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Estruturas químicas bidimensionais de uma série de derivados da 2,5-diaminobenzofenona, 
alguns inibidores de farnesiltransferase, correlacionam-se com as respectivas atividades 
antimaláricas. Os descritores nessa análise QSAR são pixels das estruturas químicas (imagens 
bidimensionais) transformados em binários e, portanto, a variação dos dados que explica a 
variância no bloco das bioatividades corresponde às coordenadas de cada pixel do desenho das 
moléculas. Este método, chamado análise multivariada de imagens aplicada ao estudo da relação 
quantitativa entre estrutura e atividade (MIA-QSAR), foi aplicado para modelar as atividades 
antimaláricas dos compostos acima e os resultados foram comparados com técnicas de QSAR 
3D bastante conhecidas. Além da simplicidade e alto poder de predição do modelo MIA-QSAR, 
este método baseado em imagens 2D tem potencial para funcionar bem quando análises clássicas 
igualmente simples falham. Enfim, a presente análise QSAR baseada em desenhos de estruturas 
químicas bidimensionais dispensa uma varredura conformacional e alinhamento tridimensional das 
moléculas para fornecer um modelo QSAR robusto; a descrição físico-química de efeitos estéricos 
e centros estereogênicos, por exemplo, está toda incorporada na maneira com que substituintes são 
representados, e o método serve como uma ferramenta para aqueles que interessem em trabalhar 
com modelagem de fármacos.

Two-dimensional chemical structures of a series of 2,5-diaminobenzophenone derivatives, 
some farnesyltransferase inhibitors, have shown to correlate with the corresponding 
antimalarial activities. The descriptors in this QSAR analysis are pixels of the chemical 
structures (two dimensional images) transformed into binaries and, therefore, the data variance 
explaining the variance in the activities block corresponds to the coordinates of each pixel 
in each molecule. This method, named multivariate image analysis applied to quantitative 
structure-activity relationship (MIA-QSAR), was applied to model the antimalarial activities 
of the titled compounds and the results were compared to well known three-dimensional QSAR 
techniques for the same class of compounds. In addition to the simplicity and high predictive 
performance of the MIA-QSAR modelling, this 2D image-based method has the potential of 
working well when equally simple, classical analysis fails. Overall, the present QSAR analysis 
based on 2D chemical drawings (constrained structures) dispensed conformational screening 
and 3D alignment to provide a reliable QSAR model; the physicochemical description about 
e.g. steric effects and chiral centers is all contained in the way in which substituents in a 
congeneric series are drawn, and the method can serve as a tool to introduce those who are 
planning to deal with drug design.
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Introduction

Malaria is a leading cause of morbidity and mortality 
worldwide, affecting primarily poor populations, 

particularly from countries of the tropical and sub-tropical 
regions of the world, where the temperature and rainfall 
are suitable for the development of the disease. It was 
estimated that approximately 50% of world population 
live in areas where malaria exists, infecting about 300-
500 million people annually and reaping 1-3 million lives 
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every year.1-5 Among the protozoan parasites that cause 
malaria, Plasmodium falciparum causes the most severe 
form, being the most virulent and lethal one, killing more 
than 1 million children in Africa each year.5,6 As a way 
of prophylaxis of this protozoa genus, a novel class of 
antimalarial compounds, derived from farnesyltransferase 
inhibitors, based on a 2,5-diaminobenzophenone scafold, 
was recently developed, showing to be active against 
the multi-drug resistant Plasmodium falciparum strain 
Dd2.7-13 Accordingly, the bioactivities of a series of 
2,5-diaminobenzophenone, have been modelled through 
3D-QSAR analyses, which displayed a considerable 
correlation between structural information and the 
inhibitory activity.14 

Highly predictive 3D-QSAR models have been 
developed, with the CoMFA15 (comparative molecular field 
analysis) and CoMSIA16 (comparative molecular similarity 
indices) being the most widespread and recognized ones.17 
However, the exhaustive alignment and the necessity to 
know the main conformation of the 3D ligands required 
by these models, incite the research to find alternative 
QSAR methods that can generate reliable descriptors. On 
this way, simpler approaches, such as topological sub-
structural molecular design (TOPS-MODE),18 molecular 
electronegativity-interaction vector (MEIV)19 and atom-
pair hologram (APH),20 which have comparable prediction 
power to 3D-QSAR methods, have been developed. 
Among these recently implemented methods, multivariate 
image analysis applied to quantitative structure-activity 
relationships (MIA-QSAR) has provided reliable and rapid 
analysis, without the need for conformational screening 
and 3D alignment, being a promising approximation to 
discover new drugs.21-28

