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Um algoritmo geral para resolver problemas inversos lineares e não lineares, baseado em
redes neurais recursivas, é discutido neste trabalho. O procedimento será aplicado a problemas
físico-químicos modelados por equações integrais, diferenciais e de autovalor. As aplicações
são discutidas em espectroscopia de aniquilação de pósitrons, cinética química e espectroscopia
vibracional. O método é robusto com relação a erros nas condições iniciais ou em dados
experimentais. A presente abordagem é simples, numericamente estável e tem uma grande
aplicabilidade.

A general algorithm to solve linear and nonlinear inverse problems, based on recursive
neural networks, is discussed in this work. The procedure will be applied to physical chemical
problems modeled by integral, differential and eigenvalue equations. Representative
applications discussed are in positron lifetime spectroscopy, chemical kinetics and
vibrational spectroscopy. The method is robust with respect to errors in the initial condition
or in the experimental data. The present approach is simple, numerically stable and has a
broad range of applicability.

 Keywords: inverse problems, neural networks, positron lifetime spectroscopy, chemical
kinetics, vibrational spectroscopy

Introduction

Extracting chemical and physical information from
experimental data is an important problem in science. This
procedure, which characterizes an inverse problem,1 is
usually ill-posed in the sense that one of three conditions:
(i) existence, (ii) uniqueness and (iii) continuity is not
satisfied. When dealing with real data one has to handle
ill-posed problems and this can be better clarified if a
particular case is considered. For example, in an integral
formulation of a physical problem, to be discussed along
the paper, the solution of Kf=g has to be found. In such
cases the matrix K is ill-conditioned, and consequently,
its inverse will have very large values. Experimental errors
will be amplified by the inversion procedure and condition
(iii) is not fulfilled. Multiple solutions and existence
conditions are also understood by analyzing the properties
of the matrix K, as discussed in reference.1 For every
inverse problem there is a direct problem that is
considerably easier to solve. For example, in a chemical
kinetics process, if initial conditions, rate constants and
kinetic law are given, the concentration of the species

can be calculated along the time. For a given set of
concentration, measured at different observation times,
one may ask what are the rate constants.2 Obtaining force
fields from experimental data is another important inverse
problem.3 Calculation of vibrational frequencies, from a
given set of force constants, will define the direct problem.
On the other hand, force constants retrieved from the
experimental frequencies will characterize the inverse
problem.

Numerical methods to handle linear inverse problems
are well established. For example, techniques such as
Tikhonov regularization,1 decomposition into subspaces4

and dynamical neural network approach5,6 have been used.
A comparison between Tikhonov regularization and
decomposition into subspaces has been discussed,7 but
the neural network framework has been shown to be more
stable, simple and fast when applied to inverse problems.8

The dynamical neural network methodology was first
suggested in reference5 and applied to linear inversion
problems by Vemuri and Jang.9 Several linear ill-posed
problems were handled by this recurrent neural network
technique, such as in: linear thermodynamics problem,10

positron lifetime spectroscopy,11 magnetic resonance
multiple sclerosis diagnostic.12 All these applications have
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in common the integral form of the operator representing
the direct problem. The original algorithm9 has been
extended to solve nonlinear integral problems8 and to
handle eigenvalue force field inverse problems.13

In the present work a general methodology to deal
with inverse problems is presented. This algorithm will
be able to solve linear integral inverse problem, nonlinear
integral inverse problem, inverse problems in dynamic
systems and identification problems. Some models will
be used to exemplify the present approach. As a first
example, inversion of positron annihilation lifetime
spectrum represented by a Fredholm integral equation,
will be taken. In a second example, chemical kinetics will
be treated to illustrate inverse problems in differential
form. The rate constants will be obtained from
experimental concentration data. The final example will
treat the eigenvalue inverse problem in which force
constants are obtained from experimental frequencies.

