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Abstract

Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic 
diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to 
identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal 
gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). 
Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes 
presented different prognosis when patients belonging to the two expression peaks were compared. The software to 
execute the method and the corresponding documentation are available at the Data access section.
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Introduction
Studies on gene expression and regulation have been 

directed towards a better understanding of a diverse range 
of biological processes, including initial differentiation in 
the embryonic stage and changes in health and disease that 
occur during life. These patterns of gene expression have 
been extensively used to establish associations between 
phenotypes and genetic/epigenetic information (Boyle et al., 
2017; Young et al., 2019). The challenges for such studies 
are significant, however, and the identification of expression 
signatures enriched with genuine phenotypic associations is 
particularly welcome. In that aspect, bimodal gene expression 
is an interesting pattern since their identification capitalizes 
on the availability of genetic and phenotypic data from large 
cohorts of samples and each mode can, in theory, correspond 
to a phenotypic state of the system. 

Few previous studies have searched for bimodality in 
large-scale gene expression data (Bessarabova et al., 2010; 
Mason et al., 2011; Shalek et al., 2013) and causes for such 
bimodality have been discussed, including: i) differential action 
of transcription factors (Ochab-Marcinek and Tabaka; 2010), 
ii) regulation by microRNAs (Bosia et al., 2017; Del Giudice 
et al., 2018); iii) regulation by circular RNA (Hu and Zhou; 

2018) and even iv) stochastic events (Samoilov et al., 2005). 
For an extensive review of the different methods developed 
for detection of bimodality, please see Moody et al. (2019).

The identification of genes with a bimodal expression 
pattern, together with sample stratification, can be used 
to identify important clinical and therapeutic targets in 
different cancer types (Floristan et al., 2020). Furthermore, 
this process can reveal molecular signatures that distinguish 
tumor subtypes, which would contribute to a better clinical 
understanding of the biological characteristics of cancer. To 
be clinically useful, a bimodal pattern must exhibit a clear 
separation between the two groups and have significant sample 
sizes (Han et al., 2013). 

The term “bimodal expression” is related in biology to 
two distinct groups of continuous values of gene expression 
for the same gene. As discussed by Moody et al. (2019), genes 
presenting a bimodal pattern present two modes of expression 
in the same population. Statistically, the set of continuous 
values of lower and higher expression has a more consistent 
definition as a mixture of Gaussian distributions.

Here, a computational protocol was developed to identify, 
in a genome-wide context, genes with bimodal expression 
patterns associated with prognosis in cancer samples. To prove 
the applicability and robustness of our method, we used this 
new tool to identify genes with bimodal expression in 25 tumor 
types whose expression data is available from The Cancer 
Genome Atlas (TCGA). Finally, we made use of the availability 
of clinical data from TCGA to find 96 genes, among the ones 
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with bimodal gene expression, in which patients in the two 
expression peaks showed different prognosis. The software 
to execute the method and the corresponding documentation 
are available at the Data access section.

Material and Methods

Data samples

Expression and clinical data from 25 different tumor 
types were obtained from The Cancer Genome Atlas (TCGA) 
project through the Genomic Data Commons Data Portal. 
Expression data for 24,456 genes were evaluated to identify 
genes with a bimodal distribution, using Fragments by Exon 
Kilobase per Millions of Mapped Fragments (FPKM) values. 
For survival analysis, clinical information was extracted from 
cBioPortal for Cancer Genomics.

Detection of bimodality

The detection of bimodality involves a three-step process,  
configured by seven parameters, listed below:
a)	 minExpression - defines the minimum expression value 

in the analysis. It prevents noise in readings of low 
expression value from influencing the correct detection of 
peaks, particularly at values close to zero. This parameter 
must be appropriate to the type of measurement unit of 
expression to be used. Its default value is 0.02 FPKM;

b)	minSampleSize - defines the minimum sample size in the 
analysis. Datasets with a number of samples smaller 
than this value do not undergo any processing, being 
immediately discarded. Its default value is 50 samples.

c)	 MinClusterSize - defines the minimum size, in relation 
to the total number of samples, that a cluster must 
have to be considered as one of the bimodal clusters. 
This aims to discard groups of relatively small sample 
populations composed of outliers, capable of altering 
the density profile to the point of being mistaken as a 
peak, especially when they occur in the upper tail of 
the distribution. Its default value is 10% of the total 
samples considered.

