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Dois procedimentos para a redução de experimentos para o método split-plot foram investigados
usando um conjunto de dados contendo 160 experimentos, consistindo de 80 duplicatas provenientes
da otimização de um sistema contendo a mistura de água-acetona-N,N-dimetilformamida e os
reagentes HCl, o-dianisidina e H

2
O

2
 para a determinação de Cr(VI). A estabilidade dos coeficientes

do modelo e as médias quadráticas da ANOVA são usadas como critério para julgar a eficiência dos
procedimentos. Somente o procedimento que evita a possibilidade de se eliminar completamente
uma replicata para um dado conjunto de condições das variáveis de processo parece ser praticável,
uma vez que não resulta em perda de informação fundamental da modelagem. Seus valores das
médias quadráticas da ANOVA permaneceram estáveis para reduções de até 30% das replicatas
enquanto seus coeficientes dos modelos foram relativamente constantes para até 70% de redução das
replicatas. Tendo em vista que um planejamento split-plot completo envolvendo variáveis de processo
e de mistura requer um grande número de experimentos, a economia introduzida por planejamentos
split-plot incompletos faz seu uso ser muito atraente.

Two experiment reduction procedures for split-plot designs are investigated using a data set
containing 160 experiments, consisting of 80 duplicate results for the optimization of a water-
acetone-N,N-dimethylformamide mixture with HCl, o-dianisidine and H

2
O

2
 reagent system for the

analytical determination of Cr(VI). Stabilities of the model coefficients and ANOVA mean squares
are used as quality criteria to judge the effectiveness of the procedures. Only the procedure that
avoids the possibility of eliminating entire replicates for any given set of process variable conditions
seems to be feasible, since it does not result in loss of valuable modeling information. Its mean
square ANOVA values remain stable for up to a 30% replicate reduction whereas its model coefficients
are relatively constant for even 70 % replicate reduction. Since complete split-plot designs involving
both process and mixture variables require large numbers of experiments, the economy gained by
performing incomplete split-plot designs makes their use more attractive.
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Introduction

Optimization problems in chemistry often involve both
process and mixture variables. However multivariate
strategies applied in chemistry are normally restricted to
either process1,2 or mixture3 variables using well-known
experimental designs. As a consequence, possible
significant interaction effects involving both process and
mixture variables cannot be detected, let alone measured.
Including both process and mixture variables in an
optimization procedure increases the size of the
experimental program so that complete randomization in

the execution of trial runs is not generally feasible.
Furthermore some variables may be easily adjusted from
one level to another for each new experiment, whereas
others, such as some process variables like temperature for
which the attainment of equilibrium conditions could
delay experimentation, cannot be included in a completely
random experimental design and still maintain a feasible
optimization program. In split-plot procedures4-7 such
operational difficulties are minimized since subsets of
experiments are set-up. The subsets are performed in
random order as are all the experiments in a given subset.
Complete randomization is restricted since the process (or
mixture) variables can be maintained at constant values
for each subset and only the mixture (or process) variables
are randomly adjusted, facilitating the operational
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procedure. However a price is paid for this simplification.
The ANOVA for a split-plot design is much more
complicated than the standard ANOVA, since the former
has two sources of error, the so-called main-plot and sub-
plot errors, in comparison with only one error source for
completely randomized designs. ANOVA tables are used
to calculate standard errors for model coefficients in order
to determine the significant model terms. Such error
determinations for split-plot designs are mathematically
more complex than for completely random designs.

Replication of experiments is the most secure way for
estimating errors. In split-plot experiments randomization
is also restricted within replicates. In other words, one
complete set of experiments is performed following the
split-plot procedure. Later its replicate is performed.

Although split-plot experimentation is relatively
common in agricultural experiments

,
8 their use in chemistry

is very limited. An early article discusses mixed process
variable - mixture variable designs9 and more recently our
group carried out a complete split-plot design10 to
determine simultaneously the optimum values of the
proportions of water, acetone and N,N-dimethylformamide
as a reaction medium (mixture variables) and the
concentrations of HCl, o-dianisidine and H

2
O

2
 as reagents

(process variables) for the analytical determination of Cr
(VI) using the 450 nm absorption of the oxidized species
of o-dianisidine as the system response.

The objective of this paper is to show how the split-
plot experimental procedure can be simplified by reducing
the number of experiments that must be performed. Two
alternative approaches are investigated. Success of the
reduction procedure is judged by the stabilities in the
ANOVA mean square values as well as in the model
coefficients as the number of experiments is reduced.

Calculations

The experimental data used in the calculations are
taken from Table 3 of reference 10. The split-plot design is
shown in Figure 1. Ten mixture formulations were tested
at each of eight different process variable combinations.
The mixture formulations are represented as points within
the small triangles whereas the process variable conditions
are represented by the vertices of the 23 factorial cube.
Since all the experiments were performed in duplicate, a
total of 10×8×2 = 160 experiments were performed. The
ten mixture formulations within each triangle were
performed at random and a random order also was used to
perform each of the eight process variable combinations.
This kind of restricted randomization was carried out
within each replicate set.

