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Abstract

Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene
expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated
rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral
lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations.
Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrange-
ments were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). How-
ever, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23
rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or ex-
ogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced
damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sen-
sitive assay for assessing genomic instability in individuals exposed to genotoxic stress.
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Introduction

Lymphoid neoplasias are generally characterized by

the presence of chromosomal anomalies, the most promi-

nent of which are those that produce in-frame fusion genes.

These aberrations are important diagnostic tools that can be

used to establish the prognosis of leukemias and lympho-

mas and monitor their progress.

Rearrangements of the Mixed Lineage Leukemia

(MLL) gene generated by reciprocal translocations involv-

ing chromosome band 11q23 are well-known in infants and

adults with acute myeloid leukemia (AML) and acute

lymphoblastic leukemia (ALL), as well as in 85% of sec-

ondary leukemias associated with a history of treatment

with topoisomerase II inhibitors (Adler et al., 1999; Ross,

2000). More than 50 fusion genes involving MLL associ-

ated with a poor prognosis have been identified (Popovic

and Zeleznick-Le, 2005; Slany, 2005). However, despite

the diversity and frequency of MLL translocations, most of

the breakpoints have been mapped within a BamH1-

delimited region known as the break cluster region or BCR

(Sai-Peng and Liu, 2001) between exons 8 and 14 (Nilson

et al., 1996; Schnittger, 1998; Echlin-Bell et al., 2003).

Other aberrations involving MLL in leukemia include in

tandem duplications represented by in-frame repetitions of

exons 2-6 (or 2-8) that can be attributed to homologous re-

combination mediated by Alu repeats (Strout et al., 1998;

Whitman et al., 2001).

Since the development of leukemia and solid tumors

is a multistage process that requires multiple cooperative

mutations, it seems plausible that different mutations, such

as typically found in patients with leukemia or lymphoma,

could arise in normal individuals (Hunger and Cleary,

1998).

The presence of tumor-associated fusion genes in

healthy donors has been described for the translocation

t(14;18) IGH/BCL2 (characteristic of non-Hodgkin lym-

phomas), with variable frequencies (16.2%-55%) among
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populations and a tendency to increase with age (Liu et al.,

1994; Summers et al., 2001; Yasukawa et al., 2001). This

rearrangement has also been described in 43% of blood

samples from patients with non-proliferative malignancies

(Rauzy et al., 1998). Similarly, the translocation t(9;22)

BCR/ABL was primarily detected in peripheral lympho-

cytes of adults and children (Biernaux et al., 1995); Bose et

al. (1998) subsequently confirmed these data by demon-

strating p190 and p210 transcripts in 4 of 11 and 11 of 16 in-

dividuals, respectively. Other markers have also been

detected at low frequencies in normal populations, includ-

ing ETV6/RUNX1 (Eguchi-Ishimae et al., 2001; Brassesco

et al., 2004), t(11;14)(p13;q11) LMO2/TCR and

t(7;14)(q34;q11) TCR/TAL2 (Marculescu et al., 2002) and

t(15;17) PML/RARA, the latter characteristic of promyelo-

cytic leukemia (Quina et al., 2000). The incidence of MLL

duplications in healthy donors is much higher, and are de-

tectable in almost all samples by using sensitive PCR meth-

ods (Bäsecke et al., 2006). Together, these studies indicate

that leukemia and lymphoma-associated translocations can

be generated in normal hematopoietic cells without appar-

ent oncogenic consequences.

Based on these findings, we used an inverse-PCR

strategy to investigate the presence of MLL translocations

in peripheral blood lymphocytes from healthy individuals.

Our results demonstrate the presence of MLL fusions in

these cells, thus indicating that these rearrangements are

not restricted to malignant cells but may also be present in a

subset of normal hematopoietic cells.

