthermore, this technique allowed a separation of all 
samples into groups with similar characteristics while 
reducing a high dimensional space to a two-dimensional 
space. It was one of the main advantages of this technique 
when compared with PCA, which was applied to the same 
data set. In the latter method, it was necessary to work in 
a multidimensional space (11 PC) making the analysis of 
the results difficult. Nevertheless, both methods showed 
similar relationships of the data set.

A positive relationship between DOC and Fe was 
noted in the Kohonen neural network. This observation 
possibly indicates a complexation between both variables as 
described in the literature. A certain influence of seasonality 
on the distribution of samples could be noticed considering 
that some groups in the Kohonen map were formed as 
a result of their sampling date (rainy or dry period). In 
addition, some samples that were collected at the same point 
in different seasons stayed in different groups due to the 
effects of leaching or dilution. Some relationships among 
some elements in the Kohonen neural network indicated a 
contribution from the lithology of the studied area as it can 
be found by the elements Ca, Mg, Mn and Sr in the maps 
of the distribution of variables. Chloride may be partly also 
from biogenic origin since the rocks in the region studied 
do not have Cl in their structure.

Further studies will be necessary to measure and 
characterise the dissolved organic matter in the area and 
to fully understand its role on the cycle of elements in the 
QF, especially considering the impacts of mining. However, 
in this study it was possible to perform a screening of the 
evaluated area, particularly considering the concentrations 
of DOC and of some metal ions. In addition, the use of the 
Kohonen neural network for the first time with chemical 
data of this studied area showed that it certainly is a 

promising technique that may help to analyse a variety of 
environmental results with complex interdependencies in 
an easy way.

Supplementary Information

Supplementary information (Figure S1) is available free 
of charge at http://jbcs.sbq.org.br as PDF file.
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