d)	Threshold Up - defines the minimum difference between 
the points detected as adjacent peaks and valleys on the 
density curve. If the difference between them is less than 
the parameter value, this oscillation in the density graph 
will be disregarded in the detection process. Its default 
value is 10% of the maximum density value.

e)	 Threshold Down - peaks whose density values are below 
this threshold will be discarded. This aims to rule out 
small fluctuations in the expression values that normally 
occur in the upper tail of the distribution, which cause 
the density to fluctuate widely in this region. Its default 
value is 20% of the maximum density value.

f)	 Smoothing factor – this parameter mitigates the variations 
in the derivatives curve to make detection less sensitive. 
Its default value is ‘true’.

g)	useLog – this parameter defines whether the expression 
values will be considered in their original form or 
whether they should be transformed into a base 2 or 
base 10 logarithm before analysis. This helps to improve 

the sensitivity of the algorithm, particularly when the 
range of expression values is quite wide, which causes 
the upper tail of the density curve to flatten, making 
the peak detection process more difficult. An example 
of this difference in the density profile can be seen in 
Figure S1 where the same dataset has its density curve 
plotted with and without the log10 transformation of the 
expression values. Its default value is “none”.
The three steps are:

a)	 Peak detection: 
In this step, the initial screening of candidate genes for 

bimodality is performed using the density derivative. First, 
the density of the expression distribution of each gene is 
calculated using the density function of the R stats package 
R Core Team (2021), with the “nrd0” method to calculate the 
smoothing bandwidth. This method was chosen specifically 
because it is less precise than methods like the Sheater 
Jones bandwidth, guaranteeing only the detection of large 
fluctuations in density.

Next, the first density derivative is calculated, which 
undergoes a smoothing process designed to decrease the 
sensitivity of peak detection. For this purpose, the smooth.
spline function of the R stats package was used (R Core Team, 
2021), with the parameter defined by the smoothing factor. 
Derivative values tending to zero indicate a peak or valley. 
The threshold Up and Down parameters are then applied, 
which will define which peaks are relevant. As a result, this 
process returns the estimated number of peaks, which will 
become variable k in the subsequent step.

b)	Clustering:
A data model that presents a characteristic of bimodality 

can be considered as the overlap of probabilistic models that 
represent two distinct subpopulations. In this way, we can 
consider bimodal distributions as a model of mixing Gaussian 
data (Gaussian Mixture Models - GMM) and use their specific 
algorithms to perform the identification and separation of 
these subpopulations (Titterington et al., 1986).

To perform the classification based on GMM, we used the 
Mclust function of the R mclust package (Scrucca et al., 2016), 
which performs a clustering of data using the expectation 
maximization (EM) technique, performing successive grouping 
operations and comparing groups with a Gaussian distribution 
(Hasselblad, 1966; Gelman et al., 2013). This process can 
either infer the number of clusters expected in the distribution 
or start from a ‘k’ parameter that will designate the number of 
desired clusters. In our case, we already have such information, 
the number of clusters will be equal to the number of peaks, 
estimated in the previous step, plus one. Consequently, the 
algorithm will group the data in k effective clusters, plus an 
additional cluster (k + 1), that will contain all data points with 
low affinity to the main clusters.

This process returns, in addition to the clustering of 
samples in k + 1 clusters, an uncertainty index related to such 
classification. Arbitrarily, only the samples whose reliability 
in the classification received an index higher than 46% are 
maintained. This low rigor in the use of uncertainty values is 
justified because a distribution of expression indexes tends to 
be closer to a Poisson than to a Gaussian (Marioni et al., 2008; 
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Langmead et al., 2010; Wang et al., 2010), and an excessive 
rigor in the use of such reliability would cause large disposal 
of samples. The result of the process is illustrated in Figure S2.  
After discarding clusters smaller than MinClusterSize (m) and 
samples contained in cluster k + 1, the remaining samples are 
passed on to the third phase of the process.

c)	 Peak confirmation
The samples contained in the largest k-m clusters are 

subjected to a new peak detection process, identical to step 1, 
to confirm the initial screening. If the Peak Detection process 
continues to identify a bimodality, as is the case shown in 
Figure S3A, that gene is classified as bimodal. Otherwise, 
the gene is discarded from the bimodal gene pool. Such a 
situation can be seen in Figure S3B, where the bimodality 
existing in the original dataset no longer can be identified 
when the filtered samples are used.

