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In this work, we compared 1.40 T nuclear magnetic resonance (NMR) to 7.05 T (60 and 
300 MHz for proton, respectively), and mid-infrared with attenuated total reflectance (FTIR‑ATR), 
associated with chemometrics methods, for the quantification of the reaction yield during 
esterification of fatty acids with methanol. The results showed that the integrated intensities of the 
ester C=O stretching region, relative to the total C=O stretching region, is useful to quantify the 
fatty acid methyl ester (FAME) concentration. Comparing the results obtained by the different final 
models: NMR (1.40 T and 7.05 T), FTIR-ATR using multivariate partial last squares regression 
(PLS) with orthogonal signal correction (OSC), and univariate ordinary least squares (OLS), the 
NMR of 1.40 T (60 MHz for proton) showed more advantages when compared to a high field 
spectrometer, due to the non-use of cryogenic and solvents and less laborious work for obtaining 
results.
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Introduction

The interest for using alternative fuels has grown in 
the last decade.1 The increasing demand for energy and 
environmental awareness are leading researchers to look 
for new environmentally acceptable renewable resources. 
In this context, the interest for biodiesel has increased a 
lot since it is produced using renewable resources (oils 
and fats from both vegetable and animal sources), it is 
biodegradable, and it can be directly placed on diesel 
engines without any mechanical modifications, due to 
their similar physical chemical properties. Also it does not 
contain sulfur compounds, it releases less particulate matter 
and it is less toxic.2,3

The most common method used to produce biodiesel 
is the transesterification of fats and oils, using a strong 
base as catalyst (like NaOH, KOH or KOCH3). It consists 
in the reaction between triacylglycerides and short chain 
alcohols to produce esters and glycerol. It is a reversible 
process and excess of alcohol is used for moving the 

equilibrium towards the products. However, this process 
needs feedstocks containing low concentrations of free 
fatty acids and water because they react with the basic 
catalysts forming soaps which hinders the purification of 
the biodiesel, increasing the cost of the production.4

An alternative way is the esterification of fatty acids.5,6 
This reaction normally uses homogeneous acid catalysis 
with strong Brønsted acids such as H2SO4 and HCl that are 
corrosive and should be neutralized when the process is 
finished. To overcome this problem, solid Lewis acids can 
be used allowing easy separation and continuous operation 
in reactors.2

The most common method used to monitor the 
reaction yield during the esterification is the determination 
of the amount of fatty acids, usually performed using 
chromatographic methods or titration with alcoholic 
solution of KOH (method described by AOCS Cd 3a‑63).7,8 

Despite being very effective methods for this kind of 
analysis, they have the disadvantage of consuming large 
amounts of organic solvents (chromatography), which calls 
attention due to the environmental problems, and of being 
repetitive and time-consuming (titration).
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Less laborious/time consuming and/or less expensive 
methods have been developed in the last years. Infrared 
spectroscopy (near and mid-infrared) associated with 
multivariate mathematic methods, such as partial least 
squares regression (PLS) and principal component analysis 
(PCA) has already been used.9-12 In order to provide reliable 
results and to assess whether the fitted parameters are in 
accordance with legal requirements, it is necessary to 
evaluate the analytical quality of the multivariate models, 
which can be achieved by the determination of multivariate 
figures of merit (FOM). Among the suggested FOM are: 
linearity, accuracy, sensitivity, selectivity, and limits of 
detection and quantification. Some of these FOM are 
estimated by means of the calculation of the multivariate 
net analyte signal (NAS).13

