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ABSTRACT 
Remote sensing has proven to be a promising tool allowing crop monitoring over large geographic areas. In addition, when combined 
with machine learning methods, the algorithms can be used for estimating crop yield. This study sought to estimate soybean yield 
through the enhanced vegetation index and normalized difference vegetation index. These vegetation indices were obtained using 
moderate-resolution imaging spectro-radiometer (MODIS) sensors on AQUA and TERRA satellites and multispectral instrument (MSI) 
sensor on Sentinel-2 satellite. Random forest (RF) algorithm was used to predict soybean yield and the estimation models were 
compared with the actual plot’s yield. The RF algorithm showed good performance to estimate soybean yield with our models (R2 
= 0.60 and RMSE = 0.50 for MSI; R² = 0.63 and RMSE = 0.59 for MODIS). Vegetation indices with imaging dates corresponding to the 
crop’s maturation had a higher degree of importance in its predictive ability. However, when comparing the actual and predicted 
soybean production values, differences of 145 kg ha-1 in contrast to 4 kg ha-1 were found for the MODIS and MSI models, respectively. 
Therefore, the MSI sensor integrated with machine learning algorithms accurately estimated crop yields.

Index terms: Remote sensing; yield estimation; machine learning.

RESUMO
O Sensoriamento Remoto orbital (SR) tem se mostrado uma ferramenta promissora, pois permite o monitoramento de culturas em 
grandes áreas geográficas. Além disso, quando métodos de Aprendizado de Máquina (AM) são combinados, os algoritmos podem ser 
usados para estimativas de produtividade de culturas. Assim, o estudo teve como objetivo estimar a produtividade da soja por meio 
dos índices de vegetação EVI (Enhanced vegetation index) e NDVI (Normalized Difference vegetation index), obtidos por meio dos 
sensores MODIS (Moderate-Resolution Imaging Spectroradiometer) dos satélites ACQUA e TERRA e MSI (Multispectral Instrument) 
do satélite orbital Sentinel-2. Neste estudo, o algoritmo Random Forest (RF) foi usado por ser amplamente difundido no estudos 
previsão de safras, e os modelos de estimativa de rendimento da soja foram comparados com o rendimento real da parcela. Os 
resultados mostraram bom desempenho do algoritmo de RF para estimar a produtividade da soja, obtendo R2 de 0,60 e RMSE de 
0,50 para MSI; e R² de 0,63 e RMSE de 0,59 para MODIS na validação. Na modelagem, os índices de vegetação com datas de imagem 
correspondentes à maturação da cultura tiveram maior grau de importância na previsão. No entanto, ao comparar os valores reais 
e previstos de produção de soja, houve uma diferença de 145 kg ha-1 para o modelo gerado pelo MODIS e apenas 4 kg ha-1 para o 
MSI. Portanto, o sensor MSI integrado aos algoritmos de aprendizado de máquina estima com precisão o rendimento das culturas.

Termos para indexação: Sensoriamento remoto; estimativa de produção; aprendizado máquina.

INTRODUCTION
Brazil is the second largest soybean producer 

in the world, and part of this success is due to solid 
investments in technologies allowing this crop to adapt to 
its soil and climate conditions. The development of highly 
productive cultivars resistant to tropical climates, advances 

in plant mineral nutrition technology, and strategies for 
pest and disease control are among the most significant 
advances (Empresa Brasileira de Pesquisa Agropecuária 
- EMBRAPA, 2020).

During the last 10 years, the soybean cultivation 
area in Brazil increased from approximately 24 to 
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39 million hectares, with production rising from 75 
to 124 million tons and 3.526 kg ha-1 on average 
(Companhia Nacional de Abastecimento - CONAB, 
2023). The Brazilian soybean 2019/2020 harvest was 
approximately 125 million tons. The largest producers 
were the Mato Grosso state reaching about 36 million 
tons, Paraná with 21 million, Goiás with 13 million, 
Rio Grande do Sul and Mato Grosso do Sul with 11 
million tons each (CONAB, 2020). For the Paraná state, 
the productivity was 3.792 kg ha-1 (Departamento de 
Economia Rural - DERAL, 2020).

As soybean productivity increases, production 
costs also rise. Thus, monitoring crop nutritional 
status and adopting more sustainable techniques that 
guarantee the rational use of inputs are becoming 
more necessary for farmers. Precision agriculture 
has emerged as a tool allowing the management of 
the production unit through its spatial and temporal 
variations using numerous methodologies, including 
remote sensing (RS).