Theoretical method

 A Hopfield neural network is constructed by a recurrent
layer, consisting of neurons fully connected. For example,
in a Hopfield network formed by ten neurons, each neuron
will have ten inputs, one for its own previous value and
nine for the remaining ones. In this way, the output of a
neuron u is a function of the input information, which is
converted to another state by a activation function, f(u).
The activation function propagates the required
information and this occurs by following an energy-descent
pathway. Therefore, the Hopfield neural network can be
applied to solve optimization problems if an energy
function is defined, which for practical applications, can
be the error function for the physical problem. The learning
property of the neural network is satisfied if f(u) is an
increasing function of u, a condition to be fulfilled by

functions of the kind 
1

(1 tanh( ))u
2

f ( )u = +  and f(u) =

tanh(u).5 Both of these activation functions are used in
the examples studied here. It is more appropriate to use

the activation function 1
(1 tanh( ))u

2
f ( )u = +   if inverted

results assume only positive values, as in the positron
annihilation lifetime spectrum. This restriction will
prevent the inverted function to have negative values.
For the same reason, this activation function was also
used to invert data in inverse kinetics problem. In the
force field inverse problem, the function f(u) = tanh(u)
was used, for the inverted results represent force
constants which can be negative. A more clarifying
discussion about the recurrent neural network dynamics

can be made by considering the error between measured
and calculated properties. If the experimental and
calculated properties are denoted, respectively
by PEXP, PCAL and  with o

j = P
j
CAL – P

j
EXP the total error can

be defined as,
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for m experimental data. Derivation with respect to the
learning time, τ, gives,

(2)

in which n is the quantity of neurons involved in the
process. This is also equal to the number of variables to
be inverted from experimental data. The total error will
always decrease with respect to the learning time if two
steps are taken. First, the condition

 (3)

is imposed, transforming (2) into,

2
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Secondly, the relation 0i

i

f

u

∂ ≥
∂

  is applied, which will imply in,

0
dO

dτ
<  (5)

Therefore, the present algorithm will have the property
of always decreasing the error with respect to the learning
time. Due to the nature of the ill-posed problems, multiply
solutions will always be presented. One has to choose, based
on physical and chemical grounds, among the several
possibilities. Nevertheless, the present approach has the
property of always decreasing the error between the inverted
and experimental data. Therefore, among the infinite
solutions, the one obtained in the present work is the solution
which best reproduces the experimental property. The
properties PEXP and PCAL are not necessarily the system
variables, but can be a function of them. For example,
recovering potential energy function from second virial
coefficient will require solving an integral equation over the
coordinates.8 In chemical kinetics, the measured property
can be represented by a combination of the concentration,
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as in the absorbance measurement.2 For the force field inverse
problem the property is the eigenvalue of a matrix.

The differential equations (3) were integrated by using
a fourth order Runge-Kutta method with variable
stepsize,14 until the learning process, which defines the
stopping condition, has finished. For the three examples
to be discussed in this work, this stopping condition occurs
if the error function reaches the minimum value, i.e., if
there is no further decreasing in the network energy.
Retrieval of the required quantities, that is, solution of
the inverse problem, is obtained according to the following
algorithm: (i) an initial guess to the required quantities is
made and used to propagate the differential equations;
(ii) since error will decrease, the time derivative of the
neuron state will reach a constant value with zero

 derivative. This will be represent by 0iu

τ
∂ =
∂

, defining

also the final learning time; (iii) the converged values of
the neuron states are activated to obtain the desired result.
Several inversion problems can be solved by these steps.
Artificial errors were introduced into the simulated and
experimental data to test the robustness of the algorithm.
These errors were randomly generated with negative and
positive values having the same weight. Activating the
states u will have an effect on the quality of the inverted
results. For example, if the function to be calculated
happens to be only positively, this can be easily
incorporated into the present methodology by imposing

1
(1 tanh( ))u

2
f ( )u = + .

