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Abstract

The study of Euclidean Steiner Trees is one of the alternative methods to unveil Nature’s plans for the internal
architecture of biomacromolecules. Recently, the minimum surface structure of the A-DNA and of the Tobacco
Mosaic Virus was shown to be described by a “strake” surface. These results have been substantiated by an explicit
calculation of the Steiner Ratio Function in a very restrictive modelling scheme. In the present work, we also
introduce the measure of chirality as an essential part of a thermodynamical approach to model biomolecular
structure. In a certain sense, the Steiner Ratio function is constrained by the chirality measure to assume a value
dictated by Nature. This value is a measure of the free energy of the molecular configuration.
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Introduction

Steiner points and Steiner Trees are now considered

an essential recipe for studying internal molecular architec-

ture. The skeleton structure which is a popular device in

biometrical studies (Bookstein, 1978) can be also related to

the consideration of a Steiner Tree if molecular structure is

concerned. This reflects its double essence of geometrical

structure (form) and thermodynamical organization (store

of information) as applied to structural studies of molecular

biology. In the case of biomolecules, the average position

of atoms and the Euclidean distances among them is taken

as the candidate for a minimum spanning tree. However, it

does not carry any information about molecular structure.

This role is played by the minimum Steiner Tree (Gilbert

and Pollak, 1968; Cieslik, 1998) which allows for addi-

tional average position of atoms in order to have a problem

whose solution is also a solution of minimization of poten-

tial energy of the atomic configuration. In The potential En-

ergy Minimization and the Steiner Problem, we show that if

a plausible assumption is made, i.e., the equality of interac-

tion strength of an atom with its nearest neighbors, the po-

tential energy minimization problem is going to be solved

by the length minimization of this extended tree. Alterna-

tive assumptions can lead to the formulation of other prob-

lems, in particular, to the minimization of a sum of integral

powers of the differences of atomic coordinates. These as-

sumptions should be identified from a knowledge of the

special molecular structure. The Steiner Ratio in Euclidean

Space stresses the importance of the ratio of the length of

the Steiner Minimal Tree to the length of the Minimum

Spanning Tree (Smith and MacGregor Smith, 1995; Du and

Smith, 1996) defined in the sets of atoms positions of all

biomolecules with the same number of atoms. This is the

famous Steiner Ratio for this set and we emphasize its im-

portance as an essential parameter in the geometrical and

thermodynamical construction of molecular structure and

its stability. The Steiner Ratio is usually taken as the inter-

nal energy of the configuration. The development of The

Potential Energy Minimization and the Steiner Problem,

characterizes the necessary conditions for this interpreta-

tion. In A Simple Modelling for the Steiner Ratio Function,

we present a formula for the Steiner Ratio, which was ob-

tained by assuming a simple helix pattern for the spanning

tree. The Steiner points are found to belong to another helix

of lesser radius and the same pitch. This is characteristic of

two geodesic curves of the same helicoidal surface (Mon-

daini, 2001, 2002, 2003). We have to stress that the condi-

tion for a Steiner Tree, i.e., the equality among angles

formed at Steiner vertices can be obtained by a more gen-

eral modelling without the introduction of helices (Mon-

daini, 2004). In An Example of Chirality Definition and its

Behavior, we emphasize the introduction of a proposal to

measure chirality. A chirality parameter is then proposed to

be a necessary parameter together with the Steiner Ratio, in

a unified geometrical description of macromolecular struc-
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tures. This corresponds to the introduction of variables

with real physical motivation in a global optimization for-

mulation. The chirality constraint seems to be essential in

the understanding of the dynamics and thermodynamics

of biomolecular structure since a chirality measure is es-

sential in the classification of the diverse stages of this

structure. In this section, we examine two proposals for

geometric chirality which are feasible by our modelling.

Special attention is given to cell-volume proposal which

forms the basis of our Optimization problem of section

The Buried Area and Geometric Chirality as Constraints -

The Optimization Problem. In this section, after introduc-

ing the Optimization problem, we characterize it by the

constraints related to the measures of area and chirality in

molecular configurations. Concluding Remarks is then

the place for some concluding remarks and the analysis of

the possibility of future work.

The Potential Energy Minimization and the
Steiner Problem

The following calculations are based on the fishbone

structure as in Figure 1.

The Steiner Problem is characterized by the p equa-

tions below:

$ $ $
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Each equation in the set (1)-(3) has as a conse-

quence the equality of the angles around a node (Steiner

point).

