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Abstract

The acoupa weakfish (Cynoscion acoupa - Sciaenidae) is a marine species of croaker with estuarine-dependent be-
havior, found in the western Atlantic from Panama to Argentina. It is one of the most exploited food fish on the north-
ern coast of Brazil. In this study, DNA sequences were determined from the entire control region (D-loop) of the
mitochondrial genome of 297 individuals collected during seven different months between December 2003 and Au-
gust 2005 on the northern coast of Brazil (Amapá and Pará). Genetic variability expressed by haplotype (h = 0,892)
and nucleotide (π = 0,003) diversities were low compared to other heavily exploited marine fish species from the
western Atlantic and eastern Asia. AMOVA depicted a lack of genetic structuring among the samples from different
years, indicating the presence of a single stock of C. acoupa within the sample area. The possible reasons for the low
levels of genetic diversity are discussed. These results demonstrate a need for the monitoring of C. acoupa harvest-
ing and the preservation of the estuaries within its geographic range, considering that this large fish depends on
estuarine ecosystems during part of its life cycle.
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The Sciaenidae family encompasses 70 genera and

270 species of mainly marine and estuarine fish, distributed

throughout the tropical areas of the Atlantic, Indian and Pa-

cific oceans (Trewavas, 1977; Nelson, 1994). Cynoscion,

one of the most important sciaenid genera in commercial

terms, is represented by eight species on the Atlantic coast

of South America (Chao, 1978). One of the most prominent

local sciaenids is the acoupa weakfish, Cynoscion acoupa,

which is known in Brazil as the pescada amarela or yellow

fish, a demersal marine species dependent on estuarine eco-

systems to complete its life cycle (Barletta-Bergan et al.,

2002). This species, which can reach a body length of

170 cm, is amply distributed between Panama and Argen-

tina (Menezes and Figueiredo, 1980; Cervigón et al.,

1993), and is a very important fishery resource throughout

its distribution. Fundação PROZEE (2006) reports that an

average of almost 20 thousands of tons of Cynoscion

acoupa were landed annually in the ports of Pará and

Amapá between 2000 and 2005. The most productive year

was 2000 (22.8 thousand tons), whereas catches declined

by more than a third between 2003 and 2005 (21.8, 17.5 and

15.0 thousand tons, respectively), although the possible de-

terminants of this pattern remain unclear.

Despite the commercial importance of C. acoupa, the

population-level genetic variability of the species is un-

known. In the present study, we used DNA sequences of the

mitochondrial D-loop region to characterize the genetic di-

versity of the C. acoupa stock from northern Brazil - the

Amazon coast - using samples collected over a three year

period (2003 to 2005). We hope that the parameters pro-

vided by this screening will subsidize further genetic analy-

ses and eventual management plans for the species at a

regional level.

A total of 297 adult specimens of C. acoupa were ob-

tained from the fish market at Bragança, in the Brazilian

state of Pará, in December 2003 (n = 23), April (n = 14) and

May (n = 400), 2004, and in April, June, July and August of

2005 (n = 19, 50, 41, and 108, respectively). Bragança is the

third largest fishing port in Pará, and receives catches pri-
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marily from the fishing grounds of the states of Amapá and

Pará, which straddle the Amazon estuary.

Total DNA was isolated from muscle tissue using

the conventional phenol-chloroform protocol of Sam-

brook et al., (1989). The following D-loop flanking prim-

ers were designed for this species: L1 5’-CCTAACTC

CCAAAGCTAGGTATTC-3’ and H2 5’ CCGGCAGC

TCTTAGCTTTAACTA - 3’. The Polymerase Chain Re-

action (PCR) was carried out in a 25 μL reaction contain-

ing 4 μL of DNTP (1.25 mM), 2.5 μL of buffer (10X),

1 μL of MgCl2 (50 mM), 0.25 μL of each primer

(200 ng/μL), 1-2 μL of total DNA (50-100 ng/μL),

0.25 μL of Taq DNA Polymerase, Invitrogen, USA

(5U/μL), and sterile water to complete the final volume.

The reactions were performed using the following sched-

ule: initial denaturation at 94 °C for 3 min, 35 cycles of de-

naturation at 94 °C at 30 s - annealing at 57 °C per 1 min -

extension at 72 °C for 2 min, and an final extension cycle

at 72 °C for 7 min. The PCR products were purified with

ExoSAP-IT (Amersham Pharmacia Biotech, USA) and

submitted to the sequencing reaction using the Big Dye

kit. Sequences were run in the ABI 377 (Applied

Biosystems, USA), and deposited in GenBank under ac-

cession numbers EU562302-EU562598.