Another analytical technique is the nuclear magnetic 
resonance (NMR) spectroscopy. As it is a primary method 
of measurement, it can be used for quantification purposes 
and the quantitative method is known as q-NMR.14 In 
contrast to the chromatographic and titration methods, 
that tend to be lengthy procedures, q-NMR is an easy 
and fast technique. If conducted properly it does not 
need an external reference for the absolute quantification 
and it does not need a standard reference of the same 
material.15,16 The NMR spectrum of a solution shows 
all the substances containing the tuned nucleus (e.g. 1H, 
13C, 31P, etc.) that are dissolved in the sample, with peak 
area being directly proportional to the amount of nuclei 
absorbing into that frequency. Nowadays q-NMR is a 
very well established technique in many different areas 
including drugs, peptides, metabolomics, agrochemicals, 
foods, etc.17,18

1H NMR has already been used for identifying vegetable 
oils and determining specific fatty acids in mixtures and 
unsaturated fatty acids mixtures with triacylglycerols 
from the integrated areas of proton peaks.19-23 It has 
also been used for identifying intermediates and for 
quantifying yields of fatty acid methyl esters (FAME) in the 
esterification and transesterification reactions.24-29 Despite 
being a great technique for those purposes, it is not still very 
popular and not applied currently in industry due to the very 
expensive maintenance of a high-field NMR spectrometer, 
including cryogens, and the need of deuterated solvents 
for the analysis.

In this work, we used a 1.40 T NMR spectrometer 
(60 MHz for proton) for the quantification of the reaction 
yield of the esterification reaction of fatty acids to produce 
FAME. The results were compared to that obtained on a 
7.05 T high field spectrometer (300 MHz for proton) and 
also with a Fourier transformed infrared (FTIR) method 
associated with chemometrics analysis.

Experimental

Reagents and chemicals

Refined soybean oil was obtained from Cargill, 
Uberlândia-MG, Brazil. Sodium hydroxide (NaOH), 
alumina (Al2O3), hydrochloric acid (HCl) and methanol 
(MeOH), all analytical grade, were obtained from Vetec, 
Rio de Janeiro-RJ, Brazil, and used as purchased without 
further purification.

Procedure

Fatty acid synthesis
Fatty acid (FA) was prepared using a method previously 

described elsewhere.25 Refined soybean oil was saponified 
with NaOH. The obtained soap was acidified with HCl 
leading to a two phase mixture. FA (upper phase) was 
separated by decantation and was washed 10 times with 
distilled water.

Biodiesel synthesis
Soybean oil was dried under reduced pressure and a 

solution of KOH in methanol was added. The molar ratio of 
the reactants was 6.42:57.5:1 (soybean oil:methanol:KOH). 
The reaction was kept under magnetic stirring under N2 
atmosphere for 2 h at room temperature. When the stirring 
was stopped, two phases were observed. The lower phase 
(glycerol and methanol) was discharged and the upper one 
(FAME) was washed several times with distilled water and 
dried under reduced pressure. FAME was then dissolved 
in CH2Cl2 and anhydrous MgSO4 was added. The mixture 
was kept under stirring for 30 min. Finally, the mixture was 
filtered using a basic alumina column under N2 atmosphere 
and the solvent was removed under reduced pressure. 
The FAME content in the final product was measured 
by high‑performance liquid chromatography (HPLC), 
resulting in a conversion of 98.5%.30

Standard and real samples preparation
21 standard samples were prepared with known 

amounts of fatty acids and FAME (binary mixture, m/m) 
with concentrations in the range of 0-100% in 5% steps, at 
room temperature, using a semi-analytical scale (Mettler, 
± 0.001 g). The acid indexes for all samples were first 
determined by titration (method AOCS Cd 3a-63): 0.3 g 
of the sample was dissolved in a mixture of toluene and 
isopropylic alcohol (1:1, v:v) and then titrated with an 
alcoholic solution of KOH (0.1 M) using phenolphthalein 
as indicator. The titration was performed three times 
for each sample. 61 real samples were prepared by the 
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esterification of FA with methanol in a stainless steel 
autoclave (100 mL) equipped with a magnetic stir bar 
inside and a thermocouple using commercial alumina as 
catalyst.31,32 In order to obtain different reaction yields, the 
reactions were carried out at two different temperatures 
(150 and 180 °C), at different reaction times (5, 10, 15, 
30 and 60 min), different concentrations of catalyst (0.5 
and 1.0 mass%) and different molar ratio of the fatty acids 
and methanol (7:1; 5:1; 3:1; methanol:FA). These samples 
were centrifuged to separate the catalyst and then stored in 
a refrigerator (−22 °C).