Material and Methods

Probands

Blood samples from 100 normal subjects (50 males,

50 females) were analyzed in this study. All of the subjects

were healthy non-smokers 18 to 46 years old (mean � SD =

22.9 � 5.4 years) with no previous history of drug treatment

or chronic use of medicines. A single sample of 10 mL of

peripheral blood was obtained from each individual after

informed consent, and the samples were immediately

coded to ensure the anonymity of the donors. The study was

approved by the local ethics committee of the Clinical Hos-

pital of the Faculty of Medicine (University of São Paulo,

Ribeirão Preto, SP).

Translocation analysis by inverse-PCR

Inverse PCR was done according to Betti et al. (2001)

with few modifications. Three micrograms of DNA was di-

gested with a combination of Sau3AI and XbaI (10 units

each) at 37 °C overnight. The addition of XbaI prevented

amplification of the native MLL gene while allowing the

amplification of translocation products that lacked the XbaI

recognition site. After digestion, the samples were heat-

inactivated at 65 °C for 10 min and then purified with a

Wizard SV Gel and PCR Clean-up System Kit (Promega

Corporation, Madison, WI, USA) to remove residual enzy-

matic activity. Following re-suspension in nuclease-free

water, 0.5 �g of digested DNA was self-ligated in the pres-

ence of 3 units of T4 DNA ligase in a final volume of 20 �L

for 16 h at 16 °C. All of the ligation reactions were termi-

nated by incubation at 65 °C for 10 min. Eight microliters

of ligated DNA was used in each PCR reaction. Nested

primers were used to analyze the cleavage site at exon 12 of

MLL in two 28-cycle reactions at temperatures of 95 °C,

55 °C and 72 °C for 1 min/step.

The following primers were used: foward-1 5’-CTT

TGTTTATACCACTC-3’; reverse-1 5’-TAGGGAATAT

AAAAGAGTGGG-3’; forward-2 5’-TTAGGTCACTTA

GCATGTTCTG-3’ and reverse-2 5’-CAGTTGTAAGGT

CTGGTTTGTC-3’. Strict precautions were taken in each

step to avoid cross-contamination of the samples.

Analysis of translocation DNA sequences

PCR amplicons were separated on 1% agarose gels.

Individual I-PCR products were extracted from the gels

with a GFX PCR DNA and Gel Band Purification kit

(Amersham Biosciences, Buckinhamgshire, UK). The

fragments were then cloned into the pGEM-T cloning vec-

tor (Promega Corporation, Madison, WI, USA), trans-

formed into pMOS Blue Escherichia coli and selected on

LB-agar plates containing ampicillin (50 �g/mL), accord-

ing to the manufacturer’s instructions. Individual trans-

formed colonies were then expanded for 22 h in liquid

culture. Three hundred nanograms of plasmidial DNA was

used as a template for the sequencing reaction with a Big

Dye Terminator Cycle Sequence Ready Reaction kit

(Amersham Biosciences) and the products were analyzed

in an ABI Prism 377 DNA Sequencer (Applied Biosys-

tems, Wellesley, MA, USA). Quality analysis and the re-

moval of vector sequences were done with phredPhrap

software (Ewing et al., 1998; Ewing and Green, 1998). The

resulting DNA sequences were then used to search the Na-

tional Center for Biotechnology Information database with

the Basic Local Alignment Search Tool (BLAST).

Detection of AF4/MLL translocations by RT-PCR

Leukocytes from 22 healthy individuals were sepa-

rated on Hystopaque-1077 (Sigma, St. Louis, MO, USA)

and total RNA was extracted with TRIzol reagent (Gibco,

BRL, USA), according to the manufacturer’s instructions.

After confirming the RNA quality by electrophoresis on a

1% agarose gel, reverse transcription was done using a

High-Capacity cDNA Archive kit (Applied Biosystems,

Foster City, CA, USA). Qualitative RT-PCR for the detec-

tion of translocation t(4;11)(q21;q23) was done according

to the standardized protocol described in the BIOMED-1

Concerted Action Report (Van Dongen et al., 1999) using

the primer sets: MLL-A -CCGCCTCAGCCACCTAC-,

AF4-B -TGTCACTGAGCTGAAGGTCG-, MLL-C -AG

GACCGCCAAGAAAAGA-, AF4-D -CGTTCCTTGCT
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GAGAATTTG- and MLL-E -AAGCCCGTCGAGGAAA

AG-.