MIA-QSAR method is based on the treatment of 
images (2D chemical structures), where the representative 
variables - the descriptors - are pixels (binaries) loaded from 
such images. The simple alignment of these structures, 
resulting in a three-way array by superposition of congruent 
substructures of the 2D images, makes MIA-QSAR easy to 
operate and requires low investment. In a second step, the 
three-way array can be unfolded to give a two-way array 
(matrix), where rows represent the compounds and columns 
the variables, suitable to apply a convenient regression 
method, usually partial last squares (PLS) regression,29 to 
correlate the descriptors with the Y-block (the dependent 
variables column vector).

Thus, the MIA-QSAR method was applied to a series of 
2,5-diaminobenzophenone derivatives in this work, using 
PLS as the regression method, to search for its predictive 
ability when compared to CoMFA and CoMSIA results 
obtained from the literature.14 

Computational Method

MIA structures are 2D images that can be drawn with 
the help of some chemical structure drawing software. 
Accordingly, the 92 molecules that constitute the data 
set were modelled using the ChemSketch program,30 
which showed to be the most promising software to 
model structures to MIA-QSAR method in a previous 
work.31 Afterwards, each structure was transformed into 
bitmaps in a 690 × 320 pixels workspace using the Paint 
applicative of Windows (resolution of 87 × 87 dots per 
inch) and aligned by a point (pixel) in common to all 
structures, in order to make the substituents the only 
portion that has variance (since the congruent moiety 
to all structures has no data variance in a congeneric 
series), and hence, explains the differences observed in 
the predicted pIC50. The images built in this way were 
read using the Matlab 7.5 software,32 and then loaded 
using this program as binary matrices. Matlab program 
automatically represents each white pixel in these matrices 
as a 765 digit and each black pixel as a 0 digit (according 
to the RGB composition), and so the images (2D plots) 
were grouped and unfolded to a two-way array matrix of 
92 × 220,800 dimension (Figure 1). In order to minimize 
the memory and computational cost, the dimension of 
the X-matrix was reduced to 92 × 6,879 by deletion of 
the variables with zero variance and the compounds were 
split into a training set (74 × 6,879) and a prediction set 
(18 × 6,879) in accordance with reference 14, that were 
finally submitted to PLS analysis, which was carried out 
using the PLS-Toolbox;33 a latent variable-based model is 
indispensible in this case to reduce the data dimensionality. 
Several statistical parameters were used to measure the 
confidence degree of the model; the fitting ability was 
evaluated by inspection of r2 from the calibration, and the 
corresponding regression parameters were used to predict 
the activities of an external validation set, as suggested 
elsewhere.34 In addition, q2 from the leave-one-out cross-
validation (LOO CV), the root-mean-square-error of 
cross-validation (RMSECV) and prediction (RMSEP), 
and a Y-randomization test were determined to reinforce 
the prediction capability of the model.

Results and Discussion 

According to the standard procedure, the compounds 
of Table 1 (chemical structures provided as supplementary 
information, SI) were grouped in a training set consisting of 
74 compounds of the total 92 compounds, and a prediction set, 
which is formed by the remaining 18 compounds. Then, the 
leave-one-out cross validation step was applied on the training 
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set, in order to obtain the number of latent variables that will 
be used in the PLS regression. The minor value of RMSECV 
(0.445) was achieved at 7 latent variables (Figure  2),  
which gave an excellent correlation in calibration between 
the experimental and the fitted pIC50 values by bilinear 
PLS regression method (r2 = 0.91), Table 1, and hence, 
low residuals between them. Also, the model was validated 
through LOO CV, i.e. 74 models were built using the training 
set, where one random compound was omitted at a time and 
its pIC50 value predicted using the model developed with 
the 73 remaining compounds; the q2 obtained of 0.56 was 
comparable to those available in the literature using CoMFA 
and CoMSIA analysis.14

