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ABSTRACT
In the Brazilian Semi-arid Region, extensive livestock farming with ecoproductive management is the most efficient way to maintain and increase 
the production of goat products (e.g., meat) with of not depleting environmental resources. This set of actions (induced goat migration and 
pasture closure) is part of Livestock 4.0, in which Industry 4.0 feed areas are efficiently managed using artificial intelligence and deep learning 
properly monitored by the producer and the consumer. The objective of this work was to identify pasture areas with Opuntia ficus-indica 
(Mill, Cactaceae) forage palm species for breeding and production of Capra aegagrus-hircus goats (Lineu, Bovidae) using aerial survey images 
captured by drones classified using deep learning techniques. The methodological steps of the Industry Architecture Reference Model 4.0 were 
adapted to the field situation (Semi-arid Region) including (A) study area delimitation, (B) image collection (by drones), (C) deep learning training, 
convolutional neural network (CNN) training, (D) training accuracy analysis, and (E) automatic goat production evaluation and validation. The 
area classification based on the forage palm density allowed us to measure the environmental degradation caused by livestock. Stimulated 
goat migration reduced this degradation as well as increased goat biomass and volume production.

Index terms: Industry 4.0; convolutional neural network; sustainable farming; smart factory.

RESUMO
No Semiárido Brasileiro, a pecuária extensiva em manejo ecoprodutivo é a forma mais eficiente de manter e aumentar a produção de 
produtos caprinos (e.g. carne), além de não esgotar os recursos ambientais. Esse conjunto de ações (migrações induzidas e defeso de 
pastagem) faz parte da chamada Pecuária 4.0, em que as áreas de alimentação das Indústrias 4.0 são gerenciadas de forma eficiente por 
inteligência artificial e aprendizagem profunda, e devidamente monitoradas pelo produtor e consumidor. O objetivo deste trabalho foi 
identificar áreas de pastagem com espécies de palmeiras forrageiras Opuntia ficus-indica (Mill, Cactaceae), para reprodução e produção 
de caprinos Capra aegagrus-hircus (Lineu, Bovidae) por meio de levantamento aéreo a partir de imagens capturadas por drones e 
classificação por técnica de aprendizagem profunda. As etapas metodológicas seguiram o Modelo de Referência para Arquitetura da 
Indústria 4.0 adaptada para a situação de campo (Semiárido), com: (A) delimitação da área de estudo, (B) coleta de imagens (por drones), 
(C) treinamento de aprendizagem profunda, treinamento de rede neural convolucional - RNC, (D) análise da precisão do treinamento, 
e (E) avaliação e validação automática da produção caprina. A classificação das áreas pela densidade da palmeira forrageira permitiu 
medir a degradação ambiental da pecuária. A partir disso, a migração de cabras estimulada reduziu essa degradação, bem como 
aumentou a biomassa caprina e a produção de volume.

Termos para indexação: Indústria 4.0; rede neural convolucional; agricultura sustentável; fábrica inteligente.

INTRODUCTION

In areas where primary resources are scarce, locating 
hotspots for agricultural production is fundamental. 
Deteriorated areas, such as areas in semiarid climates, in 
which there is a scarcity of water and a negative water 

balance (evapotranspiration is greater than precipitation) 
(Santana; Encinas, 2016), locating and evaluating 
areas of interest for economic-ecological management, 
and their aggregation to a production chain (e.g., 
livestock) can increase local revenues and have positive 
socioenvironmental impacts (Santana, 2016).
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In semiarid regions, extensive livestock farming 
with ecoproductive management is the most efficient 
way to maintain and increase production (e.g., meat) 
while not depleting environmental resources (Santana; 
Encinas, 2016). One example is goat production with 
stimulated management, in which the producer enforces 
goat migration to areas with a greater density of direct 
nutritional resources (e.g., forage cactus) (Magalhães 
et al., 2021). To identify and classify areas for possible 
management, the efficient analysis of the area through 
trained aerial classification is needed. This set of actions 
is part of Livestock 4.0, in which Industry 4.0 feed areas 
are efficiently managed using artificial intelligence and 
machine learning and duly monitored by the producer and 
the consumer (Stumpenhausen, 2018).

