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Abstract

Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry 
of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. 
SNP array was used to genotype 73 unrelated individuals aged 80–102 years. Local ancestry inference was performed 
by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The 
average ancestry tract length was 9.12–81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes 
containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 
out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at 
least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals 
with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP 
polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and 
haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies 
with populations with a complex history of admixture could help elucidate ancestry-associated biological differences 
in cancer incidence and therapeutic outcomes.
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Introduction
Cancer is the second leading cause of death in developing 

countries, and its incidence is expected to increase by 75% by 
2030 because of risk-associated lifestyle behaviors and the 
aging of the world’s population (Bray et al., 2012; Cai and 
Liu, 2019; Torre et al., 2015). In Brazil, as in other developing 
countries, the oldest old, those aged ≥80 years, is a rapidly 
growing population (Shetty, 2012; Mathers et al., 2015; 
Neumann and Albert, 2018). In 2020, the longevous elderly 
population is estimated to account for 2% of the Brazilian 
population, that is, 4,441,000 individuals. The oldest-old 
represent an adequate model of human longevity to study 
the adverse effects of progressive aging on cancer (Nolen et 
al., 2017). Longevous individuals present genetic variants 
associated with cancer susceptibility, and their phenotype 
manifestation might depend on their ancestry (Aizer et al., 
2014; Jin et al., 2016; Özdemir and Dotto, 2017). It is 
well-established in literature that not only socio-economic 
but also biological differences can contribute to distinct 
cancer susceptibilities among human populations. Despite a 
comparable socio-economic status and lifestyle, Hispanics 

and Asians in the USA have an overall significantly decreased 
cancer susceptibility compared to Afro-Americans (Özdemir 
and Dotto, 2017). Especially the incidence of prostate cancer 
and triple-negative breast cancer (TNBC) are significantly 
increased among Afro-American men and women if compared 
to other populations (Newman et al., 2017, Jiagge et al., 2018; 
Lewis and Cropp, 2020). The hormone receptor positive 
subtypes of breast cancer in contrast, are more common among 
women of European origin compared to Afro-American women 
(Agboola et al., 2012; Newman et al., 2019) 

Germline mutations in tumor suppressor genes, 
oncogenes, and DNA repair genes have been extensively 
investigated in genome-wide association studies (GWAS) 
using European populations (Haiman and Stram, 2010; Park 
et al., 2018). Cancer prediction based on genomic data 
frequently uses polygenic-risk scores; however, the predictive 
ability is lower for populations of different ancestry than 
those of European descent (Martin et al., 2019). Only 1% of 
cancer GWAS are performed in African and Latin American 
populations (Bodian et al., 2014; Fernandes et al., 2016; 
Park et al., 2018). Genomic variants associated with cancer 
are often characterized by an ancestry-specific effect called 
“flip-flop”, in which variants associated with cancer in one 
ancestral population may have no or the opposite association 
as a result of linkage and epistatic effects (Wang et al., 2018). 

Comparative studies of distinct human populations have 
revealed differences in mutated allele frequency in cancer 
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driver genes, including oncogenes and tumor suppressor 
genes (Özdemir and Dotto, 2017; Nakshatri et al., 2019; 
Bandlamudi and Taylor, 2020; Carrot-Zhang et al., 2020). For 
example, a South American case-control study identified 13 
polymorphisms in a Colombian population that modified the 
risk of breast cancer, whereas an increase in the proportion 
of Native Americans decreased the risk of disease (Torres et 
al., 2019). Local ancestry inference has been used to increase 
the potential of GWAS through admixture-mapping analysis 
in ancestrally- diverse populations (Freedman et al., 2006; 
Yang et al., 2011). Up to date, few studies have inferred local 
ancestry for cancer causative mutations or identified novel 
ancestry-associated molecular features (Pasaniuc et al., 2011, 
Carrot-Zhang et al., 2020; Dutil et al., 2019; Ostrom et al., 
2020; Yuan et al., 2018). Ancestry studies of polymorphisms 
that modify the risk of cancer in admixed populations may 
help identify genetic differences between populations. It 
is of special interest that recent studies identified genetic 
polymorphisms that might have suffered positive selection in 
native populations and at the same time modify cancer risk 
(Voskarides, 2018). Data indicated that specific alleles of the 
PHD2 gene that are beneficial to hypoxic adaptation also 
increased the risk of lung cancer among Tibetans (Amorim 
et al., 2017). The FADS1 and FADS2 genes that are involved 
in fatty acid metabolism and are adaptive for a lipid-rich 
diet of Siberian Eskimos and Inuit were also suspected to 
increase the risk of colorectal cancer (Voskarides, 2018). 
This indicates that ancestry-related genetic polymorphisms 
can help to elucidate the differences of cancer susceptibility 
in distinct human populations. 