The D-loop sequences were aligned using CLUSTAL

W (Thompson et al., 1994) implemented in BIOEDIT

(Hall, 1999). An unrooted neighbor-joining tree was ob-

tained in PAUP (Swofford, 2003) using the Tamura-Nei al-

gorithm (Tamura and Nei, 1993) as suggested by Modeltest

3.7 (Posada and Crandal, 1998). Bootstrap support for in-

ternal nodes was calculated using 1,000 replicates. Haplo-

type (h) and nucleotide (π) diversities were estimated

according to Nei (1987), using DNAsp 4.1 (Rozas et al.,

2003). The variation among populations in different years

was assessed using Analysis of Molecular Variance,

AMOVA (Excoffier et al., 1992), implemented in

ARLEQUIN 3.1 (Excoffier et al., 2005). The demographic

history of C. acoupa was inferred using mismatch distribu-

tion analyses implemented in DNASP (Rozas et al., 2003).

The distribution is usually multimodal in samples drawn

from populations at demographic equilibrium, but it is usu-

ally unimodal in populations following a recent demo-

graphic expansion (Rogers and Harpending, 1992).

Mismatch distribution analyses, under the assumption of

selective neutrality, were also used to evaluate possible his-

torical events of population growth and decline (Rogers

and Harpending, 1992). Theoretical distributions under the

assumption of constant population size and the sudden ex-

pansion model were compared to the observed data. The

goodness-of-fit of the observed data to a simulated model

of expansion was tested with the sum of squared deviations

and the raggedness index (Harpending, 1994), Tajima’s D

test (Tajima, 1989) and Fu’s Fs (Fu, 1997) tests. These tests

were compared to the distribution expected under the neu-

tral model as generated by 1,000 simulated re-samplings.

The null hypothesis of neutrality may be rejected when a

population has experienced demographic expansion,

bottlenecking or heterogeneous mutation rate (Tajima,

1996).

The alignment generated in the present study encom-

passes 831 base pairs. Variation along this D-loop fragment

was very low, however, with only 42 variable sites. Of the

variable sites, 28 presented two variants (informative for

parsimony) and 14 were singletons. Interestingly, no vari-

able site was observed with three or more variants, indicat-

ing that most of the D-loop variability in C. acoupa is

relatively recent. Overall, 83 different haplotypes were

identified (Table 1). Fifty-five (66.26%) of these occurred

just once, eleven were shared by only two individuals,

whereas the remaining 14 haplotypes were found in three or

more individuals. Haplotypes 1, 2, 3 and 12 were the only

ones observed in all three years.

Moderate haplotype diversity (h) and very low nucle-

otide diversity (π) was observed in each year, and in the

sample as a whole (Table 2). The AMOVA analysis indi-

cated that there was no variation derived from differences

among years and thus, no longitudinal population structur-

ing. The phylogenetic tree for the whole population (2003-

2005) depicted the 83 haplotypes in an unresolved topology

with no statistical support for any of the internal branches -

a typical star-like topology (Figure 1). The same random

distribution pattern was obtained for each of the years sam-

pled (not shown).

Sequences of the same segment of the mitochondrial

D-loop have been employed in a number of studies to in-

vestigate genetic structuring and demographic history in

populations of overexploited fishes, in which the observed

values of h and π were much higher than those recorded for

C. acoupa in the present study. Seyoum et al.‘s (2000)

study of the sciaenid Sciaenops ocellatus from the Gulf of

Mexico and Atlantic coast of the United States returned

haplotype diversity of 0.98 and nucleotide diversity of

0.030, and the analysis of genetic structure indicated the ex-

istence of at least two distinct populations within the study

area. Higher diversity values were also recorded in three

lutjanid species: Lutjanus campechanus from the Gulf of

Mexico and Florida (Garber et al., 2004) with h = 0.97,

π = 0.018, Lutjanus purpureus from Brazil (Gomes et al.,

2008) at h = 0.99 and π = 0.027, and Lutjanus erythropterus

from eastern Asia (Zhang et al., 2006), with values of

h = 0.99 and π = 0.030. Colossoma macropomum (the

tambaqui), one of the most heavily exploited freshwater

fish in the Amazon basin (Santos et al., 2007) returned val-

ues of h = 0.99 and π = 0.012. In the present study of C.

acoupa, estimates of haplotype diversity were ten to fifteen

percent lower than those recorded in these studies, while

nucleotide diversity was three to ten times lower (Table 2).