Finding areas and feeding goats with the Opuntia ficus-
indica (Mill, Cactaceae) forage cactus in semiarid regions are 
sources of increased production; the plant tissue of this palm 
has approximately 85% water while the other 25% has essential 
nutrients for nutrition, increasing goat biomass (Magalhães et 
al., 2021), such as the Capra aegagrus-hircus (Lineu, Bovidae) 
species, which is most consumed and exported goat in terms 
of human nutrition (Santana; Encinas, 2016).

The use of deep learning to recognize areas of 
interest for ecoproduction (hotspots) is an emerging natural 
practice, as its use in the classification of aerial images 
allows for surveys over long distances and in remote 
locations, reducing cost and time (Lopez-Jimenez et al., 
2019). The aim of this method is to identify a specific 
species in a diverse environment (Lee et al., 2017), 
measure forest density (Sun et al., 2017) and identify 
phytopathology (Barbedo, 2019). This method can be 
used for morphological and phenological recognition 
(Gyires-Toth et al., 2019), exotic species eradication (Lopez-
Jimenez et al., 2019), plant parameter alternatives (Pearline; 
Kumar; Harini, 2019) and fauna identification (Miao et al., 
2019). Ecoproduction is based on using natural primary 
resources in cycles of productive efficiency associated with 
environmental conservation (Santana, 2017).

When performing large scale sampling in small areas, 
unmanned aerial vehicles (UAVs) are the main tools used 
for the ecoproductive classification of biotic assessments 
(Lopez-Jimenez et al., 2019), social analysis (Suel et al., 
2019), local measurements (Quevedo et al., 2019), and 
geomorphology studies (Moor et al., 2019), among others. 
There are several popular models of professional drones 
on the market that are affordable for scientific projects and 
industrial analysis (< U$ 400) and have intuitive handling 
and a flight autonomy of 30 min to travel in a ​​1 km² area at 
a real-time altitude of 182 m (SZ DJI Technology, 2018).

For these types of images and their analysis, a 
convolutional neural network (CNN) is recommended 
because it is a class of feedforward artificial neural networks 
with a range of multilayer perceptrons designed using the 
least amount of preprocessing; CNNs are ideal for 2D 
images (RGB) with shift invariance and space invariance 
(Sun et al., 2017; Pearline; Kumar; Harini, 2019).

Therefore, the hypothesis of this work was as 
follows. The automatic identification of natural food sources 
(cactus) for goats and the management of the goat herd in 
identified areas results in an optimization of the food supply 
and the conservation of native flora. Thus, the objective 
of this work was to identify pasture areas in a semiarid 
climate with the Opuntia ficus-indica (Mill, Cactaceae) 
forage cactus species for the rearing and production of 
Capra aegagrus-hircus (Lineu, Bovidae) goats through an 
aerial survey of images captured by drones and perform 
classification using a deep learning technique.

MATERIAL AND METHODS
The methodological steps of the Reference Model 

for Industry Architecture 4.0 (Heidel et al., 2017) were 
adapted to the field situation (semiarid region) and include 
(A) study area delimitation, (B) image collection, (C) deep 
learning training, (D) training accuracy analysis, and (E) 
automatic goat production evaluation and validation.

Study area

Data collection was carried out in an area under the 
BSh Semiarid Climate and Caatinga ecosystem (Santana, 
2017) in backland of the State of Pernambuco (7°35’00” 
S and 39°42’22” W), where there is a predominance of 
cactus (Opuntia ficus-indica Mill, Cactaceae) due to its 
introduction in the region in previous periods and an 
extensive management of Capra aegagrus-hircus goats 
(Lineu, Bovidae) (Figure 1). The specific study area (image 
collection location) was in the rural area of ​​Floresta City, 
PE, Brazil (08°36’04” S and 38°34’07” W).