Let $is be the unit vector in the direction of the sth co-

ordinate axis, we have from Eqs. (1)-(3)
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where p + 2 ≤ j ≤ 2p - 3.

Equations (4)-(6) can be collected in the expression

below
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where theδm

n is the Kronecker index, with p + 1 ≤ m, n ≤ 2p -

2.

From the linear independence of the unit vectors $i1,
$i2 ,..., $is , we can write
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These are 3(p - 2) equations which are enough to

solve the problem of determination of 3(p - 2) coordinates

of the (p - 2) Steiner points.

We should note that Eq. (9) can be also written as
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These equations can be also obtained by direct obser-

vation of the fishbone tree, Figure 1.

We now go back to Figure 1 and we suppose that for

each leaf or node there is an associated “weight” µk, charac-

teristic of the sort of interaction (i.e., electric charges for

electrostatic Coulombian interactions) among the atoms

whose average positions are given by the positions of nodes

and leaves. Let K be the universal interaction constant. By

assuming that the leaves are fixed, we write these potential

energy function for this fishbone configuration
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Figure 1 - The fishbone structure for a Steiner tree with p leaves and p - 2

nodes (Steiner points).
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The positions corresponding to equilibrium are then

given by
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These are 3(p - 2) equations for 3(p - 2) variables and

they are enough to describe an equilibrium solution of the

fishbone configuration. We restrict the search for equilib-

rium to a special tree. This is specified by the equality of the

interaction strengths of each node to their adjacent leaves

and nodes. If we choose the Coulombian interaction as the

only one which is fundamental for this Steiner Tree config-

uration, we have,
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After substituting Eqs. (13) into Eqs. (12), we get
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This last set of equations can be also written as
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The last set of equations is the same set of Eqs. (9),

which was written in the form of Eq. (10). This is enough to

prove the equivalence of the problems posed by Eqs. (5)-(7)

and the problem of potential energy minimization as con-

strained by relations (13).

The Steiner Ratio in Euclidean Space

All the molecular structures which we are considering

are taken as atomic configurations immersed in the

3-dimensional Euclidean space. However, the interpreta-

tion of distances in the internal manifold of the molecule in

terms of other geometries is an open problem. In the present

work, we assume the strict validity of Euclidean geometry

for simplicity. A Steiner Minimal Tree (SMT) is the mini-

mal length network if we allow for additional points

(nodes) to reach the minimum. A full Steiner Tree has

(p - 2) additional points for p given points. Figure 1 above

which was necessary for our calculations, is an example of

a full Steiner Tree. If we do not allow for additional points,

the minimal length network is realized in the Minimal

Spanning Tree (MST). These two problems are completely

different in terms of computational complexity. The former

is linear and the later NP-hard.

Usually the MST length is taken as the “worst cut” in

the set of 2p - 2 points to approximate the length of the min-

imal network. An important concept is that of Steiner Ratio

Function (Mondaini, 2002) which is the ratio of the two

lengths defined above.
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l lSMT MST= ρ (16)

We look for the set of points in which we get the

greatest lower bound for this function. The lowest upper

bound is also important and the present research in 3-

dimensional sets has not given any way of merging the two

bounds as in the 2-dimensional case, with its value of

ρ = 3 2/ (Du and Hwang, 1990). We think this is a charac-

teristic of 3-dimensional space and essential for the struc-

ture of a macrobiomolecule.

Nature has many ways of building possible molecular

structures with the values of their Steiner Ratios filling this

gap. In the following section we shall derive a formula

based on a simple modelling like that of Figure 1.

If we choose a configuration of points which is in-

spired by molecular conformations, i.e., a helical configu-

ration, with points evenly spaced along the helix, the length

of the Steiner minimal tree, or its ratio to the corresponding

minimal spanning tree, is in a sense a measure of the mini-

mum value of potential energy function as was proven in

The Potential Energy Minimization and the Steiner Prob-

lem. The geometrical constraints to be imposed on the for-

mer problem will correspond to thermodynamical

requirements used to define a free energy function and to

test the stability of the molecular conformation to be mod-

elled. We shall develop these ideas in The Buried Area and

Geometric Chirality as Constraints - The Optimization

Problem.

A Simple Modelling for the Steiner Ratio
Function

The characterization of the Steiner Problem in the

form given into Eqs. (5)-(7) has as a consequence the equal-

ity of the angles (2π/3) among the edges forming a node.