Calculations for the complete split-plot design were
carried out as in earlier work,10 using the SAS statistical
package11 and using a MATLAB-based computational
program developed in the authors’ laboratory.12

Calculations for the incomplete split-plot designs, which
were made by randomly deleting data from the complete
data set, in order to simulate possible data set reduction
procedures, were carried out using another MATLAB-based
program currently under development in our laboratory.

Two data deletion schemes, represented in Figure 2,
were employed. Figure 2a represents a simple two process
variable – three mixture variable split-plot design for which
only three mixture experiments are performed within each
triangle. This figure shows the complete designs. Figure
2b illustrates one method of data reduction. Experiments
are randomly deleted but under the condition that no point
in the experimental mixture design is left without at least
one measurement for all possible process variable
combinations. This assures that essential modeling
information is not lost on data reduction. An alternative
data deletion scheme, represented in Figure 2c, was also
tested. Here there was little restriction on deleting data
and both replicate experiments for some mixture-process
variable level combinations can be deleted. All mixture
formulations are present in the design, although they may
not be present for all process variable combinations. This
is indicated by the blank circles in Figure 2c, which show
that no experiments were carried out at those points. This
deletion scheme was not adequate for calculations
resulting in significant loss of modeling information. On
the other hand the scheme represented in Figure 2b, that

Figure 1. Split-plot design with mixture variables (sub-plot) em-
bedded in process variables (main-plot). The mixture variable
values are represented by the points within the triangles and the
process variable values by the vertices of the cube.
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contains either solid (2 experiments) or half-solid (1
experiment) circles underwent no loss of modeling
information. The detailed results are discussed below.

Results and Discussion

Two criteria were used to decide whether data
measurement reduction deteriorates the quality of model
determination. First, the behaviors of the most important
regression model coefficients as a function of number of
replicates was investigated. Ideally these coefficients
should vary within their standard errors as the number of
replicates is decreased. Second, the mean square values of
the split-plot ANOVA were examined for different numbers
of replicate measurements. It is also important that these
values remain stable since they are used to determine the
standard errors in the model coefficients. In order to
determine which coefficients should be included in the
correct model t-tests are applied to the model coefficients
using these standard errors. Of course one expects to derive
statistically equivalent models if the number of replicate
measurements is sufficient for accurate error estimation.

Alternative experiment reduction procedure

In the complete design there are 8 process conditions
with 10 mixture compositions in duplicates resulting in a
total of 160 experiments. For the first incomplete design
the reduction scheme represented by Figure 2c was applied
to the complete experimental data set. Five possibilities
were tested, with 3, 4, 5, 6 and 8 mixtures with duplicates
for each process condition. First, 3 mixture compositions
were randomly selected whose results in duplicates were
included in the calculation. Each of the ten compositions
appeared at least once to avoid the loss of too many
regression degrees of freedom, resulting in a total of 48
experiments. This method was repeated for designs where
4, 5, 6 and 8 mixture compositions were randomly selected
for each process condition resulting in 64, 80, 96 and 128

experiments to be included in the calculations. The
generated models were compared to the models obtained
using complete design.

In the complete design the mathematical model that
presented the best results was the bi-linear-quadratic one.
For this reason all the models determined using the
incomplete designs were always compared to it. Of the
incomplete designs, the model obtained using eight
mixture compositions in duplicate for each process
condition presented model coefficients in best agreement
with those obtained from the complete design. This required
the execution of 128 experiments. Statistically significant
parameters were determined by comparing model
coefficients with their calculated errors. On comparing the
parameters of the models in Table 1 it is evident that there
are large variations in values. Figure 3 shows how the
parameters of the models vary with the number of replicates.
The only model in reasonable agreement with the one
determined using the complete design is the eight
duplicate design.

Preferred experiment reduction procedure

The experiment reduction scheme, represented by
Figure 2b, applied to the complete experimental data set
resulted in the split-plot ANOVA mean square values listed
in Table 2 and significant model coefficients given in Table

Figure 2. a) Complete split-plot design for two process variables and three mixture variables, b) preferred incomplete split-plot design in which
all experimental conditions are included in each subplot, c) alternative incomplete split-plot design for which some mixture experiments have
been excluded in different subplots;  - duplicate experiments performed;  - only one experiment performed;  - no experiment performed.

Table 1. Model coefficientsa determined using different numbers of
replicate experiments according to the procedure represented in
Figure 2c

Number of replicates b
1

b
2

b
13

b
1

1

10 0.914 0.170 -0.910 0.284
8 0.909 0.161 -0.883 0.184
6 -1.368 -0.626 3.704 3.347
5 1.006 0.482 2.745 2.765
4 -3.034 1.438 3.387 -3.821
3 -1.228 -1.248 3.296 -0.661

a These model coefficients are defined in equation (1) of the text.
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3. The mean square values are graphed in Figure 4 as a
function of the number of duplicates whereas the
corresponding model coefficient graph is shown in Figure
5. All the mean square (MS) values remain relatively stable
when seven to ten duplicates are used as seen Figure 4.
Below six duplicate determinations the sub-plot mean
square value falls from above 0.7 to a plateau around 0.55.
The main-plot mean square shows a larger sensitivity to
replicate reduction when the total number of duplicates is
six or lower whereas seven to ten duplicate designs
produce very similar main-plot MS values. The replicate
mean square sum is seen to remain close to the zero line of
the graph in Figure 4 for six to ten duplicate experiments
but undergoes an order of magnitude increase for design
results with only four or five duplicates. Inspection of the
values in Table 2 permits a more detailed investigation of