Apparatus

NMR instrumentation
1H NMR spectra were acquired in a Varian Mercury Plus 

spectrometer 7.05 T (300 MHz for proton) and in an EFT 
Anasazi 1.40 T spectrometer (60 MHz for proton) at room 
temperature, using a 5 mm internal diameter probe. For the 
7.05 T spectrometer, deuterated chloroform (CDCl3) was 
used as solvent (0.05 mL of sample dissolved in 0.6 mL 
of solvent) and TMS (tetramethylsilane) was used as 
internal reference. For the 1.40 T spectrometer no solvent 
was necessary (volume of sample used = 0.5 mL) and 
TMS was also used as reference. Proton relaxation times 
were measured using the inversion-recovery experiment 
and for both spectrometers 12 scans were acquired using 
a preparation delay d1 = 20 s. For the quantification of 
biodiesel (FAME) the integrated area of the methoxy group 
from FAME was related to the integrated area of the olefinic 
hydrogens of the alkyl chain (assumed as 1.00). The 13C 
satellites areas were included in the peak integrated area 
avoiding the need of carbon-13 decoupling. For NMR 
data, due to the enough resolution and for being a primary 
method, the ordinary least square (OLS) method (univariate 
linear regression) was employed using only the standard 
samples to build the calibration curve. The used software 
was Statistica 7.1 (Statsoft, USA).

FTIR-ATR (attenuated total reflectance) instrumentation
Mid infrared spectra were obtained on a Shimadzu IR 

Prestige-21 (FTIR-8400S) using a horizontal ATR cell at 
room temperature. Each FTIR-ATR spectrum was acquired 
with 32 scans, at 4 cm-1 nominal spectral resolution. 
The multivariate regression (PLS) models for FAME 
quantification using mid infrared spectra were carried out 
by the The Unscrambler X ver. 10.2 (Camo, Norway), while 
the statistical tests and FOM calculations were carried out 
using MATLAB ver. 7.0 (MathWorks, USA). A first attempt 
was made using the standard samples as calibration set and 
validation by full cross validation, afterwards, the FAME 

content of the real samples was estimated and the value 
compared to the reference method.

To verify the applicability of the calibration model, using 
only standard samples, to predict FAME concentration in 
real samples, dummy variables (homogeneity of slopes 
model, standard versus real samples models) were 
employed to test the statistical significance of the deviations 
from the estimated intercept (B0 + D0, where B0 is the 
estimated intercept for standard samples and D0 is the 
deviation of this intercept for the real samples) and slope 
(B1 + D1), where B1 is the estimated slope for standard 
samples and D1 is the deviation of this slope for the real 
samples. If the dummy coefficients (D0 and/or D1) are 
statistically significant, the calibration model using only 
standard samples will predict FAME concentration in real 
samples with systematic errors, in a broad sense, i.e., not 
only bias (D0) but also, for example, underestimation for 
low concentration samples and overestimation for high 
concentration samples (D1 > 0).

Seeking to improve the prediction quality, a new PLS 
model was built using a 60 samples set for calibration, 
including all the standard samples and validated by an 
external set of 22 real samples.

Finally, univariate model (OLS) was adjusted also for 
mid infrared spectra using the area under the 1742 cm-1 
methyl ester C=O stretching band after linear baseline 
correction (two points at 1560 and 1900 cm-1), the area 
was computed in the range 1728-1850 cm-1. The calibration 
curve was obtained using only the standard samples and 
similar to NMR. Dummy variables were utilized to verify 
the homogeneity of intercepts and slopes between the 
standard and real samples set.