Golbraikh and Tropsha34 state that the only way to 
achieve a reliable QSAR model is by means of an external 
validation. Therefore, the calibration parameters were used 
to predict the bioactivities of 18 prediction set compounds, 
giving a high correlation (r2

test = 0.73) and attesting the 
satisfactory predictive power of the MIA‑QSAR model 
(Figure 3). Additionally, a Y-randomization test, in which 
the Y-block was shuffled while the X-matrix was kept 
unaltered, was performed to guarantee that the good 
calibration result was not due to chance correlation; also, 

the Y-randomization test can provide an estimative of the 
significance of the q2 value obtained in the LOO CV, once 
this robustness test consists in building several models 
which randomly permute the pIC50 values among the 
compounds in study. One hundred models were built in 
this way, giving a very low mean r2

Y-randomization of 0.02 ± 0.04, 
confirming that the real calibration was not fortuitous. 
Additionally, q2

Y-randomization was calculated according to 
procedure described in the literature,35 and a negative value 
(mean of 100 repetitions) of -0.66 ± 0.61 was obtained, 
reinforcing the model′s reliability and that there was no 
chance correlation.

The results were summarized and compared to the 
best CoMFA and CoMSIA models obtained by Xie et 
al.14 in Table 2. These results suggest the MIA-QSAR 
method as a useful tool, as promising as the most refined 
widely applied 3D methodologies, to correlate real 
pIC50 with pIC50 provided by descriptors from modelled 
structures for this series of antimalarial compounds. Also, 

Figure 1. Representative example of the procedure to obtain the X-matrix used in MIA-QSAR.

Figure 2. Plot of RMSEC and RMSECV vs. number of latent variables.

Figure 3. Plot of experimental vs. fitted and predicted pIC50, obtained 
by means of the MIA-QSAR method for a series of 92 antimalarial 
compounds.
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this comparative table makes clear that MIA is at least 
as predictive as these 3D refined methodologies, being, 
therefore, a much less expensive alternative to propose new 

2,5-diaminobenzophenone derivatives, since MIA-QSAR 
showed a r2

test – the most important suggested evaluator 
parameter to measure the prediction ability of a model34 – 

Table 1. Experimental, predicted and cross-validated (LOO) pIC50 values for the series of 2,5-diaminobenzophenone derivatives composing the data set 

Compound pIC50(Exp) pIC50(Pred) pIC50 (LOO CV) Compound pIC50 (Exp) pIC50 (Pred) pIC50 (LOO CV)