Because the locus-specific ancestry of cancer genomic 
variants in diverse populations remains unknown, in this study, 
we inferred the local ancestry of known cancer-associated 
single nucleotide polymorphisms (SNPs) and haplotypes in 
a highly admixed population of longevous individuals from 
Northeast Brazil. This region was chosen because of its 
high levels of admixture among European settlers, Native 
Americans, and enslaved Africans (Salzano and Sans, 2014; 
Moura et al., 2015; Mychaleckyj et al., 2017; de Farias et 
al., 2018) and increased, as well as a high prevalence of 
consanguineous marriages compared with other regions of 
Brazil (Weller et al., 2012).

We analyzed 35 cancer-associated SNPs of 10 genes, 
and performed a systematic review of the literature to identify 
the risk and protective alleles of haplotypes. The aim of the 
study was to identify new haplotypes harboring cancer-
associated alleles and their corresponding ancestries. For this 
purpose, we investigated the frequency of different ancestries 
in haplotypes with alleles that may modify the risk of cancer 
and its etiology. A healthy elderly population of individuals 
aged ≥80 years without a history of cancer was analyzed to 
determine the proportions of protective and risk alleles in 
their haplotypes. 

Material and Methods

Study population

This cross-sectional study used population genomics 
methods to analyze 73 unrelated individuals, including 38 
women and 35 men aged 80–102 years.

None of the participants was diagnosed with cancer 
during or before sampling. The elderly samples were obtained 
from the longitudinal cohort study “Health, Wellbeing and 
Aging” [“SABE project”] (Lebrão and Laurenti, 2005), 
which began in 2000 in São Paulo and was extended as a 
census-based study of elderly individuals aged >60 years 
from consanguineous communities in the Northeastern Brazil 
backlands. The “SABE - São Paulo” (SABE-SP) cohort 
comprises exomic variants of 609 elderly Brazilians available 
in ABraOM (Online Archive of Brazilian Mutations), a public 
variant repository (Naslavsky et al., 2017).

The samples were collected in the municipality of Brejo 
dos Santos in the backlands of the state of Paraíba, Brazil. 
This community is located at 360 km from Natal and 404 
km from João Pessoa, which is at a considerable distance 
from these capitals of Rio Grande do Norte and Paraíba, 
respectively, both situated at the Atlantic coast. According to 
the Brazilian Institute of Geography and Statistics (IBGE), 
876 (415 men and 461 women) of the 6198 inhabitants of 
Brejo dos Santos are >60-years-old. The present cohort 
represents approximately 10% of the total elderly (≥60-years-
old) population of Brejo dos Santos. Of 878 unions in this 
community, 171 (19.48%) have a consanguineous background, 
resulting in a coefficient of endogamy of 0.00504 as reported 
previously (Weller et al., 2012).

The data sampling protocol and consent procedure 
were reviewed and approved by the National Committee for 
Ethics in Research (CONEP; Brazil) and are registered under 
protocol number 0359.0.133.000-11. Written informed consent 
was obtained from each participant. Consent to publish data 
anonymously was obtained from each participant.

Selection of genes and corresponding SNPs

Cancer driver genes were identified from studies 
published between 2005 and 2020 using PubMed. The search 
terms used were “Oncogenes AND tumor suppressor genes”; 
and “Genes AND cancer”. Eligible studies were those reporting 
the frequency of cancer risk alleles, haplotypes associated 
with cancer risk, and ancestry. 