The statistical significance of the bias was investigated 
by t-test as described in the ASTM E1655-0033 and the 
root mean square error of calibration (RMSEC) and root 
mean square error of prediction (RMSEP), were compared 
by F-test. These parameters were selected to evaluate 
the models because the first take in account the number 
of latent variables in the degree of freedom calculations 
(conservative) and the second to the effective errors in 
prediction, incorporating the bias. Note that RMSEC and 
RMSEP in this study are related to the FA conversion into 
FAME and, thus, their unit are % of conversion. The final 
models performance comparison was made by Bartlett χ2 
test of the RMSEP.

In order to verify some critical statistical assumptions 
concerning the residual distribution, as recommended by 
ISO,34 besides the graphical evaluation of the residuals of 
the calibration models, a series of statistical tests, with a 
significance level α = 0.05, were performed.33,34 The normal 
distribution of the residuals was verified by the Bera‑Jarque’s 
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test35,36 and non heteroscedasticity by the White’s and 
Breusch‑Pagan’s (Koenker modification) tests.37

Afterwards, the NAS and FOM: linearity, accuracy, 
sensitivity (SEN), selectivity (SEL), inverse of the 
analytical sensitivity (γ-1), limit of detection (LOD) and 
limit of quantification (LOQ) were calculated according to 
Ferré et al.,38 Bro and Andersen13 and Olivieri et al.39 For that, 
the instrumental noise was estimated by the calculation of 
the Euclidean norm of the standard deviation vector from the 
NAS spectra calculated for each X variable (wavelength) in 
regions signal-free of the target analyte. The signal-free region 
was determined by graphical inspection of the regression 
vector. For NMR, the signal free region was determined by 
direct inspection of the spectra (8-10 ppm); and the linearity 
was evaluated graphically by the inspection of the plots of 
residuals versus predicted, and reference values versus the 
predicted values. These evaluations are important to check 
the variance homogeneity (non heteroscedasticity) and also 
to verify if a high order model (i.e. quadratic or cubic) could 
fit better the results (non-linear response).

Results and Discussion

Aluminum oxide showed catalytic activity for 
esterification of fatty acids with methanol in all the reaction 
conditions studied. It is interesting to note the high effect 
of the temperature: better reactions yields were observed at 
180 °C than at 150 °C under similar conditions. The higher 
yield (80%) was obtained at 180 °C and 60 min, using a molar 
ratio of 7:1 (methanol:fatty acid) and 0.5 mass% of catalyst.

It is also important to highlight that the residual 
distribution of all final models described in sequence 
attended the critical statistical assumptions, i.e., the 
residuals are: normally distributed (Bera-Jarque’s test), not 
heteroscedastic (White’s and Breusch-Pagan’s, Koenker 
modification, tests) and independent (Durbin-Watson test), 
as well as all the models were linear.

1H NMR for analyzing esterification yields

The 1H NMR spectrum of soybean oil and biodiesel 
in a 7.05 T spectrometer (Figure 1a) shows peaks related 
to the aliphatic (2.78‑2.67  ppm, multiplet; 2.30  ppm, 
triplet; 2.12‑1.96  ppm, multiplet; 1.68-1.56 ppm, 
multiplet; 1.42‑1.22  ppm, multiplet; 0.98 ppm triplet; 
and 0.92‑0.84  ppm, multiplet) and olefinic protons 
(5.46‑5.27 ppm, multiplet), all of them part of the alkyl 
chain that does not change with the reaction. Also a peak 
at 3.67 ppm can be observed due to the methoxy group. 
The chemical shifts of all peaks are in good agreement with 
those already published.24,25 Figure 1b shows the spectrum 

of the same sample in a 1.40 T spectrometer. It can be seen 
that despite the worse resolution and overlapping peaks 
when comparing to the 7.05 T, as it is expected for a lower 
field spectrometer, the regions of interest (methoxy group at 
3.67 ppm and olefinic hydrogens) can be easily integrated, 
since they do not overlap with any other peak. It is worth 
to note that acid proton of the carboxylic group can only 
be detected in the 1.40 T at 11.5 ppm (not shown). This 
peak is not observed in the 7.05 T spectrometer due to the 
use of the solvent.