In common with these studies, but to a greater degree, most
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of the D-loop haplotypes observed in Brazilian C. acoupa

are unique and recent (singletons).

Indices of neutral evolution (Tajima’s D and Fu’s Fs),

applied to identify evidence of strong selective sweeps or

balancing selection, were both negative and significant in

all subpopulations as well in the population as a whole

(D ≈ -1.8, p = 0.01 - Table 2). Fu’s Fs statistic, which was

devised specifically to detect population expansion and is

more sensitive to the presence of singletons (as in the pres-

ent case), was also highly significant in at least two of the

three subpopulations (Table 1; Fs = -4.507 to -26.23). In

addition, population expansion is indicated by the mis-

match distributions (Figure 2), the low raggedness index,

the star-like shape of the phylogenetic tree, and the ample

distribution of the most common haplotypes. The ragged-

ness index and SSD, and expansion parameters theta and

tau estimated under the expansion model are presented in

Table 2.
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Table 1 - Haplotype (Hap)frequencies in Cynoscion acoupa.

Hap Sequences Number

Hap1 CCGTCCACCCCTTAGTCCATATTTGCGTACGGTAAAATACGC 7

Hap2 ..A..T.................................... 48

Hap3 .....T.................................... 78

Hap4 ...............................A.......... 2

Hap5 .....T....................A...A........... 1

Hap6 .....T............G....................... 3

Hap7 ...C.TG......................T............ 1

Hap8 .....T...T................................ 1

Hap9 .TA..T..T..C.....T..G.....A............... 2

Hap10 .....T....A........C.........T............ 1

Hap11 .....T.........C.......................... 3

Hap12 .....T....A............................... 3

Hap13 .....T.......................T............ 1

Hap14 ..A..T.....C.............................. 2

Hap15 ..A..T........A...........A............... 2

Hap16 .....T.....C.............................. 2

Hap17 .....T........A................A.......... 2

Hap18 ..A..T........A........................... 2

Hap19 .....T.........................A.......... 5

Hap20 ..A..T...........................G........ 1

Hap21 ..A..T........................A......C.... 5

Hap22 ..A..T........A....C...................... 1

Hap23 ..AC.T.................................... 7

Hap24 ..A..T....................A.............A. 1

Hap25 .TA..T..T..C......G.G..................... 2

Hap26 .....T...........................G.....T.. 2

Hap27 .TA..T..T..C......G.G.....A............... 3

Hap28 ...C.TG...A............................... 1

Hap29 ..A..T.....................C.............. 1

Hap30 ..A..T..................................A. 1

Hap31 ..A..T.............C................G..... 1

Hap32 .....T....................A............... 3

Hap33 .....T............................G....... 1

Hap34 ..A..T...........T......A................. 3

Hap35 ...C.TG................................... 5

Hap36 ..A..T..................A................. 1

Hap37 .TA..T..T..C.....T..G.....A........G...... 1

Hap38 ..A..T..........................C......... 1

Hap39 ..A..TG................................... 3

Hap40 ..A..T..T................................. 3

Hap41 .....T........A...........A.............A. 1

Hap42 .TA..T.................................... 1

Hap Sequences Number

Hap43 ..A..T.T.................................. 1

Hap44 .....T..............G.....A....A.......... 1

Hap45 .TA..T..T..C........G..................... 1

Hap46 ..A..T...........................G.G...... 1

Hap47 ......G.......A................A.......... 1

Hap48 .....T.............C..C................... 2

Hap49 .....TG...A..G............A............... 1

Hap50 ......G.......A........................... 1

Hap51 ..AC.T........A........................... 1

Hap52 .T........................................ 1

Hap53 ..A..T.......G............A............... 1

Hap54 ..AC.T..................A................. 1

Hap55 ..A.TT..................................A. 1

Hap56 ..A..T...................T.....A.......... 1

Hap57 ..A..T.............C...................... 3

Hap58 T....T.....C.G............................ 1

Hap59 ..AC...................................... 1

Hap60 .....T...........T.............A.......... 1

Hap61 ..A..T.T.......................A.......... 1

Hap62 .....T....A.....T......................... 1

Hap63 ..A..T........A.......................G... 1

Hap64 .....T...................................A 1

Hap65 ..A..T.T...........................G...... 1

Hap66 .....T..........T......................... 1

Hap67 ..A..T.......G............................ 1

Hap68 .....TG.....AG............................ 1