The following 20 genes were selected: the tumor 
suppressor genes BRCA1, BRCA2, TP53, CDH1, ATM, MC1R, 
RB1, and VEGF (Song et al., 2006; Al-Moundhri et al., 
2010; Lahtz and Pfeifer, 2011; Zhao et al., 2012; Carraro et 
al., 2013; Tagliabue et al., 2018). The oncogenes AURKA, 
CCND1, NCOA3, HNF1B, MMP7, MITF, and CDKN1A 
(Burwinkel et al., 2005; Polistena et al., 2014; Hartman and 
Czyz, 2015; Yu et al., 2015; Vargas-Torres et al., 2016; Tang 
et al., 2017; Abel et al., 2018); and the DNA repair genes 
XRCC1, ERCC1, ERCC2, ERCC5, and MLH1 (Xue et al., 
2015; Meng et al., 2017).

DNA extraction and genotyping

DNA was extracted from 5 mL of peripheral blood from 
each individual using the phenol-chloroform method. The 
quantity and quality of DNA were assessed by gel electrophoresis 
and spectrophotometry using Nanodrop ND-1000 (Thermo 
Scientific, Massachusetts, USA). The Axiom® Genome-Wide 
LAT 1 Array (Affymetrix, USA) was used for genotyping 
the 73 longevous individuals following the manufacturer’s 
instructions. The array comprises 813,551 SNPs. 
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Before the analysis, the raw archives of the 73 genotyped 
individuals were downloaded from Thermo Fisher cloud. SNPs 
were identified using the software Genotyping ConsoleTM 
(Version 4.2; Affymetrix Inc). The following filters were used 
for quality control: dish quality control ≥0.82, quality control 
call rate ≥92, average call rate for passing ≥97, and minor 
allele cut off ≥2. A SNP call rate >97% and a Hardy-Weinberg 
equilibrium of p >0.05 were applied. After filtering, 805,712 
SNPs were included.

The minor allele frequency (MAF) of the “SABE 
Paraíba” (SABE-PB) population was compared with that of 
the SABE-SP population to determine the allele frequency 
distribution in two populations of long-lived elderly people 
living in different geographic regions. MAF information for 
the SABE-SP population was obtained from the Database 
of the Brazilian Online Archive of Mutations (ABraOM) 
(Naslavsky et al., 2017). 

The allelic frequency in diverse populations was 
estimated using the European (N = 1,006), African (N = 
1,322), and admixed Native American (N = 694) reference 
populations from the deep catalog of human genetic variation 
- 1000 Genomes Project obtained from the database of 
Single Nucleotide Polymorphisms using the GRCh37/hg19 
reference assembly. The public database of human genetic 
variants and their relationship with human disease, Clinvar, 
was used to investigate the physical position (hg19), genetic 
function, classification, and clinical significance of SNPs 
(Landrum et al., 2016). 

Of the 805,712 SNPs, 2,948 were associated with cancer 
genes covered by the LAT array. Of these, 90 SNPs were 
selected for the analysis and classified based on the Ensembl 
genome browser predicted consequence as intronic variant, 
upstream and downstream variants, untranslated regions (3′-
UTR; 5′-UTR), and synonymous or nonsynonymous variants. 
Cancer susceptibility variants were not identified for MC1R, 
MLH1, and MITF in the LAT array, and the remaining 17 
genes were therefore included in the allele frequency analysis.

Linkage disequilibrium (LD) of haplotypes and local 
ancestry inference

Haplotype block identification was performed by 
calculating the LD of each sequence combination for the 73 
genotyped subjects using Haploview 4.0 software (Barrett 
et al., 2005). Haplotypes were filtered for ≥5% of the MAF. 
Haplotype analysis was performed by inferring LD blocks. 
The paired LD structure was built with all SNPs evaluated 
for each chromosome. Haplotypes that were considerably 
frequent or rare in the population had frequencies of >20% 
and <5%, respectively.

For local ancestry inference, the haplotypes of all 
genetic variants of the elderly and the 1000 genomes project 
(1KGP) database were analyzed using SHAPEIT2 software 
(Delaneau et al., 2013), and 1,092 samples from 1KGP 
Phase 3 were used as a reference panel (The 1000 Genomes 
Project Consortium et al., 2015). The local ancestry inference 
(LAI) was estimated using the software RFMix (Maples et 
al., 2013). We used 0.2 cM and two iterations of expectation 
maximization with the PopPhased option based on a standard 
forward-backward algorithm.