The regression results (Table S1, Supplementary 
Information) showed that for NMR, at 7.05 T as well as 
at 1.40 T, only the slopes (B1) were statistically significant 
and equal to one (95% confidence limits). This is expected 
since NMR is a primary method. The non-significance of 
the dummy variables (D0 and D1) indicates that the model 
obtained using standard samples can be used to estimate 
the FAME content of the real samples. Additionally, since 
these standard samples were obtained with known amounts 
of FAME and the parameters of both the calibration curves: 
(i)  estimated for known concentrations and; (ii)  titrated 
FAME concentrations, were statistically equal, the time and 
reagent consuming reference method (titration) to build a 
suitable calibration curve is unnecessary. Thus it is enough 
to only prepare reference samples and build the calibration 
curve using the known concentrations (Figure 2) This is in 
agreement with the green chemistry concepts.

The use of FTIR for analyzing esterification yields

The FTIR spectra of FAME (Figure 3) show significant 
absorptions. Comparing them, the major difference is 
observed at 1750-1735 cm-1 region, due to two absorptions: 
at 1710 cm-1 (fatty acids) and at 1740 cm-1 (methyl esters). 
Increasing the amount of methyl esters in the mixture, a 

Figure 1. 1H NMR spectra of a standard sample with 50% of FAME; (a) 
7.05 T spectrometer; (b) 1.40 T spectrometer.
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more intense peak at 1200 cm-1 related to the asymmetrical 
stretching of C(=O)–O–CH3 and a weaker peak in the 
region of 1000-850 cm-1 related to the out-of-plane O–H 
deformation can be observed.

The obtained model, using only the standard samples, 
was not prone to obtain models suitable to estimate 
the FAME concentration in real samples since, despite 
several data transformation, such as derivative, standard 
normal variate, extended multiplicative scatter correction, 
etc., the regression coefficients of the dummy variables 
were statistically significant (Table S1, Supplementary 
Information). In other words, the adjusted model 
systematically overestimated the FAME concentration 

(significant bias), probably because in the real samples 
other compounds, with vibrational bands in similar regions 
of the modeled FAME, could absorb in the same spectral 
region and result in a “false” FAME signal.

To overcome this problem, several real randomly 
selected samples were added in the calibration set. In this 
way, the calibration set was formed by 21 standard samples 
plus 39 real samples. The remaining 22 real samples were 
used as external validation set.

Using the full spectra (4000-600 cm-1) the best model 
was obtained after linear baseline correction; however, the 
minimum validation error was obtained with two latent 
variables. For the present case, the expected, and wanted, 

Figure 2. Calibration curve obtained with standard samples and known concentrations, and predicted FAME concentration of real samples. Integrated 
intensities obtained from: (a) 7.05 T spectrometer, with R2 = 0.9991, RMSEP = 1.0332; (b) 1.40 T spectrometer, with R2 = 0.9995, RMSEP = 1.2401.

Figure 3. FTIR-ATR spectra: (a) FAME; (b) standard sample with 70% of FAME; (c) fatty acids. The insert is the zoom of C=O stretching region of (b) 
spectrum used to area determination.
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should be that one latent variable was just enough for a 
good adjustment, because the target analyte was a relatively 
simple compound and with a spectrum approximately 
unique. In fact the second latent variable was just necessary 
to linearize the model in the full studied range, because 
for larger concentrations of FAME (above 75%) the 
model overestimated the concentrations, with mistakes 
successively larger (data not shown), that means the model 
did not present a linear answer in the whole studied range 
of concentration, even though the inclusion of the second 
latent variable corrected this, resulting in excellent models 
(Table S1, Supplementary Information).