Collection of images

The images and information were collected (every 
15 days from July 2018 to July 2019) by a camera attached 
to a DJI Phantom 4 RTK drone (SZ DJI Technology Co., 
Ltd., Shenzhen, Guangdong, China). The camera records 
at 5 cm pixel-1, with an image resolution of 5472 × 3648 
and H.264 video, 4K: 3840 × 2160 30 p. The flights were 
performed manually from 0 to 100 m above the surface close 
to noon. In the image capture areas, the drone hovered in the 
air for 5 s for complete stabilization and image capture of 
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the region of interest (ROI). The fragments (patches) of the 
image for analysis (RGB channels) that contained the forage 
cactus were separated at a minimum resolution of 32 × 32 
pixels. A total of 51,499 palm fragments were separated for 
classification (palm class, Figure 2). This was completed for 
the formation of the ‘no palm’ class by separating 51,499 ‘no 
palm’ fragments (32 x 32 pixels).

Training: Deep Learning

Palm identification in the images was performed 
by training a convolutional neural network (CNN) 
(Goodfellow; Bengio; Courville, 2016). Φw: I → y . The 
input was an RGB image, I, the output was a predicted 
class label represented by a multinomial distribution, 
y ,  and the network parameters were defined by w. 
The Φ of the modified version of the LeNet-5 network 
(Chen et al., 2018) was used and configured, as shown 
in Figure 3. The sequence of actions is given as follows: 

Figure 1: (A) Forage palm Opuntia ficus-indica 
(Mill, Cactaceae), (B) shadow of the drone used to 
capture the images, (C) Capra aegagrus-hircus (Lineu, 
Bovidae) feeding on the palm, and (D) location of the 
study area.
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(i) input a 3-channel image with a resolution of 32 × 32; (ii) 
apply 6 convolution filters, each with a size of 5 × 5; (iii) 
perform max pooling with a 2 × 2 kernel; (iv) apply a set 
of 16 kernel convolutions with a size of 5 × 5; (v) perform 
max pooling with a 2 × 2 kernel; (vi) flatten the features to 
a one-dimensional vector of size 400; (vii) apply three fully 
connected layers with 120, 84 and 2 nodes; (viii) obtain 
the CNN output in a vector of real numbers (logits); and 
(ix) apply the LogSoftMax function to convert the logits 
into a normalized probability distribution (Equation 1):

To train the Φw network, the internal parameters, w, 
(weights and biases) were adjusted so that the output fits 
the real (true) data. In the training process, the images of 
the dataset were input into Φw in batches, and the outputs 
were compared with the true labels, y, under a loss function 
(Equation 2) (Goodfellow; Bengio; Courville, 2016):

where is a batch element and c is the class index. Once the 
loss was calculated for a given lot, the internal parameters 
were adjusted using the previous propagation algorithm 
(gradient descent optimization).

Network training was performed with the Adam 
optimizer on an Intel Core i7 machine with an NVIDIA 
GeForce 1080 GPU. The hyperparameters were defined 
as follows: learning rate of 0.01, number of epochs of 
150, and batch size of 2500 (Gopalakrishnan et al., 2017).

Data augmentation

Sample amplification was performed to increase 
the number of samples (data augmentation) (i) without 
enlargement, the fragments were resized to 32 × 32 and 
normalized; and (ii) vertical and horizontal flipping as 
well as resizing and normalizing were performed, with 
a probability of 0.5, both as independent events. The 
validation set was obtained by amplifying the number of 
samples by 0.98 and 0.95 for the training and validation 
sets, respectively (Lopez-Jimenez et al., 2019). When the 
ROIs were questionable, field visits were carried out to 
verify the image collected.

(2)
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Real-time detection and automatic assessment of 
livestock areas

After training, forage cactus recognition was 
performed in real time using YOLOv3, an object detection 
system for real-time images (Redmon; Farhadi, 2018; 
Birrell et al., 2019). In the field, the drone images were 
automatically sent to a notebook and analyzed in real time. 
One image captured 100 m above the surface can cover 
an area of ​​2.56 hectares (160 x 160 m, see image capture 
resolution). From this information, we were able to calculate 
the cactus density per hectare. Thus, it was possible to 
delimit the hotspots, areas with at least one Opuntia ficus-
indica (Mill, Cactaceae) cactus per 5 m2 of space.