The 1KGP database, including Yoruba representing 
Africans, Iberians representing Europeans, and Peruvians 
representing admixed Native Americans, was used as described 
previously (de Farias et al., 2018). 

The SNP data were subjected to a cleaning process in 
which markers with >1% missing genotypes, large deviations 
from Hardy-Weinberg proportions (p ≤ 10-8), and MAF <0.01 
were excluded, resulting in a final set of 667,855 SNPs after 
merging. The local ancestry inference was then performed 
using data from 328 individuals, including 73 from Brejo 
dos Santos (SABE-PB) and 255 from 1KGP. 

Results

Allele frequency

Of 90 selected SNPs (GRCh37 - hg19), 38 were located 
in intronic regions between exons and two were located in 
intergenic regions; three were non-coding transcript exon 
variants; there were eight synonymous and 21 non-synonymous 
(missense) substitutions; two were nonsense (stop gain), three 
downstream, six upstream, three in the 5′-UTR, and four in 
the 3′-UTR (Table S1). Of the 90 genetic variants associated 
with cancer susceptibility found in the Brejo dos Santos 
population, 60 had alleles identical to those described in the 
literature, seven had at least one allele in common, and 23 had 
different alleles that were not reported previously (Table S2).

The average MAF of the 90 SNPs was 27.7% (range, 
0.68–47.94%) (SD = 0.139), whereas the frequency of the same 
90 SNPs listed in 1KGP, was 36.96% (SD= 0.305), 30.63% 
(SD= 0.228), and 31.28% (SD= 0.2431) in populations of 
African, Caucasian, and Native American ancestry, respectively 
(Table 1; Table S2). A summary of the protective and risk 
cancer-associated alleles is shown in Text S1. 

Local ancestry inference and ancestral haplotype 
lengths

In the Brejo dos Santos population, haplotypes containing 
protective or high-risk alleles were predominantly of European 
ancestry (Figure S1). For the HNFB1 gene, 47 (64.38%) 
haplotypes were of European ancestry, 14 (19.17%) European /  
African, six (8.21%) European / admixed Native American, 
two haplotypes (2.73%) African and two (2.73%) African / 
admixed Native American, one haplotype (1.36%) European / 
Unknown and one (1.36%) African / Unknown. For the BRCA1 
gene, 37 (50.68%) haplotypes were of European descent, 22 
(30.13%) European / African, five (6.84%) European / admixed 
Native American, five haplotypes (6.84%) were Africans, 
two (2.73%) African / admixed Native American and one 
haplotype (1.36%) of admixed Native American ancestry.

The individuals with homologous haplotypes of two 
different ancestries showed at least one tract of Native 
American or African origin. The combination of haplotypes 
with different ancestries was observed with high frequency, 
and some of them contained homozygous genotypes.

For the tumor suppressor gene BRCA1, the frequency 
of homologous haplotypes with only one ancestry was 28.77–
32.88% for European and 1.34–4.11% for African ancestry, and 
2.74% were of Native American ancestry (Table 1). Table 1  
shows the range of frequencies of homozygous genotypes 
within homologous haplotypes with the same ancestry.
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The average ancestry tract length was 9.12–81.71 
megabases (MB) (Table S3). Longer tracts were observed 
for populations of European ancestry (30.49–81.71 MB), 
and variable shorter lengths were observed for African 
(10.48–26.63 MB) and Native American (9.1–44.94 MB) 
populations. One of the three ancestries was present in at 
least one haplotype among ten genes from elderly genotyped 
data. The average ancestral tract length of VEGF for Native 
American population was almost one half (44.94 MB) of that 
for the European population (81.71 MB), whereas for BRCA1, 
the African (26.63 MB) stretches were longer. The genes on 
chromosome 19 showed similar average sizes. Only BRCA1 
had a haplotype breakdown on continuous ancestry considering 
the four SNPs located close and within the gene (Table S3).