Survival Analysis

To verify if individuals belonging to the two different 
peaks of expression in a bimodal gene presented a significant 
difference in survival curves, we performed an analysis using 
the clinical data from CBioPortal, obtained as indicated above, 
and the Survival package in R (Therneau, 2021).

The samples identified as peak 1 and peak 2 from 554 
genes with bimodal distribution were selected and Kaplan-
Meier curves were evaluated with a significance level of 
5% and 1% using the log-rank test. Kaplan-Meier curves 
were plotted using the ggplot2 package (Wickham, 2016). 
All computacional analysis were done using RStudio IDE.

Data availability

The computational pipeline to execute the method is 
freely available at https://github.com/LabBiosystemUFRN/
Bimodality_Genes.

Results

Development of a method to identify genes with 
bimodality in gene expression data

In our method, described in Figure 1A, the identification 
of gene expression bimodality involves a density function, 
which can be used to analyse the expression values (in 
FPKM) for all human genes in any set of samples. Using a 
computational algorithm in R, the maximum and minimum 
points in the expression density curve of each gene is defined 
by identifying where the values of its derivative curve change 
its value signal (Figure 1B). To avoid possible noises in 
the stratification of samples, data points below 0.02 FPKM 
were excluded. To identify robust distributions concerning 
the difference in bimodality peaks, two thresholds were 
established: (i) a maximum value of 10% of density, used 
specifically to eliminate small ripples in the upper tail of the 
distribution curve, which could indicate irrelevant peaks; 
(ii) a 5% difference between the peak and the density valley, 
guaranteeing significant differences in the bimodality peaks. 
All these parameters are shown in Figure 1B in a schematic 
bimodal distribution of a hypothetical gene. 

After the identification of genes with a bimodal expression  
pattern, we next performed sample stratification to identify 

samples belonging to the first and second peaks. Assuming 
that each peak of the density curve represents the fashion of 
a subpopulation with different expression features, we can 
consider that the distribution of expression values, of genes 
with bimodality characteristics, constitutes a mixture model. 
Therefore, to ensure the reliable selection of samples according 
to the selected bimodal genes, an analysis based on the Gaussian 
Mixture Models (GMM) probabilistic model was introduced 
in our computational protocol. A schematic view of the sample 
stratification step is shown in Figure 1C. Finally, stratified 
samples were submitted to the step of bimodality detection 
again. Only genes that remained with a bimodal pattern after 
sample stratification are listed in our final results.

Identification of bimodal genes using data from  
25 different tumor types from TCGA

To illustrate the use of our method, we have collected all 
gene expression and clinical data from TCGA for the following 
tumors: BLCA, BRCA, CESC, COADREAD, ESCA, GBM, 
HNSC, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, 
OV, PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, 
THCA, THYM, UCEC. These tumor types were selected 
because they have a minimum number of 100 patients in their 
respective cohorts. A total of 554 unique genes was identified 
as having a bimodal pattern for at least one tumor type. Table 1  
shows the numbers of genes identified as bimodal for each 
tumor type (listed at Table S1) and Figure 2 shows the bimodal 
pattern of expression for 25 genes, arbitrarily selected, one 
for each tumor type. 

We found 46 genes showing bimodal expression in more 
than one tumor type (Table 2). The ones most frequently found 
were SLC35E2, EIF1AY and RPS27, which have a bimodal 
pattern in 19, 10 and 10 tumor types, respectively. In this list 
of genes, chromosomal distribution is significantly biased 
toward the Y chromosome (p<10-5), as observed in Table 2. 