1 5.57 5.58 5.65 47 6.17 6.29 6.45

2[a] 5.24 5.60 - 48 7.11 6.91 6.61

3 5.19 5.36 5.69 49 6.59 6.87 7.00

4 4.4 4.67 5.41 50 6.66 6.79 6.73

5 6.00 5.64 5.22 51 7.17 6.79 6.56

6 5.24 5.41 5.68 52 6.77 6.81 6.91

7 5.26 5.52 5.73 53 6.25 6.60 6.97

8 5.49 5.16 5.08 54 6.55 6.63 6.54

9[a] 5.26 5.14 - 55[a] 6.25 6.48 -

10 4.37 4.40 5.46 56 7.43 7.07 6.77

11 5.85 5.19 4.90 57 7.22 7.17 6.88

12 5.89 5.96 5.95 58 6.7 6.89 7.10

13 5.92 5.77 5.70 59 5.52 5.61 5.75

14 5.92 5.82 5.69 60[a] 5.6 5.58 -

15 5.52 5.74 5.91 61 5.6 5.45 5.69

16 6.07 5.94 5.77 62 6.11 6.19 6.20

17 5.96 5.85 5.64 63 6.57 6.79 6.71

18 6.47 6.53 6.34 64[a] 6.49 6.95 -

19 5.05 4.92 4.90 65 6.82 6.82 6.59

20[a] 5.47 5.50 - 66 6.19 6.10 6.12

21 5.6 6.10 6.18 67 6.64 7.06 7.05

22[a] 5.89 6.56 - 68[a] 7.19 7.14 -

23 5.62 5.86 6.06 69 7.15 7.25 7.07

24 6.46 6.31 6.00 70[a] 6.00 6.61 -

25 6.51 6.36 6.08 71 7.33 7.15 6.84

26 6.00 5.72 5.87 72 6.00 6.35 6.61

27 6.92 6.79 6.29 73 5.85 6.24 7.01

28 4.62 4.76 5.41 74 6.60 6.55 6.38

29 4.64 4.57 5.55 75 6.68 6.76 6.58

30[a] 6.38 6.52 - 76 6.00 5.65 5.57

31 6.00 6.13 6.74 77 5.26 5.17 6.30

32 6.70 6.65 6.65 78 6.51 6.40 6.38

33 6.92 6.89 6.85 79 5.48 5.71 6.21

34 7.06 6.96 6.88 80[a] 5.89 6.33 -

35 7.07 6.98 6.88 81 6.36 6.27 6.18

36a 6.52 6.83 - 82[a] 7.21 6.89 -

37 6.89 6.91 6.89 83 6.2 6.17 6.16

38 6.52 6.41 6.51 84 5.96 6.05 6.38

39 6.12 6.19 6.72 85 6.36 6.32 6.26

40 6.68 6.77 6.83 86[a] 6.89 6.38 -

41[a] 7.08 6.83 - 87 6.77 6.46 6.31

42 6.49 6.48 6.60 88[a] 5.85 5.83 -

43 6.84 6.78 6.59 89 6.05 6.10 6.33

44 6.9 6.83 6.72 90[a] 5.92 6.29 -

45 7.12 6.77 6.53 91 6.38 6.14 6.03

46[a] 6.23 6.55 - 92 6.24 6.33 6.53
[a] Prediction set compounds.
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superior to all models available in the literature for this 
series of compounds,14 constructed by means of CoMFA 
and CoMSIA. 

	

Conclusions

MIA-QSAR modelling, a simple 2D image-based 
method, has shown to be a useful tool to predict activities 
of new congeneric 2,5-diaminobenzophenone derivatives, 
providing rapid and reliable analysis, whose results 
compare well to widespread used 3D-QSAR methods. 
Its limitation lies on the fact that MIA-QSAR is not 
able to give information about which chemical property 
(hydrophobicity, polarity, etc.) is responsible for positive or 
negative effect on the bioactivity in a 3D space; obviously, 
this is not possible because MIA-QSAR is not a 3D-based 
method. Nevertheless, MIA-QSAR methodology can serve 
as a tool to introduce those who are planning to deal with 
drug design, e.g. by predicting the bioactivities of new drug 
candidates, which are combinations of substructures of 
the most active compounds of a training set. Furthermore, 
this work is a reflection about the necessity of considering 
tridimensional structures to obtain predictive, reliable 
QSAR models; for example, a remaining question is: would 
the use of non-optimized, planar chemical structures bring 
worse modelling results than the ones usually obtained 
by means of e.g. CoMFA? The fact is that MIA-QSAR 
has proved that 2D chemical structures allow good 
correlation with bioactivities or other physicochemical 
parameters. Moreover, the MIA-QSAR method provides 
chemical information, since depending on the way in 
which substituent groups are drawn, they can encode steric 
effects (groups containing pixels occupying a large area 
in the workspace), stereogenic centers (hashed or wedged 
lines representing back or front bond relative to a chiral 
carbon), etc.

Supplementary Information

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br, as PDF file.
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Table S1. Structures of data set, and experimental, predicted and cross-validated (LOO) pIC50 for the series of 2,5-diaminobenzophenone derivatives

Compound Structure pIC50(Exp) pIC50(Pred) pIC50 (LOO CV)

1
HN

O

NH

O

CH3

O
5.57 5.58 5.65

Compound
HN

O

NH

O

CH3

OR

R

pIC50(Exp) pIC50(Pred) pIC50 (LOO CV)