Linkage disequilibrium and alleles of haplotypes that 
modify cancer risk

In the linkage disequilibrium (LD) analysis, 35 SNPs 
showed high LD. On chromosome 6 (VEGF gene), two 
blocks of linkage disequilibrium were identified (Figure 
S2a), on chromosome 11 (MMP7 gene), one block (Figure 
S2b), on chromosome 13 (ERCC5 gene), one block (Figure 
S2c), on chromosome 16 (CDH1 gene) three blocks (Figure 
S2d), on chromosome 17 (P53, HNF1B and BRCA1 genes) 
four blocks (Figure S2e), and on chromosome 19 (XRCC1, 
ERCC2 and ERCC1 genes) three LD blocks (Figure S2f). On 
chromosome 20 no LD blocks were identified (NCOA3 and 
AURKA genes) (Figure S2g).

Of the 21 haplotypes with strong negative LD (D < 0), 
three were in BRCA1, two in TP53, and six in CDH1 (Table 2); 
four haplotypes corresponded to the VEGF tumor suppressor 
gene and four to the HNF1B oncogene. Each of the DNA 
repair genes XRCC1 and ERCC1 had one haplotype with 
negative LD. Of the haplotypes with strong positive LD (D > 
0), 11 were in tumor suppressor genes: three in BRCA1, two 
in TP53, three in CDH1, and three in VEGF. Thirteen were in 
DNA repair genes (Table 2): four in XRCC1, three in ERCC1, 
three in ERCC2, and three in ERCC5. Three haplotypes with 
strong positive LD were in the MMP7 oncogene.

A literature search revealed that 25 of the 48 discovered 
haplotypes did not contain any allele with a known cancer 
risk modification function (Table 2). The search identified 19 
risk alleles in 16 haplotypes and eight protective alleles in 
eight haplotypes (Table 2). The haplotype ACG of the TP53 
gene contained one risk and one protective allele (Table 2).  

The haplotype TTG of the VEGF gene contained three 
risk alleles (Table 2). The haplotype CT of the CDH1 gene 
contained two risk alleles (Table 2). Of the 16 haplotypes 
with risk alleles, eight (50.0%) had positive LD and eight 
(50.0%) had negative LD (Table 2). Of the eight haplotypes 
with protective alleles, two (25.0%) had positive LD and six 
(75%) had negative LD (Table 2).

Discussion
Data on ancestry-specific variation may improve our 

understanding of the cancer risk associated with tumor 
suppressor genes, oncogenes, and DNA repair genes in 
diverse populations. The present local ancestry results for 
alleles and haplotypes in elderly individuals identified 48 
haplotypes with strong LD that were not previously reported 
in the literature and alleles that have not been described as 
risk modifiers. In addition, it identified Native-American and 
African haplotypes harboring potential cancer variants that 
were not described previously.

Despite the strong level of endogamy, the present 
population showed a high degree of admixture: for nine of 
10 genes, homozygous haplotypes were present in more than 
one of the three ancestries. One possible explanation for this 
result is that many of the haplotypes identified had more than 
one ancestry. However, most of the genes had combinations 
of haplotypes of different ancestries, such as single African 
or European ancestry and combinations of African/European 
ancestry. This indicated that endogamic effects dominated the 
present population only after admixture, namely, during the 
colonization of this region in Northeast Brazil. 

To the best of our knowledge, the 48 haplotypes 
identified in this study have not been described previously 
in the literature. Their potential function in cancer remains 
unknown, especially for the 25 haplotypes that do not bear 
any known allele associated with the modification of cancer 
risk. All the study participants were ≥80-years-old and did 
not have a history of cancer, suggesting that the 48 haplotypes 
included many protective alleles and few risk alleles. However, 
contrary to this hypothesis, of eight haplotypes containing 
one protective allele each, six had strong negative LD, and 
eight of the 16 haplotypes containing at least one risk allele 
had strong positive LD. Despite these arguments, the present 
Brazilian elderly population could serve as a model to describe 
ancestry-specific variation of haplotypes in cancer driver 
genes of different populations.

Table 1 – Frequencies (%) of homozygous genotypes in haplotypes with equal ancestry.