Hap69 ..AC.TG.................A................. 1

Hap70 .....T........A..T........................ 1

Hap71 .....T........A......G.........A.......... 1

Hap72 ..A..T....................A............... 1

Hap73 ......G.......A........C.................. 1

Hap74 .....T.T......A........................... 1

Hap75 ..A..T........A................A.......... 1

Hap76 .....T........A...G....................... 2

Hap77 ..A..T................C................... 1

Hap78 .....T....A...........C................... 1

Hap79 .TA..T..T..C......G.G.....A...A........... 1

Hap80 .....T......................C............. 1

Hap81 .....T.....C.G............................ 1

Hap82 ..A..T.........................A.......... 1

Hap83 .....T........A....................G...... 1



From our overall results, it seems clear that there is a

single population of acoupa weakfish on the northern coast

of Brazil, with no evidence of genetic structuring. This is an

especially interesting result considering that the area from

which the samples were collected straddles the Amazon es-

tuary, potentially a major freshwater barrier. A single stock

for this area implies that the Amazon plume is not blocking

gene flow between subpopulations of C. acoupa from

Amapá (to the north) and Pará (to the south).

However, it is not easy to identify the factor or factors

responsible for the low levels of genetic diversity found in

the C. acoupa stock. Overexploitation could be one factor

because, despite recent improvements in technology,

catches have declined progressively over the past few

years. Overexploitation is identified by Dulvy et al (2003)

as one of the two main causes of extinction of marine spe-

cies, together with environmental degradation. These au-

thors list more than 50 species of fishes for which over-

exploitation has been identified as the main cause of

dramatic reductions in stocks in recent years. Nevertheless,

only a few studies have related overexploitation conclu-

sively with low levels of genetic diversity in fish popula-

tions. These include the New Zealand snapper Pagrus

auratus (Hauser et al., 2002), the North Sea cod Gadus

morhua (Hutchinson et al., 2003) and the dark blotched

rockfish Sebastes crameri (Gomez-Uchida and Banks,

2006). While drastic reductions in stocks have been re-

ported in a number of the species compared here with C.

acoupa, such as the tambaqui (Colossoma macropomum),

northern red snapper (Lutjanus campechanus) and red

drum (Sciaenops ocellatus), no concomitant reduction in

mtDNA diversity was observed.

If overexploitation is not the main cause of low levels

of genetic diversity in C. acoupa, Dulvy et al. (2003) study

would point to habitat degradation, although this seems un-

likely in the present case, given that the Amazon coastline

is still relatively sparsely populated and undeveloped. What

may be more likely, considering the large number of single-
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Figure 1 - Neighbor-joining tree of mitochondrial D-loop haplotypes in

Cynoscnion acoupa from the northern coast of Brazil. Numbers at nodes

indicate the percentage bootstrap support from 1,000 replicates (values of

less than 50% are not shown).

Figure 2 - Mismatch distribution for D-loop haplotypes in Cynoscion

acoupa from the northern coast of Brazil. The expected frequency is based

on a population growth-decline model (initial theta = 0.96, final theta =

1000, tau = 1.427), determined using the DNASP v4.20.2 program (Rozas

et al., 1993).



tons identified in the present study, the star-like phylogen-

etic tree, and the evidence of rapid population expansion, is

that C. acoupa has passed through a major bottleneck,

which has erased much of its original variability, followed

by a recent process of expansion. A similar explanation has

been offered for the population mtDNA variability pattern

observed in Lutjanus campechanus (Garber et al., 2004)

and Lutjanus erythropterus (Zhang et al., 2006).

In conclusion, the present analysis has revealed that

the C. acoupa population sampled from northern Brazil

represents a single stock that occupies at least 1260 km of

coastline (Amapá = 698 km, Pará = 562 km). This area en-

compasses a number of estuaries other than the Amazon,

which may be important for the reproductive cycle of the

species, and demand attention with regard to its conserva-

tion. In addition, the low levels of genetic variability ob-

served here may compromise the evolutionary plasticity of

this C. acoupa population. These findings indicate an ur-

gent need for the careful monitoring of the harvesting of C.

acoupa in northern Brazil.
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