Patients in different expression peaks have different 
prognosis

We wondered whether patients belonging to the two 
different peaks of the bimodal distribution would present 
different prognosis, as evaluated by survival curves in a 
Kaplan-Meyer plot. All genes identified as having a bimodal 
distribution (Table 1) were tested. A total of 96 genes were 
identified as having their bimodal pattern significantly (p<0.01) 
associated with prognosis (samples belonging to the first peak 
having either a better or worse prognosis when compared to 
samples belonging to the second peak). If a threshold of p<0.05 
is used, 176 genes are identified as associated with prognosis. 
Figure S4 shows the expression plots, reporting the bimodality, 
for all 96 genes found to have a bimodal expression pattern.

Figure 3 shows the respective Kaplan-Meyer plots for few 
genes that showed significant differences in survival between 
patients belonging to peaks 1 and 2. Figure S5 shows the 
Kaplan-Meyer plot for all 96 genes associated with prognosis.

Discussion
A new genome-wide method is presented to identify 

genes with bimodal patterns of expression using GMM 
analysis (Titterington et al., 1986) for the stratification of 
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Table 1 – Number of genes showing bimodality for each tumor type.

Tumor Bimodal genes Tumor Bimodal genes Tumor Bimodal genes

BLCA 8 LAML 18 SARC 6

BRCA 13 LGG 90 SKCM 14

CESC 14 LIHC 11 STAD 3

COADREAD 22 LUAD 7 TGCT 77

ESCA 8 LUSC 6 THCA 55

GBM 29 OV 5 THYM 181

HNSC 5 PAAD 12 UCEC 11

KIRC 15 PCPG 53

KIRP 11 PRAD 9

Figure 1 – Computational scheme for the identification of genes showing bimodal gene expression patterns. (A) Stages performed to process the data. 
(B) Schematic view of a hypothetical gene with bimodal expression with all important parameters used to define bimodality indicated. (C) Schematic 
view of sample clustering process, which identifies samples belonging to each peak in the bimodal distribution (see main text for details).

samples. GMM has been previously used in the analysis of 
gene expression data (Ficklin et al., 2017; Golumbeanu et 
al., 2019; Mirzal, 2020) but to our knowledge this is the first 
application of such a method for the identification of genes 
with bimodal expression patterns. 

The applicability of the method is shown by using gene 
expression and clinical data for 25 tumor types available from 
TCGA. We identified 554 unique genes with bimodal gene 
expression (Table 1). Forty-six of them were identified as 
bimodal in more than one tumor type. Several of them have 
been reported previously as having a bimodal expression 
pattern. One of them, ERAP2, has been found by Mason et 
al. (2011) to have bimodal gene expression in human skeletal 
muscle. The same report (Mason et al., 2011) found that 
GSTM1 has a bimodal expression pattern in muscle tissue. 
Other genes include RPS27, found by Floristan et al. (2020) to 
have bimodal expression in several tumor types, and USP9AY, 
found to show bimodality in endometrium (Bhat et al., 2019). 
Interestingly, among the 46 genes with bimodality in more 
than one tumor type, 12 are mapped to the Y chromosome 

(p<10-5), an unexpected observation due to the low gene 
density in this chromosome. As reviewed by Lau (2020), some 
genes on the Y chromosome have dosage-sensitive functions, 
which might be related to a bimodal expression pattern. This 
remains to be further explored. 

Ninety six, out of 554 genes with bimodal gene 
expression in all tumor types analyzed here, were identified 
as having differential prognosis when patients belonging 
to the two different modes were compared. Expression 
of several genes identified by us are known predictors of 
clinical outcome in different tumor types including ANXA1 
(Gibbs and Vishwanatha, 2017), FOXJ3 (Ban et al., 2013; 
Ma et al., 2016) and CDC25 (Liu et al., 2019, 2020), among 
many others. However, the great majority of these reports 
only associate overall expression with prognosis. Here, on 
the other hand, we associate the bimodal expression pattern 
with prognosis. To our knowledge, only Floristan et al. 
(2020) have associated the bimodal expression pattern of 
RPS27 with clinical outcome in several tumor types, a gene 
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Figure 2 – Expression plot showing bimodality for a selection of genes. (A) Gene LRRC14 for BLCA; (B) Gene RPS27 for BRCA; (C) Gene SEP2 
for CESC; (D) Gene CHMP7 for COADREAD; (E) Gene ZNF502 for ESCA; (F) Gene GPX8 for GBM; (G) Gene CDH3 for HNSC; (H) Gene UTY 
for KIRC; (I) Gene FUK for KIRP; (J) Gene ADSL for LAML; (K) Gene FOXJ3 for LGG; (L) Gene ALG8 for LIHC; (M) Gene TMLHE for LUAD; 
(N) Gene MTAP for LUSC; (O) Gene RCC2 for OV; (P) Gene CD164 for PAAD; (Q) Gene GMIP for PCPG; (R) Gene XRRA1 for PRAD; (S) Gene 
EI24 for SARC; (T) Gene PPAPDC3 for SKCM; (U) Gene ZNF597 for STAD; (V) Gene PCMTD1 for TGCT; (X) Gene PLCD3 for THCA; (Y) Gene 
ARHGDIB for THYM and (Z) Gene MLH1 for UCEC.
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Table 2 – List of genes showing bimodality for more than one tumor type.