Lymphocyte culture

Lymphocytes were cultured using a standard protocol

in which 0.5 mL of peripheral blood was added to 10 mL of

RMPI 1640 medium (Sigma) supplemented with 20% fetal

calf serum, 2% phytohemagglutinin (PHA) and penicil-

lin/streptomycin. The cells were incubated at 37 °C for 72 h

and treated with colchicine (0.56%) for the final 90 min.

Cell harvesting and slide preparation were done using stan-

dard methods. Slides for FISH were stored at -20 °C until

used.

Fluorescence in situ hybridization

FISH was done using the commercially available

probes LSI MLL Break Apart Rearrangement, according to

the manufacturers protocol (Vysis, Downers Grove, IL). The

probe labeled with SpectrumGreen covered a 350 kb portion

centromeric to the MLL gene breakpoint region whereas the

SpectrumOrange-labeled probe covered a 190 kb portion

telomeric to the BCR. The expected signal pattern for a nor-

mal cell nucleus was two green(yellow)orange signals. In

cells with MLL translocations, the green and orange signals

were separated without the yellow intersection. The advan-

tage of this strategy was that it allowed the detection of

translocations regardless of the partner involved. At least

1000 nuclei were analyzed and images were captured with

an Axiovision System (Zeiss, Germany).

Results

Inverse PCR was used to screen the peripheral blood

lymphocytes of normal individuals for MLL translocations.

In this strategy, the translocation region was excised with

restriction enzymes, circularized and amplified using vari-

ous MLL primers. This approach allowed the detection of

any rearrangement involving the cleavage site at exon 12,

which contains putative topoisomerase II recognition se-

quences and is sensitive to DNAse I and some cytotoxic

agents.

Forty-nine of the 100 DNA samples that were

screened contained bands of variable sizes that corre-

sponded to alterations spanning the MLL breakpoint region

(Figure 1). In gel electrophoresis, the putative transloca-

tions resulted in one, two or three amplification products of

300-700 bp (amplification of the germ-line MLL was pre-

vented by treatment with XbaI), which suggested that some

individuals may have more than one MLL translocation.

The individual bands were separated by electrophoresis in

1% agarose gels and cloned into the pGEM-T vector, trans-

formed in E. coli pMOS Blue cells and sequenced. BLAST

analysis of individual amplicons confirmed that these rear-

rangements were unique and specific for MLL rearrange-

ments. Of the 35 clones that were obtained, 66% contained

the translocation t(4;11)(q21;q23), which fuses MLL and

AF4 and occurs mainly in acute lymphoblastic leukemia.

The remaining translocations fused MLL to sequences lo-

cated on chromosomes 1, 2, 9 (7 cases), 12 (2 cases) and 19

(Table 1). Although these chromosomes contain known

MLL partner genes, such as EPS15 (1q32), MLLT11

(1q21), AF9 (9q34), CIP29 (12q13), ELL (19q13) and EEN

(19q13) (Atlas of Genetics and Cytogenetics in Oncology

and Haematology), the partner sequences did not match

with specific chromosome bands. Interestingly, sequence

analysis of the breakpoint junctions revealed short

microhomologies (1-8 bp) suggestive of non-homologous

end joining repair (NHEJ) (Figure 2).

Chromosomal preparations from 49 individuals were

also analyzed using the LSI MLL (Vysis) commercial

probe, which allows the detection of different rearrange-

ments at 11q23. At least 1000 nuclei were analyzed per in-

dividual and the translocation frequencies were found to

vary from zero to 0.3 events/100 cells (mean � SD =

0.04 � 0.06). The specific probes also allowed the detection

of extra signals, with frequencies ranging from zero to 0.79

signals/100 cells (mean � SD = 0.18 � 0.19) (Table 2).