Through images obtained by sensors embedded 
in satellites, RS can generate information about the 
physiological and developmental conditions of crops, 
even in large areas, in a practical and low-cost manner. 
This type of technology can be used to predict productivity 
in regions where crops are being grown (Weiss; Jacob; 
Duveiller, 2020). Although orbital sensors have limitations 
concerning resolution, especially regarding spectral and 
spatial accuracy and cloud cover, they are well positioned 
on stable platforms compared to airborne sensors, 
automatically generating images with less distortion 
(Singh et al., 2020).

The application of RS techniques to crops 
includes understanding the interaction processes 
between electromagnetic radiation and the different 
vegetation physiognomic types (Ponzoni; Shimabukuro; 
Kuplich 2012). The spectral response of crops depends 
on a series of biochemical factors of the targeted plant 
species, in addition to the physical characteristics of 
the canopy. These factors are specific to the canopy 
architecture, plant development stages, agronomic 
parameters, and atmospheric conditions (Martins; Gallo, 
2015). In this context, the enhanced vegetation index 
(EVI) and the normalized difference vegetation index 
(NDVI) are widely used (Ba et al., 2022) because they 
capture the status and trend of crop growth (Shammi; 
Meng, 2021). NDVI typically relies on the pigment 
absorption feature in the red and near-infrared regions. 
EVI relies on the electromagnetic spectrum’s red, blue, 
and near-infrared regions. Compared to NDVI, EVI is 

less sensitive to different soil compositions (Huete; 
Justice; Leeuwen, 1999).

The estimation of agricultural production is 
essential for market planning and the adoption of public 
policies to combat hunger. RS has been widely used 
for data analyses of farming systems. However, this 
requires processing vast amounts of data from different 
orbital and suborbital platforms. Machine learning (ML) 
methods have been employed in this complex scenario 
due to their high capacity to process large amounts of 
input data and deal with linear tasks. Recently, advances 
in target detection technologies and ML methodologies 
have provided greater cost-effectiveness and solutions 
for better estimating the state of crops. This will soon be 
a routine practice in precision agriculture (Chlingaryan; 
Sukkarieh; Whelan, 2018).

In this context, several agricultural studies have 
integrated data from orbital sensors and ML algorithms. 
Stepanov et al. (2020) used data from the moderate-
resolution imaging spectro-radiometer (MODIS) sensor to 
monitor soybean crop yields in the Far East of Russia. In 
turn, Habibi et al. (2021) analyzed the spatial variability 
of soybean plant density with images from the commercial 
PlanetScope sensor. Xin et al. (2013) developed models 
to estimate corn and soybean production efficiency with 
MODIS sensor data. Li et al. (2022) used data from the 
MODIS sensor associated with environmental variables 
to estimate wheat yields in northwest China.

Among the different ML methods, the decision 
tree-based random forest (RF) method has been widely 
used in different research areas (Minnoor; Baths, 2023), 
with good performance in estimating crop productivity 
(Alabi et al., 2022; Khanal et al., 2018). Furthermore, RF 
can identify the relative importance of each predictor for 
the response variable. This study used the RF regression 
algorithm to compare the performances of MODIS and 
MSI orbital sensors in estimating soybean yield through 
EVI and NDVI vegetation indices.

MATERIAL AND METHODS
This study was conducted in 16 agricultural 

plots, with areas between 12 and 150 ha, concerning the 
2020/2021 harvest. This area is located in the Pato Branco 
Regional Nucleus of Paraná State Department of Agriculture 
and Supply (SEAB, Brazilian acronym), in municipalities in 
the southwest of the Paraná State (Figure 1), in the southern 
region of Brazil.

The Pato Branco Regional Nucleus had a 12.9% 
increase in soybean cultivation area and a 33.9% increase 



Comparative analysis of orbital sensors in soybean yield estimation by the random forest algorithm 3

Ciência e Agrotecnologia, 47:e002423, 2023

in soybean grain production, totaling 1,292,682 tons. 
These values allowed this regional nucleus to occupy the 
fifth-ranked position in production in the Paraná State in 
the 2019/2020 harvest (DERAL, 2020).

The region’s climate is predominantly Cfa and Cfb 
according to the Köppen classification, with a historical 
average annual precipitation (from 1977 to 2006) ranging 
from 1800 to 2000 mm (Agência Nacional de Águas 
- ANA, 2013). The pedology is comprised of Latosol, 
Nitisol, Chernozem, and Neosol in those areas with greater 
slope (EMBRAPA, 2006).