The analysis of the impact of goats on hotspots was 
recorded by monitoring 50 Capra aegagrus-hircus (Lineu, 
Bovidae) in five hectares at a time (extensive management) 
over a period of time. All goats were tagged and registered 
with a subcutaneous chip (Autag Technology Europe B.V., 
Moordrecht, Netherlands). These goats were 6 years old (the 
age at which bone growth and height stabilize and senescence 
does not occur). During the study period, the 50 goats 
explored an area of ​​approximately 1,200 hectares (12 km2).

In the first six months (July to December 2018), the 
goats were released into five hectares of the study area and 
migrated spontaneously (control group). Then (January to 
July 2019), the goats were constantly guided to areas that 

Figure 2: Examples of fragments collected containing images of the forage cactus Opuntia ficus-indica (Mill, 
Cactaceae) for analysis in the Brazilian semiarid region.
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had more than one cactus per 5 m2 of space. When the area 
had one cactus every 10 m2 of space due to foraging, the 
stimulated migration of goats to areas of higher cactus density 
was performed (sample group).

Goat mass data (kg ind-1) were statistically compared 
between the sample groups (spontaneous migration and 
stimulated migration) using Student’s t test (95% reliability) 
(D’agostino; Belanger; D’agostino, 1990). Previously, 
to confirm the performance of the parametric test, the 
normality of the distribution was confirmed through the 
D’Agostino normality test (Zar, 1999). The relationship 
between goat mass (kg ind-1) and forage cactus density 
(ind ha-2) was fitted to nonlinear curves (sigmoidal: growth 
curves) and performed using regression analysis parameters 
(D’agostino; Belanger; D’agostino, 1990).

RESULTS AND DISCUSSION
Increasing the number of samples from the original 

sample (data augmentation) resulted in a faster reduction in 
training loss (Figure 4A) and an increase in training accuracy 
(Figure 4B) and validation accuracy (Figure 4C). On the 
validation test, the accuracy of using the flip technique 
is better than the accuracy of using the data without 
amplification. In the first periods of training in other 
studies (Lopez-Jimenez et al., 2019; Wang et al., 2019), the 
precision was not different between the flip technique and no 
data amplification, and the initial weights were more similar 
and the final weights were more distinct after the updates. In 
contrast, this distinction was observed in this study by epoch 
10 (Figure 4C). This is due either to the characteristics of 
image accuracy or to the more homogeneous background 
in the ‘without palm’ classification in semiarid regions.

Figure 3: LeNet-5 network for identification of the 
forage cactus Opuntia ficus-indica (Mill, Cactaceae).

Figure 4: (A) Training losses, (B) training accuracy, and 
(C) validation accuracy.

At the end of each semester, the goats were measured 
in relation to their body mass on a platform scale (Bench Scale 
BBA231-3BC60A - Mettler Toledo Ind., Barueri, São Paulo, 
Brazil), and their volumes were estimated using a 3D scanner 
(3D Systems Capture Scanner Plus Pro Pack, TEquipment. 
NET, Long Branch, New Jersey, United States).
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The number of false-positive results was higher 
for the ‘without palm’ classification (Figure 5A) due to 
the presence of other plants aggregated with the palm 
(Figure 6A) and the homogeneity of the pixels where 
the palm does not appear (Figure 6B). However, in the 
normalized confusion matrix, the number of false-
positives results did not exceed one percent for both 
classes (Figure 5B). In Figure 6A, the detection accuracy 
is highlighted, as the plant in the center of the image was 
not recognized by the system, which is in line with other 
studies (Birrell et al., 2019; Lopez-Jimenez et al., 2019).

Figure 5: (A) Confusion matrix without normalization 
and (B) normalized confusion matrix.