Together, these results raised the question of whether

MLL fusion genes were expressed at a transcriptional level.

Since t(4;11) was the most frequent translocation, RNA

samples from 22 donors were screened for MLL/AF4 tran-

scripts using different primer sets that allowed the detection

of all known fusion transcripts between exon 8 of MLL and

exon 7 of AF4. No t(4;11)(q21;q23) transcripts were de-

tected by RT-PCR in peripheral lymphocytes from healthy

individuals (data not shown).

Discussion

The potential of the MLL gene for recombination

makes it difficult to detect aberrations by classic methods.

Consequently, the detection of MLL translocations is a

challenge because although they have a known 5’ sequence

their 3’ end can be one of a wide variety of translocation

236 MLL rearrangements in healthy individuals

Figure 1 - Representative agarose gel showing PCR amplimers that prob-

ably resulted from translocation events at 11q23 (MLL) in peripheral lym-

phocytes of healthy individuals. M = molecular weight marker �X 174;

W = negative control; Co = control.



partners. The use of inverse PCR eliminates this problem

by amplifying circularized fragments derived from any seg-

ment flanking a known DNA sequence. As shown here,

MLL fusion genes were detected in the peripheral lympho-

cytes of 49 of the 100 normal individuals examined in this

work. The presence of these rearrangements was confirmed

by FISH on interphase nuclei, and showed that 28.5% of the

samples showed signal separation (based on the use of a

specific dual-color “split-signal” DNA probe). The dis-

crepancy between the results obtained with these two meth-

ods probably reflects the difference in their sensitivities:

whereas FISH can detect one positive cell in a thousand,

PCR-based techniques can detect one cell in a million. In-

terestingly, 21 individuals who were negative for rear-

rangements by FISH had extra signals for the MLL gene by

PCR; these extra signals probably represented transloca-

tions with other gene partners.

Direct DNA sequencing of the inverse PCR am-

plicons showed that most of the fusion sequences were

t(4;11)(q21;q23); however, no AF4/MLL transcripts were

detected by RT-PCR (standardized for the study of minimal

residual disease) in 22 RNA samples.

The results of this study show that MLL rearrange-

ments are not restricted to malignant cells but may also oc-

cur in normal hematopoietic cells. As indicated above,

several studies have reported the presence of leukemia-

lymphoma-associated fusion genes (e.g., BCR/ABL1,

IGH/BCL2, TCR�/�) in normal individuals. In tandem par-

tial duplications of MLL have been detected in almost all

bone marrow and peripheral blood samples from healthy
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Table 1 - MLL fusions detected by inverse PCR in peripheral blood lym-

phocytes from healthy individuals.