To obtain real data on soybean production in the 
2020/2021 harvest, as well as the spatial variability of each 
plot, a John Deere GreenStar TM 3 (2630) harvest monitor 
was used, which made it possible to obtain production 
data with approximate dimensions of 1.5 x 8.5 meters 
(Figure 2).

To estimate soybean production, the predictor 
variables NDVI (Equation 1) and EVI (Equation 2) 
corresponding to the period from sowing to harvest (October 
to March) were generated using RS. Visible and infrared 
images from the MSI sensor of SENTINEL-2A and 2B 
(L2A) satellites of the European Space Agency (ESA) 
were obtained without the presence of clouds, with a spatial 
resolution of 10 m and temporal resolution of five days, 
adjusted to the top of the atmosphere, totaling 16 variables. 

Images from the MODIS sensor were obtained 
from the portal of the Brazilian Agricultural Research 
Corporation (EMBRAPA, Brazilian acronym), which 
distributes cloud-free images from the National Aeronautics 
and Space Administration (NASA). The MODIS image 
collection had 38 variables with a spatial resolution of 250 
m and a temporal resolution of two days. The preparation 
of the indices and the data extraction were performed using 
QGIS 3.10 software.

Figure 1: Location of study areas.
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The knowledge-discovery in databases (KDD) 
method is used to process a large dataset through the 
pre-processing, mining, and post-processing of data 
(Goldschmidt; Passos; Bezerra, 2015). Production 
granularity of the pre-processing stage, from the specific 
data on soybean productivity in the plots, was adjusted 
according to the spatial resolutions of the MODIS and 
MSI images. The average was calculated for each pixel of 
250 and 10 meters, respectively. After the adjustment, the 
average values of each sensor’s EVI and NDVI vegetation 
indices were extracted using the Zonal Statistics tools of 
the QGIS 3.10 software.

Processing and extraction of soybean vegetation 
indices in the selected plots made it possible to create two 
data sets for the 2020/2021 harvest, one for MSI with 17 
attributes and 74,570 instances; and another for the MODIS 
sensor, with 39 attributes and 311 instances. Subsequently, 
outliers and extreme values were identified and excluded.

The data mining step was carried out in R Studio 
(R Core Team, 2021), where the division of the sets 

first took place, 70% for training and 30% for model 
validation. RF regression was performed using the 
Random Forest package based on the production response 
variable and the vegetation indices, the latter used as 
predictor variables.

A ntree of 100 was determined for RF regression 
and the predictor variables were set as the default. 
Decision trees are represented as a set of rules that start 
at the tree’s root and group to one of its leaves. The final 
product of these decisions consists of a directed acyclic 
graph in which each leaf node corresponds to a class or a 
decision node containing a test of some attribute (Monard; 
Baranauskas, 2003).

The RF regression algorithm builds a multitude 
of decision trees when training the samples through an 
average prediction of the individual trees. For James et 
al. (2013), this algorithm builds decision trees each time 
a split in a tree was considered, causing a random sample 
of n predictors to be chosen as candidates, and dividing 
complete sets of predictors (Figure 3).

Figure 2: General scheme for obtaining soybean harvest data in plots. Adapted from John Deere (2022).
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From the analyzes carried out by RF, it was possible 
to evaluate the performance of the models using data 
from the MODIS and MSI sensors, generate descriptive 
statistics, and consider which were the five most important 
variables for estimating soybean yield.

RESULTS AND DISCUSSION
In our test model, the RF regression models have 

a coefficient of determination (R²) of 0.63 or 0.60 for 
vegetation indices generated by MSI (Figure 4c) and 
MODIS (Figure 4d) data, respectively. Root mean squared 
deviation (RMSE) values showed that MSI and MODIS 
sensor data models were similar.

These results were similar to other studies using 
vegetation indices as predictive variables to estimate the 
productivity of crops. For example, the estimation models 
from Johnson (2014) showed R2 = 0.71 for soybean and 
R2 = 0.77 for corn. Liu et al. (2020) applied the MODIS 
NDVI to estimate barley, rapeseed, and wheat yields 

in humid regions and obtained R2 values between 0.53 
and 0.70. 

Khanal et al. (2018) used a high-resolution 
multispectral image of bare land and topographic terrain 
to predict soil properties and corn yield using machine 
learning algorithms and obtained R² = 0.53 with the RF 
algorithm. Pantazi et al. (2016) estimated wheat production 
with counter-propagation artificial neural networks with 
an average overall accuracy of 78.3%. In the work of Li et 
al. (2022), vegetation indices from MODIS images were 
used to estimate wheat yields in Northwest China, with 
R² = 0.74 and RMSE of 0.758.