Gene Number Chr Gene Number Chr

RPS27 10 1 TP53 3 17

GSTM1 4 1 PLCD3 2 17

LQK1 3 1 RPS28 4 19

KHDRBS1 2 1 C19orf46 2 19

RPF1 2 1 FKBP1AP1 2 19

SLC35E2 19 1 ZNF304 2 19

C2orf43 2 2 GSTT1 2 22

SPAG16 2 2 ZDHHC15 2 X

MLH1 2 3 AWAT1 2 X

ZNF502 2 3 MAGEA6 2 X

RPL9 4 4 RPS26P11 2 X

ERAP2 3 5 CYorf15A 9 Y

PDCD2 2 6 EIF1AY 10 Y

CHMP7 2 8 DDX3Y 8 Y

MTAP 2 9 UTY 8 Y

CSNK2A1P 2 11 KDM5D 7 Y

XRRA1 2 11 RPS4Y1 7 Y

SCNN1A 3 12 ZFY 8 Y

CEP290 2 12 USP9Y 4 Y

CHFR 2 12 PRKY 3 Y

SNRPN 2 15 TMSB4Y 3 Y

TUBGCP4 2 15 NLGN4Y 2 Y

ZNF597 2 16 TTTY15 3 Y

Figure 3 – Kaplan-Meier plots of representative genes for each tumor type (one gene per tumor, arbitrarily selected). P1 and P2 correspond to the two 
modes of the bimodal distribution. (A) Gene ZNF304 for CESC; (B) Gene ZBTB45 for GBM; (C) Gene XRRA1 for KIRC; (D) Gene DYNC2LI1 for 
KIRP; (E) Gene CDC42 for LGG; (F) Gene KDM5D for LIHC; (G) Gene ANXA1 for THCA; (H) Gene LAIR1 for THYM and (I) Gene HNF1B for UCEC.
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also observed in our data. This makes our analysis the first 
one, to our knowledge, to explore the association between 
the modes of gene expression distribution with prognosis in 
a genome-wide context. 

Several issues should be considered in the interpretation 
of our results. For example, cellular heterogeneity within 
samples in a given cohort is a factor that can generate genes 
with bimodal expression. In our case, this is minimized by 
the fact that TCGA samples are selected for high tumor cell 
content but this issue should be critically considered when more 
heterogeneous cohorts are analyzed. Furthermore, clinical and/
or biological features should be considered when interpreting 
data from our method. For example, in cancer studies one 
should be careful with cohort heterogeneity regarding staging 
and progression, among many other clinical features.

We envisage that our method will be a useful tool 
for the genome-wide identification of genes with bimodal 
pattern of expression. The software to execute the method 
and the corresponding documentation are available at the 
Data access section.
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Table S1 – List of bimodal genes estimated in each tumor.
Figure S1 – Detection of bimodality for the RPS27 gene using 
gene expression data for breast adenocarcinoma (BRCA) from 
TCGA applying (upper graph), or not (lower graph), the log10 
transformation to the data. 
Figure S2 – Clustering of samples in k + 1 clusters. 
Figure S3 – Third phase of the bimodality detection process. 
Figure S4 – Expression plot showing bimodality for all 96 
genes associated with prognosis.
Figure S5 – Survival charts for the 96 genes associated with 
prognosis (p < 0.01) for the 426 following tumor types: KIRC, 
KIRP, LGG, SKCM, THCA and THYM.
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