This can be written as (Mondaini, 2002)
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Our modelling for the vertices of the spanning tree

was

r
r j j j j pj = ≤ ≤(cos ,sin , ),ω ω α ω 1 (18)

which means a configuration of p points evenly spaced

along a right circular helix of unit radius.

The results of this modelling were expressed by

points evenly spaced along a right circular helix of lesser

radius but with the same pitch value (Mondaini, 2001), or
r
r r k r k k

p k p

k =
+ ≤ ≤ −

( ( , )cos , ( , )sin , ),ω α ω ω α ω α ω
1 2 2

(19)

From Eqs. (17), we can then write for the radius of the

configurations
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ω α αω
ω ω

=
− −2 1 1 2

(20)

The last results are enough to write general formulae

for the length of the spanning and Steiner trees. We then

have the Steiner ratio function for this case ρ(ω, α), as de-

fined in Eq. (16), given by
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where r = r(ω, α) is given by Eq. (19) and λ = λ(ω) is

λ ω= −2 1( cos ) (22)

We have used these results for deriving a new upper

bound for the Steiner Ratio in E3 (Mondaini, 2003). We

now think to use them to propose a definition for measuring

geometric chirality of molecular configurations. In order to

formulate these ideas, we shall analyze the behavior of an

usual definition of chirality in the next section. However,

we can put forth that our problem should be better formu-

lated when we learn how to restrict the representative of

length of the Steiner Tree, i.e., the function ρ(ω, α)

(Figure 2). In our analogy of The Potential Energy

Minimization and the Steiner Problem, this means how to

formulate the problem of potential energy minimization as

a constrained problem. The introduction of useful con-

straints will then be made in a thermodynamic analogy

which completes our construction of a new objective func-

tion in The Buried Area and Geometric Chirality as Con-

straints - The Optimization Problem.
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Figure 2 - The surface ρ(ω, α). There is a curve of maxima represented by

a full line. The global minimum is (π,0).



An Example of Chirality Definition and its
Behavior

According to Kelvin’s definition of chirality, if after

translating and rotating a body, we cannot make it coincide

with its mirror image, we can say that the body and its im-

age are chiral to each other. This definition says just

whether an object is chiral or not. It does not specify how

chiral an object is to its mirror image. The problem of

chirality measure is still an open problem (Gilat, 1994). In

the present work we give two examples and we analyze

their behavior in a geometric and thermodynamical formu-

lation of biomolecular conformation.

Let us consider two helices as representatives of

atomic chains in a macromolecule. We take xz as the mirror

plane. The helices are then mirror images and the corre-

sponding evenly spaced points in them can be written as
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The function S(ω) has a global minimum at x = π. Its

derivative changes from (-) to (+) in this neighborhood

(Figure 3). There are serious doubts about the efficiency of

the sum of squared distances as a candidate for a measure of

chirality (Gilat, 1994). However, in terms of our modelling,

the behavior of the function S(ω) does not present any

drawbacks.

Our first definition of geometric chirality is

χ ε
ω

ε ε ε
εω π ε

±
= ±= = ± − −




( )
sin sin cos( )

sin

dS

d

p p p
2

2 2 2 1
2 

(25)

We have, in the neighborhood of ω = π,

lim ( ) ( ) lim
sin( )

cosε ε
χ ε ε

ε→

±

→
= ± − − =

0 0
2 1

2 1
0p p

p
(26)

This behavior does not seem to be enough to discard

this definition as a reasonable representative of chirality’s

measure as far as our modelling is concerned.

Our second example of a candidate function for char-

acterizing geometric chirality will be given by a pseudo-

scalar quantity (de Gennes, 1992). We take as a

representative, the volume of the tetrahedra cells formed by

the edges of length Rj, j+1, Rj+1, j+2, Rj+2, j+3, 1 ≤ j ≤ p in the

structure of Figure 1 and we have

χ ω α αω ω ω( , ) sin ( cos )= ⋅ × = −1

6

2

3
1 2

r r r
C A B (27)

where
r r r
A r rj j= −+1 ,

r r r
B r rj j= −+ 2 ,

r r r
C r rj j= −+ 3 and

r
rj ,

r
rj+1,

r
rj+ 2 ,

r
rj+ 3 are obtained from

r
r j l j l j l lj l+ = + + + =(cos( ) ,sin( ) , ( ) ), , , ,ω ω αω 0 1 2 3 (28)

The advantage of taking χ(ω, α) as given in Eq. (27)

as the representative of geometrical chirality will be seen in

the next section (Figure 4).