The use of only the C=O stretching region 
(1830‑1600 cm‑1), after offset correction, resulted in models 
with larger errors at low FAME concentrations, resulting in 
residues with heteroscedastic. Simple transformations of 
predict variable y (FAME concentration), such as log and 
square root, were not enough to overcome that problem, 
even though the inclusion of a second latent variable solved 
it (data not showed).

The orthogonal signal correction (OSC) of the full 
spectra, with 1 principal component, was able to linearize 
the model with just one latent variable resulting in a 
more parsimonious model (Figure S1, Supplementary 
Information).

The RMSEC and RMSEP are low and statistically 
equivalent (F-test), showing that the OSC transformation 
of new spectra, using the OSC model estimated for 
the calibration samples set was able to provide good 
predictions.39

According to what was expected, due to the transformation 
properties (filtering out signal orthogonal to y), this model 
presented an excellent selectivity (the maximum value is 1), 
that is to say, about 96% of the OSC transformed signal was 
orthogonal to the interferents (non-overlapping) and carries 
the analyte only information modeled.39-41

PLS regression coefficients interpretation

It is very current in the literature just to do a “blind” 
modeling without a critical interpretation of what is 
being modeled; without a proper interpretation of the 
variable relationship, looking for a desirable cause-effect 
relationship. Rare are the cases that the authors present 
and discuss the loadings or regression coefficients.42 Citing 
Kjeldahl and Bro:43 “…we looked at a number of commonly 
occurring mistakes in the use of chemometrics. Generally, 
the problems often appear to be a result of a combination 
of misunderstandings and noncritical push-the-button 
analysis. What often happens is that the software readily 
throws plots and diagnostics in the face of the user, and 

the inexperienced user is inclined to apply these rather 
uncritically. Using well-known, widely used diagnostics 
seems safer and more ‘correct’ than sound reasoning, 
although the latter is often preferable. The only way to go 
is to take responsibility: decide what is relevant by support 
of biological/chemical knowledge and sound reasoning 
and always keep the purpose of the modeling in focus!”.

Taking this in account, besides the conventional 
diagnostic tools, a careful interpretation of the regression 
coefficients vector was carried out, similar to the approach 
proposed by Bro and Andersen13 for the NAS vector, i.e., 
focusing in its usefulness as a toll to characterize a specific 
analyzing system. This is helpful to identify spectral signals 
attributable to the analyte and also to detect potential 
spurious correlations. This analysis assures the obtaining 
of reliable models, since the modeled signal have direct 
relationship with the analyte concentration.

The PLS regression coefficients obtained for the models 
that used the full mid infrared spectra (4000‑600  cm-1), 
were very similar (Figure 4), in spite of the different 
pre-processing. Besides, as expected, the PLS regression 
coefficients were typically bipolar, being characterized by 
positive coefficients for typical bands of the FAME (bands 
centered at 1180 and 1740 cm-1) and negative for typical 
signals of the fatty acids (930, 1410 and 1710 cm-1). The 
PLS model adjusted using only the C=O stretching region, 
for its turn, presented PLS regression coefficients positive 
for the C=O stretching of the ester acyl group (1740 cm-1) 
and negative for those of the fatty acids carboxyl groups 
(1710 cm-1). These results confirm the cause-effect 
relationship among the different concentrations of FAME, 
in detriment of the fatty acids, and the respective vibrational 
infrared bands.