Table 3. Model coefficienta values as a function of number of replicate experiments for the procedure represented in Figure 2b

Model coefficients Number of replicates

1 0 9 8 7 6 5 3

b
1

0.914 0.962 0.968 0.943 0.930 0.952 0.920
b

2
0.170 0.170 0.173 0.167 0.175 0.172 0.168

b
13

-0.910 -1.034 -1.059 -0.978 -0.909 -1.032 -0.915
b

1
1 0.284 0.231 0.225 0.275 0.293 0.335 0.258

a These model coefficients are defined in equation (1) of the text.

Table 2. ANOVA mean square values as a function of the number of replicates for the procedure represented in Figure 2b

Variation source Number of replicates

1 0 9 8 7 6 5 3

Replicate 0.0064 0.0054 0.0000 0.0265 0.0014 0.0953 0.0575
Main-plot 0.2461 0.2388 0.2195 0.2332 0.1726 0.1540 0.1914
Main-plot error 0.0008 0.0014 0.0060 0.0083 0.0065 0.0288 0.0286
Subplot 0.7691 0.7516 0.7151 0.7119 0.5414 0.5366 0.5624
Main by subplot interaction 0.0214 0.0191 0.0159 0.0131 0.0066 0.0054 0.0041
Subplot error 0.0003 0.0027 0.0049 0.0032 0.0103 0.0141 0.0149

Figure 5. Significant model parameters as a function of the number
of replicate experiments for the preferred experiment reduction
scheme (see Figure 2b), where ⋅⋅⋅⋅×⋅⋅⋅⋅ b

1
, — — b

2
, –⋅⋅ –⋅⋅ b

13
 and

--- --- b
1

1.

Figure 4. Mean square ANOVA values as a function of the number
of replicate experiments for the preferred experiment reduction
scheme (see Figure 2b).

Figure 3. Significant model parameters as a function of the number
of replicate experiments for the alternative experiment reduction
scheme (see Figure 2c), where ⋅⋅⋅⋅×⋅⋅⋅⋅ b

1
, — — b

2
, –⋅⋅ –⋅⋅ b

13
 and

--- --- b
1

1.
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the changes in the replicate, main-plot error, main by sub-
plot interaction and sub-plot error mean squares. They are
all close to the zero line in Figure 4. The main-plot, sub-
plot and main x sub-plot interaction mean squares show
similar behavior. They have relatively constant values
(intervals of 0.22 to 0.24, 0.71 to 0.77 and 0.01 to 0.02,
respectively) for experiments with seven to ten duplicates
and different but relatively constant values (0.15 – 0.23,
0.54 – 0.56 and 0.004 – 0.006) for three to six duplicate
experiments. The sub-plot error values are lower than 0.005
for seven to ten duplicate experiments and higher than
0.010 for three to six duplicate designs. The MS of main-
plot error undergoes the most drastic variation in its value
on changing from six to five duplicates.

In general, the ANOVA MS of the split-plot values is
relatively insensitive to change as long as seven to ten
replicate experiments are performed. Larger variations
occur when six or less duplicates are included in the
calculation.

The model coefficients, however, are much less
sensitive to replicate reduction as can be seen by studying
Table 3 and Figure 5. The most important coefficients,  b

1
,

b
2
, b

13
 and b

1
1 of the truncated model,

ŷ = b
1
x

1
 + b

2
x

2
 + b

13
x

1
x

3
 +  b

1
1x

1
z

1
 (1)

all have relatively constant values as indicated by their
essentially horizontal behaviors in Figure 5. Considering
designs with as little as three and as many as ten duplicates,
b

1
 varies between 0.914 and 0.968; b

2
 between 0.167 and

0.173; b
13

 by –0.909 and –1.054 and b
1
1 from +0.225 to +

0.335. These variations have magnitudes close to the
corresponding standard errors of the model coefficients
reported in Ref. 10, namely ±0.04(b

1
), ± 0.01(b

2
), ± 0.09(b

13
)

and ± 0.04(b
1
1).

Conclusions

A 30% reduction in the number of replicate
experiments was possible for the water-acetone-N,N-
dimethylformamide mixture with the HCl, o-dianisidine
and H

2
O

2
 reagent system for the determination of Cr(VI)

without serious deteriations in model coefficient or ANOVA
mean square values. While this corresponds to a modest

decrease in 15% of all the experiments needed to perform
this split-plot design it does show that these designs provide
models that are quite robust to missing data that could
result in the execution of large numbers of experiments.
Other procedures for reducing the number of experiments
in split-plot designs, such as the use of cumulative
probability graphs, are also presently under investigation.
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