Results and Discussion

Positron lifetime spectroscopy-inversion in integral
equations

The inverse problem to determine s(y) in the Fredholm

integral equation of first kind,1 k x, y s y dy g x( ) ( ) = ( )

b

a

∫ ,

from a given k(x,y) and g(x), will be tested for the present
algorithm. As a representative example, the inversion of
positron annihilation lifetime spectrum6 will be
discussed. This problem was previously discussed by
using a singular value decomposition method, in a
previous work.11 The density function of the positron
annihilation rate spectrum,

(6)

was taken as experimental result for the present analysis.
In equation (6), a1=0.42250, α1=11.6951, σ1=0.57710,

a2=1.57270, α2=12.0688 and σ2=0.93530, parameters for
lysozyme in water system.10 The theoretical data for this

problem, calculated from 
max

0

( ) ( )

t

tc e dλλ ρ λ λ−= ∫ , were

generated by using a rectangular basis, n=128. Therefore,
the error function in this example, will be

21

2

CAL EXPO c cλ λ= − . Random numbers uniformly distri-

buted were used to simulate the experimental error.
Inverted results, with initial condition equal to zero and
random errors of ± 0.3% added to the experimental data
(the experimental error in this kind of measurement is
about ± 0.3%) are compared with exact results in Figure
1. These results show the stability of the algorithm for
this problem. Moreover, the algorithm discussed here
overcomes the previous framework applied to linear
inverse problems,6 in which it was necessary to construct
two matrices, derived from the available data and the linear
transformation between input and output. For the
algorithm proposed here, these matrices are unnecessary.
This is an improvement in the inverse problem metho-
dology since linear and nonlinear ill-posed problems can
be treated on equal grounds.

Chemical kinetics-inversion in differential equations

The analysis of the fission and formation of C-C bonds
in chemical reactions are often used as model systems in
molecular kinetics. Experimental data consistent with the
recombination-dissociation rate constants of several
reactions are available in the literature. For example,
trifluoromethyl radicals recombination, CF3+CF3 → C2F6,
has been studied experimentally15 and theoretically to test
other inverse algorithms.16 The ruby laser radiation has been
used to produce photolysis of CF3NO.15 In this technique,

Figure 1. Exact (full line) and inverted results for the density function,
ρ(λ); experimental noise of 0.3% (dotted line).
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which is effective to produce CF3 radicals, the CF3 and NO
species are obtained, due to the photolyzing pulse of the
laser. The CF3NO concentration was monitored by
absorption in the visible spectral region and the reaction
cell filled with a mixture of CF3NO, NO and a buffer gas.
Therefore, concentration measurements of the CF3NO
component were used to determine the rate constant k2 for
this recombination process. With experimental errors in the
range 2% to 7% this rate constant was established to be
(3.9 ± 1.3) × 10-12 cm3 s-1. Using the notation x

1
=CF3,

x
2
=[NO], x

3
=[( CF3)2NO], x

4
=[(CF3)2NO2], x5

=[CF3NO] and
x

6
=[C2F6], the mechanism for the recombination process is

described by the set of six differential equations,

21
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(7)

Thus, the inversion problem to be solved here will be:
for given values of the rate constants k1, k3, k4 and values
of x5

EXP along the time, what will be the rate constant k2?
The rate constants16 will be taken as: k1 = 1.3×10-11 cm3 s-1,
k3 = 1.4 × 10-13 cm3 s-1 and k4 = 2.0×10-11 cm3 s-1. The
CF3NO concentration was simulated in the interval 0.2
to1.0s, with step of 0.2s with 3.9× 10-11 cm3 s-2 for the k2

rate constant. In this case, integration of equation (3) will
provide the temporal evolution of the neurons which
represent the inverted rate constant k2. With this rate
constant it is possible to calculate the concentration x5