Univariate model

Nowadays, with the availability of excellent chemometric 
software, it is very tempting just use multivariate tools to 
analyze the results. However in the same situations, the 
simplest univariate model could be able to satisfactorily 
modeling the data. To verify this, the OLS method is 
employed to build a regression model (calibration curve), in 
a similar way that was done for NMR data. For this, the C=O 
stretching region was selected and the baseline corrected 
(two points: 1900 and 1560 cm-1) and the area under the 
ester C=O stretching band (1900‑1728 cm-1) was calculated 
(Figure 3). This area was used as predictor  (x) variable. 
For the mid infrared case, the intercept was statistically 
significant and the slope significant and larger than one (Table 
S1, Supplementary Information, and Figure 5). This is due to 
the fact that infrared is not a primary method. However the 
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proportionality concentration vs. signal intensity (Lambert-
Beer law) is maintained. On the other hand, similar to NMR, 
the categorical variables were not significant, and then it is 
possible to build a useful calibration model using just the 
standard samples with their known concentrations, showing 
the superiority of the simpler univariate model compared to 
the PLS-model.

Comparing 1H NMR and FTIR for analyzing esterification 
yields

In order to compare the results obtained by the different 
final models: 1H NMR of 1.40 T and 7.05 T (Titrated and 
Known); IR multivariate (PLS with OSC) and univariate 
(OLS: titrated and known) the estimated RMSEP was 

evaluated by Bartlett χ2 test. The value of Bartlett statistic 
(Table S1, Supplementary Information) indicates that 
there are differences between two or more variances. The 
RMSEP of NMR at 7.05 T (titrated and known) models 
were significantly highest at p < 5%. This highest expected 
errors in future predictions probably is due to the additional 
analytical step (the sample dilution) when NMR at 7.05 T 
was employed, which may result in more additive errors 
in this method.44

Concerning the inverse of analytical sensitivity 
(Table  S1, Supplementary Information), that is the 
minimum concentration difference, statistically discernible, 
all models presented extremely low values, very inferior to 
the smallest experimental differences, the same happening 
for limits of detection and quantification. This demonstrates 
the suitability of the proposed methodology.41

Conclusions

The direct inspection of the adjusted parameters, as 
is current in the literature, could result in type I errors 
(incorrect rejection of a true null hypothesis) and the 
available statistical test can avoid this. However, for the 
correct use of these tests, several residual assumptions 
must be checked, especially the ones more sensitive for 
each test (test robustness). On the other hand, when these 
assumptions are fulfilled (or a robust test is used), there is 
a higher confidence in the model evaluation.

The use of categorical variables (dummy variables) 
enabled, with statistical confidence, the conclusion that, 
for some models, including seemingly “worst” models 

Figure 4. Regression coefficients for FAME calibration obtained from full FTIR-ATR spectra after orthogonal signal correction.

Figure 5. Calibration curve (R2 = 0.9994 and RMSEP = 1.1061) obtained 
with standard samples and predicted FAME concentration of real samples. 
The abscissa values are the integrated ester C=O stretching band.
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(e.g. higher, but not statistically significant, RMSEC and 
RMSEP) the use of time and reagent consuming titration 
method is unnecessary, that is in accordance with the green 
chemistry concepts.

It was demonstrated that 1H NMR and IR with OLS 
adjustment (univariate modeling) can be used to quantify 
the yield of esterification reaction of fatty acids and 
methanol, in general with an equivalent performance 
that the multivariate ones. However, in OLS it is possible 
build the models using just the standard samples with their 
known FAME concentration. The results showed that the 
integrated intensities of the ester C=O stretching region, 
relative to the total C=O stretching region, is useful to 
quantify the FAME concentration. For NMR, the peak 
around 5.46 ppm (olefinic protons) related to the methoxy 
group of the biodiesel in 3.60 ppm can be used as a primary 
quantification method and that the lower field (1.40 T) 
is still better than higher field (7.05 T), probably due to 
less preparative method (without dilution). Additional 
advantage of using an equipment of 1.40 T is the lower cost 
of the analysis, no need of solvents and cryogenics, such 
as the case of a superconducting magnet, and it could be 
applied in routine analysis in industry for quality control. 

Supplementary Information

Supplementary information is available free of charge 
at http://jbcs.sbq.org.br as PDF file.
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