Control Clone Translocation detected e-value*

Co 5 46 t(4;11) 3e-99; 8e-50

Co 8 47 t(4;11)(q21;q23) 2e-14; 6e-42

Co 11 48 t(9;11) 9e-60; 2e-17

49 t(9;11) 1e-74; 1e-15

Co 18 51 t(4;11)(q21;q23) 0.008

Co 21 52 t(2;11) 8e-04; 8e-04

Co 28 53 t(9;11) 2e-172

Co 30 54 t(4;11)(q21;q23) 3e-14; 8e-98

Co 31 55 t(4;11)(q21;q23) 3e-67;4e-131

55-2 t(9;11) 0.003; 7e-146

Co 33 56 t(4;11)(q21;q23) 3e-58

Co 37 57 t(4;11)(q21;q23) 6e-13; 1e-161

Co 39 59 t(1;11) 5e-37; 1e-114

Co 41 60 t(11;19)(q23;p13) 6e-46; 9e-42

60-2 t(4;11)(q21;q23) 2e-21; 5e-41

Co 43 61 t(4;11)(q21;q23) 6e-23; 4e-58

Co 44 62 t(4;11)(q21;q23) 0.046

Co 49 63 t(4;11)(q21;q23) 5e-38; 2e-145

Co 50 64 t(4;11)(q21;q23) 3e-57

Co 53 66 t(4;11)(q21;q23) 1e-09

Co 54 67 t(4;11)(q21;q23) 1e-12; 2e-14

68 t(4;11)(q21;q23) 2e-16; 7e-35

Co 58 70 t(4;11)(q21;q23) 6e-15; 5e-77

Co 61 72 t(4;11)(q21;q23) 2e-58

73 t(9;11) 2e-04

Co 63 74 t(4;11)(q21;q23) 7e-48

Co 70 75 t(11;12) 5e-37;2e-54

Co 71 115 t(4;11)(q21;q23) 4e-52;1e-24

Co 72 116 t(4;11)(q21;q23) 8e-18

Co 84 117 t(4;11)(q21;q23) 5e-63

Co 97 118 t(9;11) 1e-137; 8e-31

Co 98 119 t(4;11)(q21;q23) 0.057

Co 99 120 t(11;12) 3e-08; 7e-99

Co 113 121 t(9;11) 2e-13

Co 114 122 t(4;11)(q21;q23) 2e-57; 2e-36

(*) value obtained by BLASTn analysis.

Table 2 - Frequencies of MLL rearrangements and extra signals in periph-

eral blood lymphocytes from healthy individuals analyzed by FISH.

Controls Rearrange-

ments per

100 cells

Extra

signals per

100 cells

Controls Rearrange-

ments per

100 cells

Extra

signals per

100 cells

Co-1 0.00 0.30 Co-33 0.00 0.20

Co-2 0.10 0.20 Co-34 0.10 0.30

Co-3 0.10 0.30 Co-35 0.10 0.30

Co-4 0.00 0.20 Co-36 0.00 0.00

Co-5 0.10 0.30 Co-37 0.10 0.00

Co-9 0.09 0.59 Co-38 0.00 0.20

Co-10 0.00 0.79 Co-39 0.20 0.10

Co-11 0.00 0.09 Co-40 0.10 0.10

Co-12 0.00 0.09 Co-41 0.00 0.00

Co-13 0.00 0.49 Co-42 0.10 0.20

Co-14 0.00 0.00 Co-43 0.00 0.00

Co-15 0.00 0.00 Co-44 0.00 0.10

Co-16 0.00 0.49 Co-45 0.00 0.00

Co-17 0.00 0.09 Co-46 0.00 0.40

Co-18 0.30 0.30 Co-48 0.00 0.00

Co-20 0.00 0.39 Co-50 0.00 0.00

Co-21 0.00 0.00 Co-51 0.00 0.00

Co-22 0.00 0.00 Co-52 0.00 0.00

Co-24 0.00 0.00 Co-55 0.00 0.02

Co-26 0.00 0.09 Co-57 0.00 0.10

Co-27 0.00 0.00 Co-59 0.00 0.20

Co-28 0.09 0.19 Co-63 0.10 0.00

Co-30 0.20 0.60 Co-64 0.00 0.20

Co-31 0.00 0.20 Co-65 0.00 0.00

Co-32 0.00 0.60



donors (Schnittger et al., 1998; Bäsecke et al., 2002, 2006),

but there is only one report of translocations involving MLL

in normal individuals. Uckum et al. (1998) used nested

PCR to show that rearrangements involving MLL and the

transcription factor AF4, resulted in the translocation

t(4;11)(q21;q23) in bone marrow samples from fetuses and

normal children, as well as in fetal liver samples.