The detection and recognition of areas by the 
density of forage cactus made it possible to monitor 
the degradation of an area by the consumption of cacti 
by goats (from one cactus every 5 m2 to one cactus 
every 10 m2). Then, the goats migrated to areas with 
greater biomass of the studied plant. As shown in 
Figure 7, goats that remained in the same place for a 
longer time (spontaneous migration) consumed almost 
all the available cactus, ultimately reducing the per 
capita amount of food per goat, causing a loss of mass 

(Figure 7A) and body volume (Figure 7B) for these 
goats. This difference was significant (p < 0.001) when 
observing the mean mass between stimulated migration 
(86 ± 2 kg) and spontaneous migration (71 ± 3 kg) goats. 
All sample groups had a normal data distribution (p < 
0.05, D’Agostino Test), highlighting the importance of 
managing livestock production in the semiarid region 
(Santana; Encinas, 2016).

There was a significant and direct (sigmoidal) 
proportionality in the relationship between the mass of a 
goat and the cactus density where it moved, as shown from 
the points of spontaneous migration at the beginning of 
the curve and stimulated migration at the end of the curve 
(Figure 7C). This result also highlights the importance 
of techniques such as the application of deep learning 
associated with aerial surveys in dystrophic regions 
to cause, through increased production, an increase in 
local revenues and positive socioenvironmental impacts 
(Encinas; Santana; Muñoz, 2019; Santana; Encinas; 
Muñoz, 2022).

Therefore, this study demonstrated the need 
to unite science, technology and society to overcome 
historical social demands: productivity in an area of ​​
environmental dystrophy (Brazilian semiarid). Demand 
collection, method structure selection, data analysis, 
technological systematization for the biophysical and 
environmental assessments of a production scenario, 
and the positive and real impact in an area of ​​social and 
environmental vulnerability were actions that highlighted 
the efficiency of interdisciplinarity in contextual 
productive solutions. This work aligned the determination 
of the spatial distribution of plant and animal biomasses 
through images (Santana; Encinas; Muñoz, 2022), the 
ability to obtain images by cameras coupled to drones 
(Pearline; Kumar; Harini, 2019; Quevedo et al., 2019), 
scientific-technological engagement to search for a 
contextual and practical solution (Lima et al., 2019; Lima 
et al., 2022), science applied to production (Santana; 
Encinas; Muñoz, 2019), the environmental efficiency 
of primary energy use (Santana; Imaña- Encinas, 2013; 
Imaña-Encinas et al., 2016; Santana; Encinas, 2018; 
Imaña-Encinas et al., 2021) and positive social and 
economic impacts (Santana et al., 2015; Lima et al., 
2019; Nascimento et al., 2022). The proposed methods 
and analyses are interdisciplinary and show the interface 
of technologies with sociotechnical enterprises, the 
solidarity economy, cultural innovations, territorial 
considerations and the sustainability of primary 
environmental resources (Hafstad, 1957; Lee, 2010).
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Figure 7: Mass of Capra aegagrus-hircus (Lineu, Bovidae) in spontaneous migration and stimulated migration 
areas, (B) representation of the volumetric distinction between individuals of the two types of migration, and (C) 
relationship between the mass of Capra sp. and the density of forage cactus Opuntia ficus-indica (Mill, Cactaceae), 
average of the five hectares studied (n = 50 for each group).

Figure 6: Detection and accuracy probabilities of the forage cactus Opuntia ficus-indica (Mill, Cactaceae): (A) 3 m above 
the surface in an area of ​​high cactus density, and (B) at 100 m in an area with low-density palm. YOLOv3 was used.
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CONCLUSIONS
Drone image collection and deep learning 

classification (convolutional neural network) were efficient 
and effective in identifying and calculating the density 
of the forage cactus species Opuntia ficus-indica (Mill, 
Cactaceae) in the Brazilian semiarid region. The results were 
verified using precision analysis and automatic detection. 
The application of this in natura deep learning technique in 
areas of water scarcity (environmental dystrophy) proved 
to be relevant and fundamental for strengthening Livestock 
4.0 in Industry 4.0.
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