The Buried Area and Geometric Chirality as
Constraints - The Optimization Problem

One of the essential contributions to the understand-

ing of molecular interactions and their thermodynamical

description was the discovery of the influence of the area of

intramolecular cavities in the free energy calculations.

These cavities (Rashin, 1984) are substructures formed by

non-covalent processes with a free energy attribution. It is a

kind of hydrophobic effect in the molecular structure

caused in part by the non-polar Van der Waals interaction.

This contribution to the free energy is usually called the
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Figure 3 - The squared sum of distances on a candidate for geometric

chirality, p = 300.
Figure 4 - The surface χ(ω, α) - volume of a tetrahedron unit cell - the

chirality constraint.



cavitation free energy. It is considered to be a good descrip-

tion of this hydrophobic effect by keeping the cavities open

in order to bury partially the side chains of the amino acids

in a protein. It can be given by

∆ ∆G ACav = γ (29)

where γ is the interfacial tension and ∆A the area measure

of the cavity. The consideration of this new free energy

contribution corresponds also to molecular stability.

We consider it to be representative of the area mea-

sure, the area of helicoidal surface between the helix of unit

radius and the internal helix of radius r(ω, α) by unit of po-

lar angle ω, in the modelling of A Simple Modelling for the

Steiner Ratio Function. We have, from the Monge repre-

sentation of the area element

dS
z

x

z

y
dxdy= + 





+






1

2 2

∂
∂

∂
∂

with z = α arctan(y/x); x2 + y2 = r2 we get

∂
∂ω

ω α α
ω α

S
s r dr

r

= = +∫( , )
( , )

2 2

1

(30)

where r(ω, α) is given by Eq. (20).

We then get for the measure of area by unit of polar

angle (Figure 5),

s M( , ) ln ( )ω α α α α
α

ω= + + + +







 −



















1

2
1

1 12 2
2 





(31)

where

( )M u u u u( ) lnω = + + + +2 21 1

and

u u= =
− −

( )
( cos )( cos )

ω ω
ω ω2 1 1 2

We are now able to formulate a thermodynamically

inspired optimization problem. Since we are planning to

describe the transition to more stable structures in the pro-

cess of molecular formation with the contribution of

chirality and this one is represented by a measure of vol-

ume, the objective function to be minimized is a Gibbs-like

free energy or,

H P Ts= + −ρ ω α χ ω α ω α( , ) ( , ) ( , ) (32)

and ρ, χ, s are given by Eqs. (21), (27) and (31), respec-

tively. P and T are Lagrange multipliers.

The structure of an algorithm can be now planned as

∆ ∆ ∆ ∆n n n n n nH P T s= +ρ χ − (33)

and we have for consecutive steps

∆
∆
∆

n n n

n n n

n n ns s s

+

+

+

= −
= −
= −

1

1

1

ρ ρ ρ ω α
χ χ χ ω α

ω α

( , )

( , )

( , )

(34)

with (ωn, αn) as the point determined in the previous step of

the calculation.

Concluding Remarks

Our basic aim in this work was to derive an optimiza-

tion process in order to minimize the Steiner Ratio function.

We think that this process will correspond to the work done

by evolution in its search for more stable structures. It

should be noted that we have used the area measure by unit

of polar angle s(ω, α) as the contribution to Gibbs free en-

ergy Eq. (32) in this thermodynamics analogy. In order to

introduce the enthalpy function which is of the form U +

PV, where U is internal energy and P, V are pressure and

volume, respectively, we have used our second example of

geometric chirality which is given by the volume of the ele-

mentary cells of the molecular modelling configuration in-

troduced in the last section. The minimization of the free

energy of macromolecular structures, with a geometrical

characterization of the terms corresponding to volume and

conformational entropy seems to be a reasonable scheme.

Nevertheless, we have to improve these ideas by taking into

consideration a more realistic modelling. This could be

based on the existence of peptide planes in the

macromolecular conformation of a protein. We expect to

have a greater value for the lower bound of the new Steiner

Ratio Function. We also expect to create a function which is

as reliable as the present one in its precision at reproducing,

up to 38 decimal places, the results advanced by direct cal-

culation with the assumption of symmetry of the molecular

conformation.
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