Gene European African Native American

BRCA1 28.77 - 32.88 1.34 - 4.11 2.74

CDH1 31.51 - 41.53 - 2.74

TP53 24.66 - 47.95 4.11 - 5.48 -

VEGF 38.36 - 54.79 2.74 - 6.85 -

HFN1B 32.88 - 38.36 1.37 - 2.74 2.74

MMP7 34.25 - 35.65 - -

XRCC1 31.51 - 35.62 4.11 - 6.85 -

ERCC1/ERCC2/ERCC5 28.77 - 58.90 2.74 - 6.85 -
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The 72 individuals included in the present study lived 
under similar socioeconomic conditions within a small 
community, suggesting that they had similar health-related 
behaviors such as physical activity, diet, smoking, and 
consumption of alcohol (Medeiros, 2018). One could speculate 
that not-sampled individuals of the present population who had 
cancer, might have other haplotypes with more risk alleles, 
respectively a lower number of corresponding protective 
alleles at the analyzed gene loci. However, as we did not 
perform a case-control study it is impossible with present data 
to draw any conclusion regarding the potential of haplotypes 
and corresponding alleles to diminish risk of cancer in the 
present elderly population. 

The high degree of trihybrid ancestry admixture suggests 
that such a population is a good model for cancer ancestry 
studies aimed at detecting new haplotypes that represent 
combinations of polymorphisms with differential effects on the 
incidence, prognosis, and therapeutic outcome of cancer among 
human populations. One problem associated with population-
specific differences in the etiology, incidence, and prognosis 
of cancer among individuals can be discriminating between 
socio-demographic, lifestyle-related factors, and biological 
differences according to molecular markers (Özdemir and 
Dotto, 2017). The tumorigenic effect of polymorphisms 
in cancer driver genes may be enhanced or activated by 
lifestyle-related risk factors that differ among populations. 
In this scenario, population-specific molecular differences 
and lifestyle-related differences are correlated and can lead to 
meaningful results regarding the molecular differences among 
populations. On the other hand, lifestyle-related risk factors 
that differ among populations can lead to the false-positive 
association of molecular differences that may have no effect 
on cancer incidence and etiology, or they may mask molecular 
differences that have distinct biological effects. Many molecular 
differences among human populations do not affect cancer 
etiology (Carrot-Zhang et al., 2020). A recent study reported 
that most molecular differences between African, Asian, and 
European cancer patients are not limited to tumors, and can 
be specific to healthy tissues without affecting cancer etiology 
(Carrot-Zhang et al., 2020).These confounders affecting the 
identification of molecular cancer-specific differences can 
be drastically reduced if case-control studies are combined 
with analysis of ancestry in an admixed population with 
a relatively homogenous background regarding lifestyle-
related risk factors. Particularly with regard to low penetrance 
polymorphisms, haplotypes could be advantageous over single 
SNPs in the following aspects: 1. the combination of alleles in 
a haplotype may have a stronger effect on cancer incidence and 
etiology; 2. haplotypes with strong LD that contain SNPs with 
unknown functions may have been under selective pressure 
and have a specific function; 3. haplotypes with strong LD 
can also be the result of genetic drift and endogamic effects, 
and the association of cancer with these evolutionary forces 
should be analyzed; and 4. haplotype analysis may lead to 
the identification of SNPs with new functions. In the present 
study, haplotypes combined SNPs without a known function 
with SNPs related to cancer risk and etiology.

The complex mosaic derived from the three ancestries 
revealed a diverse combination of genotypes and ancestries, 
which reflected the multiple origins of cancer-associated 

mutations. The BRCA1 and CDH1 tumor suppressor genes 
had a predominant European ancestry and a lower Native 
American frequency, whereas TP53 and VEGF exhibited a 
lower African contribution. BRCA1 is a well-studied gene with 
a known Native American ancestry based on patient origin 
and allele frequency studies (Liede et al., 2002; Weitzel et 
al., 2007), although its presence in haplotypes containing 
Native American homozygous mutations was described for 
the first time, which was also the case for CHD1. African 
BRCA1, TP53, and VEGF were found in Brazilian women 
among other ancestrally diverse populations (Bodian et al., 
2014; Fernandes et al., 2016; Oak et al., 2020) and may have 
a protective effect (Wang et al., 2018). 

The HFN1B gene, which is associated with prostate 
cancer, may be ancestry-specific for European Americans and 
Latinos but not for African-Americans (Waters et al., 2009); 
the present elderly population presented the Native American 
haplotypes, which were homozygous. European MMP7, which 
contains cancer-associated mutations, was associated with 
prostate cancer in European populations in a previous GWAS 
(Cook et al., 2014). XRCC1 is associated with breast cancer 
risk in Mexican admixed individuals, whereas European and 
African haplotypes did not show cancer-related mutations 
(Macías-Gómez et al., 2015). The ERCC family genes have 
been associated with esophageal cancer in European patients 
(Boldrin et al., 2019), and are responsible for the platinum 
resistance pathway based on cell lines from ancestrally diverse 
populations (Wheeler et al., 2013). 