CAL

in an iterative process to minimize the error function
2

5 5

1

2

CAL EXPO x x= − , according to equation (5). The

experimental error was taken to be, at maximum, of 7%.15

These results were taken as experimental data from which
inversion is to be performed. Integration of the differential
equations (7) was performed with x1(0) = x2(0) = 1×1011

molecules cm-3 and x3(0) = x4(0) = x5(0) = x6(0) = 0 as
initial conditions. Retrieved results are presented in Table
1. Even with the largest experimental error tested in the
concentrations, the inverted rate constants are in agreement
with the experimental value. The less favorable inverted
rate constant, 4.40×10-12cm3 s-1 occurs at an experimental

random error of 7% in the concentrations. Also in this
situation, the inverted rate constant is within of the
experimental value, (3.9±1.3)×10-12 cm3 s-1. The algorithm
was very stable in relation to different initial conditions.
Even with an initial guess two times the correct value,
rate constants shown in Table 1 are obtained.

Vibrational spectroscopy-inversion in eigenvalue problems

The eigenvalue inverse problem is based on the general
equation AU = UΛ, in which A is a matrix related to the
desired information, U are the eigenvectors and Λ is the
diagonal matrix of eigenvalues. Although the present
algorithm has been applied to this kind of problem,13 it
will also be applied here to another system. This additional
example will exemplify the general applicability of the
method for this problem. There are three main equations
to formulate the problem: (i) the eigenvalue equation
proposed by Wilson et.al.,17  GFL = LΛ in which G is a
matrix related to mass and geometry of the molecule, F
the matrix representing the forces constants, Λ a diagonal
matrix with vibrational frequencies and L the normalized
vibrational mode amplitudes matrix; (ii) equation (1) with
the error function and (iii) equation (5), that guarantees a
minimum error function, providing the calculation of
reliable force constants. Therefore, the G and Λ matrices
are known in formulating the problem. On the other hand,
the F matrix is to be established. The error function in

this problem is 
21

2
EXPO eig ( )GF= − Λ , in which eig(GF)

are the eigenvalues of the matrix GF calculated with the
inverted force constants and ΛEXP are the experimental
frequencies. The fluoroform molecule in its equilibrium
configuration belongs to symmetry point group C3v

 and this
is considered to obtain the matrix G. The force constant
regularized matrix,3 with deviations up to 30%, was used
as priori physical information, defining the initial condition
for the network. The optimized results are presented in Table
2 and are in agreement with the regularized force field found
in reference.3 The errors in the calculated frequencies, with
respect to the experimental data, can not be attributed to
the method itself, but to the harmonic force field model17

considered. This specific model was used to carry on a

Table 1. Recovered rate constant with k2 = 0 as initial guess

Concentration error / %  Recovered k2

0  3.90 × 10-12

1  3.85 × 10-12

3  4.00 × 10-12

5  4.31 × 10-12

7  4.40 × 10-12
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comparison with previous results in the literature.3

Moreover, for the experimental data used, the errors in the
calculated vibrational frequencies are in agreement with
the experimental error, as presented in Table 3. Table 4
shows the inverted results are stable and convergent for
large experimental errors. Experimental deviations in the
fundamental frequencies18 which are about ±0.2cm-1,
corresponding to 0.03%, do not perturb the inverted results.
The sensitivity of the inverted results with respect to
different initial guesses is presented in Table 5. Calculation
of retrieved force field presents low average error, up to
20% of deviation in relation to the exact initial guess.

Conclusions

A general technique to handle inverse problems is
presented in this work. The algorithm can be applied
to a problem in which there is not an explicit function

to represent the data. For example, in the inverse
chemical kinetics problem an analytical expression for
concentrations was not available, but the inverted
problem was still possible to be carried out. Expe-
rimental errors were also considered in the present
approach. For the three examples studied, the
corresponding experimental errors were taking into
consideration. Errors in the initial conditions were used
to test the robustness of the methodology. In both cases,
either with experimental errors or initial conditions
deviations, the present approach was stable, giving
accurate physical results. Also, the method is simple
and represents an extension of the previous used
algorithm,8 incorporating linear and non linear cases.
The same approach can equally be applied to an
integral, differential or eigenvalue inverse problem, for
a general case of the measured property.
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