These findings indicate that such translocations per se

do not define clinically apparent diseases, but rather that

malignant progression appears to depend on additional fac-

tors such as the occurrence of oncogenic secondary alter-

ations. Leukemia-associated gene fusions are generally

believed to occur in utero, before birth. For twins with con-

cordant leukemia and MLL aberrations, the concordance

rate reaches almost 100% (Greaves, 2002) and retrospec-

tive studies have shown the clonality of the rearrangements

(Gale et al., 1997). According to Greaves and Wiemels

(2003), the Knudson model, in addition to the twin concor-

dance data, indicates that for every child with a particular

translocation-positive leukemia, there has to be a greater

number of healthy individuals that harbor the same trans-

location in a silent pre-leukemic clone. Similar studies of

umbilical cord blood samples have shown that the frequen-

cies of ETV6/RUNX1 and RUNX1/ETO, for example, are

100 times higher in neonates than in pediatric leukemia pa-

tients (Mori et al., 2002). These rearrangements may occur

in a high proportion of developing fetuses, but without the

production of functional chimeric proteins; alternatively,

they could originate through inappropriate cellular condi-

tions (Kim-Rouille et al., 1999).

Specific breaks involving the MLL gene can be in-

duced by a variety of stimuli associated with cellular stress

or apoptosis, such as serum starvation or treatment with cy-

tosine arabinoside (Stanulla et al., 1997; Betti et al., 2001;

Vaughan et al., 2005). The activation of some components

of the apoptotic process under these conditions has been

demonstrated (Alam et al., 1999), and cells can recover the

normal phenotype in the absence of phagocytic signals

(Reddien et al., 2001). Based on these considerations, it

seems plausible that MLL rearrangements in normal indi-

viduals could result from exposure to genotoxic agents. The

involvement of epipodophylotoxins in anomalies of this

gene in therapy-related leukemias, and the evidence that

neonatal leukemia originates in utero, have led to the hy-

pothesis that maternal exposure to topoisomerase II inhibi-

tors during pregnancy could be associated with an

increased risk of leukemia (Ross, 2000). Synthetic and nat-

ural flavonoids bind to topoisomerase II to form a cleavable

complex, despite the paradoxical finding that in some cases

these compounds are anticarcinogenic (Greaves, 1997).

Strick et al. (2000) demonstrated that natural flavonols

such as quercetin and fisetin induced the same level of

breaks at 11q23 as did etoposide, whereas luteolin and

genistein were two-fold less effective than this drug and, in

some cases, their combination had a cumulative effect in in-

ducing MLL cleavage.

Epidemiological studies have shown a significant as-

sociation between infant leukemias and maternal exposure

to various chemicals (Shu et al., 1996, 1999; Schuz et al.,

2000; Ma et al., 2002; Mucci et al., 2004). In the specific

case of infant leukemia with MLL gene fusions, a case-

control study identified significant variations in the inges-

tion of herbal medicines, drugs (e.g., Dipyrone), and insec-

ticides (Alexander et al., 2001). A similar study that

238 MLL rearrangements in healthy individuals

Figure 2 - Illustrative MLL translocations detected by inverse PCR in four subjects. Individual breakpoints are flanked by the germ-line MLL sequence

and sequences at chromosome 4. “Break site” refers to the position relative to the MLL gene (GenebankTM accession number Y373585) fused to its part-

ner. Grey boxes indicate short microhomologies between MLL and AF4 (4q21).



focused on maternal diet concluded that the ingestion of

fruits and vegetables during pregnancy usually diminished

the general risk of leukemia, although in the case of AML

MLL(+) exposure to certain natural topoisomerase II inhib-

itors appeared to increase the risk of disease (Spector et al.,

2005).