The flip-flop phenomenon might explain the presence 
of homozygous individuals for the risk allele with both 
European and African/Native American haplotypes (Wang 
et al., 2018). We hypothesized that the flip-flop phenomenon 
protected longevous individuals. The association between 
protective alleles and local ancestry inference should be 
further investigated in Brazilian patients using our dataset 
as the control in a case control study.

The present study was based on 35 SNPs that can 
potentially modify the risk of cancer. A literature research 
revealed that only 10 of these 35 SNPs were described in 
studies of African or Afro-American populations (Mechanic 
et al., 2007; Chornokur et al., 2013a; Nikolić et al., 2014; Oh 
et al., 2017a; Oussalah et al., 2017; Tong et al., 2018; Jones 
et al., 2019; Sagna et al., 2019; Song et al., 2019; Kamiza  
et al., 2020), suggesting that most association studies including 
these SNPs focused on European and Asian populations. The 
present results showed that a high number of individuals were 
homozygous for risk alleles with Native American and African 
ancestry that may modify the risk of cancer. Interestingly, the 
HNF1B, CDH1, and BRCA1 genes were homozygous for 
the risk allele that combines Native American, African, or 
European haplotypes with different frequencies. 

Ancestry tracts reconstructed the demographic history 
of the elderly population of Brejo dos Santos; the haplotypes 
were broken down to a smaller size over generations as 
recombination events occurred, and long ancestral tracts were 
younger than short ones (Pool and Nielsen, 2009; Leitwein 
et al., 2020). The average ancestry tract length reflected the 
history of Northeast Brazil, as Native American haplotypes 
were older than African and European haplotypes. One 
exception was VEGF, which showed a younger African than 
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Native American tract. This may reflect the origin of the Native 
American haplotypes after the trans-Atlantic slave trade from 
West-Africa to the Northeast Brazilian coast. The age of the 
haplotypes containing cancer-associated mutations remains 
unknown, and its estimation may help identify Brazilian 
autochthonous and allochthonous mutations.

An intriguing hypothesis for Native Americans 
showed a high frequency of cancer mutations associated 
with low temperatures and high altitude environments where 
Athabascans and Inuit live (Voskarides, 2018). This “cancer-
cold” hypothesis is based on antagonistic pleiotropy effects 
conferring fitness benefits for SNPs selected under warmer 
environments such as Brejo dos Santos municipality. More 
studies are required to assess the extent of this influence 
with a higher number of municipalities spread by Caatinga 
semiarid biome.

One important limitation of the present study was the 
low sample number. Because the number of SNPs for each 
gene was low, the study may have identified only a small 
proportion of haplotypes. The potential function of the 48 
new haplotypes remains unknown, and we cannot exclude the 
possibility that endogamic effects and genetic drift generated 
strong LD of haplotypes without an evolutionary function or 
contribution to cancer etiology. Another is the use of Peruvians 
as population reference instead of a Native American from 
other databases due to incompatibility of coverage and depth 
with our chosen SNP array.

Conclusions
The present study identified 48 new haplotypes with 

strong LD and distinct African, Native American, and European 
ancestry, of which 23 contained alleles that were previously 
shown to modify the risk of different types of cancer. The 
results suggested that novel ancestry-specific haplotypes 
may explain differences in cancer incidence among distinct 
populations. The present study is the first to identify Native-
American ancestry for individuals homozygous for the HNF1B, 
CDH1, and BRCA1 risk alleles. The results indicated that 
a high number of haplotypes with the potential to modify 
cancer risk were associated with African ancestry. African 
and Native American haplotypes might be associated with 
increased risk of cancer and also have protective roles. Case-
control studies should be performed to elucidate the potential 
function of the identified haplotypes by comparing the genetic 
data of healthy controls with those of cancer patients. Studies 
in an admixed population may help identify haplotypes that 
contribute to differences in cancer incidence and prognosis 
in distinct human populations. 
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