2[a] –H 5.24 5.60 -

3 –NO2 5.19 5.36 5.69

4 –CHO 4.4 4.67 5.41

5 –COOCH3 6.00 5.64 5.22

6 –CF3 5.24 5.41 5.68

7 –Cl 5.26 5.52 5.73

8 –Br 5.49 5.16 5.08

9[a] –NH2 5.26 5.14 -

10 –CH=C(CN)2 4.37 4.40 5.46

11 –CH3 5.85 5.19 4.90

12 –O–CH3 5.89 5.96 5.95

13 –CH2–CH3 5.92 5.77 5.70

14 –CH(CH3)2 5.92 5.82 5.69

15 –C(CH3)3 5.52 5.74 5.91

16 –O–CH2–CH3 6.07 5.94 5.77

17 –O–(CH2)3–CH3 5.96 5.85 5.64

18 –O–(CH2)2–CH3 6.47 6.53 6.34



2D Chemical Drawings Correlate to Bioactivities J. Braz. Chem. Soc.S2

Compound

Structure

HN

O

NH

O

OO

H3C

R

R

pIC50(Exp) pIC50(Pred) pIC50 (LOO CV)

19 5.05 4.92 4.90

20[a] 5.47 5.50 -

21 5.6 6.10 6.18

22[a]

O

5.89 6.56 -

23 5.62 5.86 6.06

24

Cl

6.46 6.31 6.00

25

Br

6.51 6.36 6.08

26

Br

6.00 5.72 5.87

27

CF3

6.92 6.79 6.29

28 4.62 4.76 5.41

29

O

4.64 4.57 5.55
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Compound

Structure

HN

O

NH

O

O

CH3

OR

R

pIC50(Exp) pIC50(Pred) pIC50 (LOO CV)

30[a] 6.38 6.52 -

31 6.00 6.13 6.74

32 6.70 6.65 6.65

33 6.92 6.89 6.85

34 7.06 6.96 6.88

35 7.07 6.98 6.88

36[a] 6.52 6.83 -

37

O

6.89 6.91 6.89

38

O

6.52 6.41 6.51

39

O

6.12 6.19 6.72

40

O
CF3

6.68 6.77 6.83

41[a]

S

7.08 6.83 -

42

F

6.49 6.48 6.60

43

Cl

6.84 6.78 6.59
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44

Br

6.9 6.83 6.72

45

NO2

7.12 6.77 6.53

46[a]

NO2

6.23 6.55 -

47

NO2

6.17 6.29 6.45

48

CF3

7.11 6.91 6.61

49

NH2

6.59 6.87 7.00

50

CN

6.66 6.79 6.73

51

O

7.17 6.79 6.56

52

O

O 6.77 6.81 6.91

53

O

NH2 6.25 6.60 6.97

54

H
N H

O
6.55 6.63 6.54

55[a]

H
N

O
6.25 6.48 -

56
S

O

O
7.43 7.07 6.77

57
S

O

O
7.22 7.17 6.88

58
S

NH2

O

O
6.7 6.89 7.10
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Compound

Structures 

HN

O

NH

O

O

O

O2N R

R

pIC50(Exp) pIC50(Pred) pIC50 (LOO CV)

59 5.52 5.61 5.75

60[a]

Cl

5.6 5.58 -

61 5.6 5.45 5.69

62 6.11 6.19 6.20

63 6.57 6.79 6.71

64[a]

O

6.49 6.95 -

65 6.82 6.82 6.59

66 6.19 6.10 6.12

67

F

6.64 7.06 7.05

68[a]

Cl

7.19 7.14 -

69

Br

7.15 7.25 7.07

70[a]

Br

6.00 6.61 -

71

CF3

7.33 7.15 6.84
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72

CF3

6.00 6.35 6.61

73

NO2

5.85 6.24 7.01

74 6.60 6.55 6.38

75 6.68 6.76 6.58

76 6.00 5.65 5.57

77 5.26 5.17 6.30

78 6.51 6.40 6.38

79
OH

5.48 5.71 6.21

80[a]

O

5.89 6.33 -

81 6.36 6.27 6.18

82[a]

CF3

7.21 6.89 -

83

CF3

6.2 6.17 6.16

84
F3C

5.96 6.05 6.38

85
F

6.36 6.32 6.26

86[a]

Cl

6.89 6.38 -
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87
Br

6.77 6.46 6.31

88[a]

NO2

5.85 5.83 -

89
NHO

O
6.05 6.10 6.33

90[a]

NH2
5.92 6.29 -

91
NHO

O
6.38 6.14 6.03

92
NH2

6.24 6.33 6.53

[a] Prediction set compounds.