According to Wiemels et al. (1999), the exposure of

mothers and fetuses to dietary, medicinal and environmen-

tal substances that interact with topoisomerase II can be or-

ders of magnitude lower in terms of dose level than for

drugs used in chemotherapy. However, in some cases, these

compounds are as biologically active as the topoisomerase

II inhibitors used to treat cancer. The most abundant natural

sources of topoisomerase inhibitors in a normal diet are

fruits, vegetables and grains, which are rich in isoflavo-

noids. The antioxidant effect of these substances has been

widely demonstrated (Prior, 2003), although epidemiologi-

cal studies have shown that a high ingestion of isofla-

vonoids does not mean a reduced risk for all types of cancer

(Hertog et al., 1994). In Asian countries, for example, the

ingestion of isoflavonoids can reach 28 mg/day (Fukutake

et al., 1996; Nakamura et al., 2000). The plasma concentra-

tion of these substances after ingestion is relatively high

(Franke et al., 1998; Watanabe et al., 1998) and can persist

for two days. This finding suggests that the repeated inclu-

sion of certain foods in the diet may ensure elevated plasma

levels of these compounds (Hollman et al., 1997; de Vries

et al., 1998).

Wiemels et al. (1999) also suggested that inter-

individual variation in drug metabolism by phase I and

phase II detoxifying enzymes could play an important role

in modulating the response to low doses of topoisomerase

II inhibitors. Thus, for example, the frequency of NQ01

(NAD(P)H: quinone oxido-reductase) low-activity alleles

is 2.5 times lower in patients with AF4/MLL fusions than in

the normal population. Similarly, polymorphisms in

CYP3A4 (which converts epipodophylotoxins into catechol

metabolites) have been associated with an increased risk of

leukemia (Felix et al., 1999). Uncontrolled exposure to cer-

tain substances and their metabolites can also contribute to

gene fusions. Thus, hybrid genes that are present at low fre-

quencies in peripheral blood of normal individuals tend to

be more common in exposed populations, as in the case of

the TCR�/� hybrid gene in agricultural workers exposed to

pesticides (Lipkowitz et al.,1992) and the translocation

t(14;18) in smokers (Bell et al., 1995).

Our study group consisted of healthy non-smokers

with no previous history of drug treatment or chronic use of

medicines. However, the presence of MLL fusions in pe-

ripheral blood lymphocytes of these individuals may have

been related to previous exposures to substances from a va-

riety of sources. Since lymphocytes circulate continuously

they are considered to be more vulnerable to chemical or

physical agents than other cell types (Tucker and Preston,

1996).

Tumor-associated translocations in peripheral lym-

phocytes may be transitory since sequential blood samples

were not always positive for gene fusions, as shown for the

BCR/ABL hybrid gene (Biernaux et al., 1995). Other au-

thors have suggested that such rearrangements may be ex-

pressed in hematopoietic cells that have entered the

apoptotic pathway and have already lost their relevance

(Bose et al., 1998). On the other hand, whereas the genetic

regulation mediated by MLL is important during hema-

topoietic differentiation, the expression of this gene (or of

the fusion products) may be irrelevant in mature cells.

This study is the first to report the presence of MLL

fusion genes at a genomic level in peripheral blood lym-

phocytes of healthy adults. To date, all screenings of leuke-

mia-associated rearrangements have been based on

RT-PCR. The AF4/MLL fusion transcripts were initially

described in normal individuals (Uckum et al., 1998) but

subsequent studies failed to detect any transcription of this

rearrangement (Kim-Rouille et al., 1999; Trka et al., 1999).

In agreement with the latter studies, our results show that

blood cells do not express detectable levels of AF4/MLL

transcripts and there is no a fortiori synthesis of the chime-

ric protein. In addition, sequencing of the PCR products,

which provides breakpoint information, showed that in

most cases the translocations were not in frame, thus

strengthening the hypothesis that they may be tolerated for

years without adverse consequences.

The biological significance of fusion genes and their

respective chimeras in differentiated cells is still uncertain,

and an important question remains about their oncogenic

potential in healthy individuals. Nevertheless, the high pro-

portion of MLL rearrangements in normal individuals sug-

gests that 11q23 anomalies may possibly result from

exposure to endogenous or exogenous DNA-damaging

agents. In practical terms, the high susceptibility of the

MLL gene to chemically-induced damage suggests that

monitoring the aberrations associated with this gene in pe-

ripheral lymphocytes may be a sensitive assay for assessing

genomic instability in individuals exposed to genotoxic

stress.
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