It is worth noting the recent use of unmanned 
aerial vehicles in monitoring crops, which allows greater 
autonomy when obtaining images, especially with their 
high spatial resolution. However, the study carried out 
by Alabi et al. (2022) monitored a soybean field located 
in Nigeria with images of 12 cm of spatial resolution and 
algorithms such as RF and the Cubist model obtained an R² 
of 0.89; higher than the results presented in this research.

Figure 3: Representative scheme of the RF regression algorithm. Adapted from Rodriguez-Galiano et al. (2016).
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Regarding the average of actual and estimated 
productivity of the fields studied (Table 1), a difference 
of only 4 kg ha-1 was found from the MSI data and 145 
kg ha-1 for the MODIS sensor. These results showed 
that the MSI sensor was more sensitive in generating 
the vegetation indices and consequently gave a better 
predictive performance by ML.

The RF regression algorithm performed well in 
estimating soybean yields in the 16 fields studied (Table 1 
and Figure 3). Jeong et al. (2016) the potential of the RF 
regression algorithm for estimating global and regional 

crops. RF can model complex cropping systems such 
as wheat, corn, and potato, and configures itself as an 
alternative statistical modeling method for crop yield 
prediction.

The regression models generated from MODIS and 
MSI images showed differences in predicting the average 
productivity of the plots measured in tons per hectare. 
However, they presented similar R² and RMSE. The 
differences in the resolution of the sensors could explain 
this, despite the low temporality of the MSI images with its 
spatial resolution of 10 m, which allowed to estimate the 

Figure 4: Comparison of actual and predicted soybean yield dispersion in the field by using RF regression in 
testing data obtained from MODIS (a, c) and MSI (b, d) sensors.
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production of each 100 m2. In contrast, the MODIS sensor 
has a pixel of 250 m allowing to estimate the production 
for every 6.25 ha.

decrease in node impurities from the division in the 
predictors. An increase in the IncNodePurity value implies 
a reduction in the mean squared error, which means that 
the highest values represent the essential variables for the 
response (Habibi et al., 2021). Figure 5 shows the relative 
importance of the variables in the models used in this study.

Both EVI and NDVI vegetation indices, despite 
having differences in their composition and sensitivity 
to different soil compositions, as highlighted by Huete, 
Justice, and Leeuwen (1999), had the same importance 
in predicting soybean yield with the models generated for 
both MODIS and MSI sensors.

The most prominent predictor variables were those 
corresponding to January and February, equivalent to the 
physiological maturation stages of the soybean crop called 
R7 and R8. In these stages, the predominant characteristic 
is the appearance of the first normal pod on the main 
stem with mature color (until 95% yellowing of the pods) 
(Neumaier et al., 2020).

In contrast, the study carried out by Shami and 
Meng (2021) in the Mississippi Delta with the MODIS EVI 
and NDVI indices was based on growth metrics from the 
beginning to the complete development of the pods (R3, 
R5, and R6), and showed the best-predicted soybean crop 
productivity with 95% accuracy. However, the response 
variable inserted in the model was at the municipality level 
obtained through agricultural statistics, unlike the present 
study, which uses production data from orbital sensors and 
vegetation indices.

Table 1: Descriptive statistics of actual and estimated 
soybean yield (tons ha-1) of the plots by RF.

Descriptive 
statistics

Actual Yield
(tons ha-¹)

Estimated Yield
(tons ha-¹)

MODIS MSI MODIS MSI
Minimun 1.222 0.316 2.115 0.747

1st quartile 2.898 3.059 2.989 3.239
Median 3.385 3.644 3.411 3.626

3rd quartile 4.023 4.320 3.702 4.152
Maximum 6.751 8.593 5.123 7.253

Mean 3.562 3.760 3.417 3.764
Standard 
Deviation 1.128 1.282 0.689 0.995

CV 31.6% 34.1% 20.1% 26.4%

Figure 5: Ranking of the most important predictor variables for the MODIS (a) and MSI (b) sensor models.

Among these analyses, it was also possible 
to evaluate which five variables contributed most to 
generating the productivity estimation models. The 
importance of the input variables can be evaluated 
through the impurities implemented in the RF algorithm. 
The impurities are extracted from the regression trees 
by calculating IncNodePurity, corresponding to the total 
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CONCLUSIONS
We obtained good performance in estimating 

agricultural yield by the high-performance RF algorithm 
associated with EVI and NDVI vegetation indices 
from MSI sensor images, which have a lower temporal 
resolution but with high spatial resolution. Based on the 
modeling obtained in this study, it will be possible to 
estimate production at regional levels in the future.
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