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INTRODUCTION

Cancer is the second leading cause of death in the 
world. Among the different types of cancer are the solid 
tumors, i.e., carcinomas, sarcomas and lymphomas. In 
this sense, nanotechnology has been growing very fast in 

terms of developing new strategies against solid tumors, 
by optimizing diagnostic efficiency, developing novel 
anticancer treatments, and reducing the toxicity and 
improving the aqueous solubility of the drug candidates 
(Glisoni, Sosnik, 2014a; Lv et al., 2013; Glisoni et al., 
2013; Glisoni et al., 2012). The use of nanotechnology 
is purportedly related to the enhanced permeability and 
retention effect (EPR), which takes advantage of the 
properties of solid tumors that may promote angiogenesis 
and ensure high blood supply to the growing mass, 
causing imperfect vascular structures and a significant 
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lack of lymphatic drainage. The EPR could allow the 
extravasation of nanomaterials and their accumulation 
inside the pathological site (Eawsakul et al., 2017; Maeda 
et al., 2000). 

Nanomedicines allow early tumor diagnosis, which 
is the most important fact to increase patient survival 
(Oda et al., 2017). Several types of nanosystems for 
diagnostic imaging have been described; among them, 
quantum dots, gold nanoparticles, carbon nanotubes, 
silica nanoparticles, liposomes, nano micelles and 
dendrimers can be highlighted (Acharya, Mitra, Cholkar, 
2017). These nanosystems have the following advantages, 
among others: i) their nanometrical size, ii) the possibility 
of surface functionalization for active drug-delivery, iii) 
their passive targeting, iv) the solubilization of poorly 
soluble molecules in aqueous milieu, v) the protection 
of encapsulated substances from degradation and 
metabolism, vi) improved pharmacokinetic effects. These 
nanodevices particularly used in diagnostic imaging have 
been described coupled with magnetic resonance, optical, 
nuclear, computed tomography and ultrasound imaging 
(Acharya, Mitra, Cholkar, 2017; Marques Grallert et 
al., 2012). Advanced thermosensitive nanomaterials 
are promising “smart materials” for diagnosis when 
stimulated at a particular temperature range (Nardecchia 
et al., 2019; Cohn, Sosnik, Levy, 2003). 

Among the different nanosystems used in 
pharmaceutical formulations for diagnosis, due emphasis 
should be given to polymeric micelles (PMs) (Oda et al., 
2017; Mi et al., 2013; Marques Grallert et al., 2012), which 
are colloidal particles formed by the spontaneous self-
assembly of amphiphilic moieties in water or by a solvent 
evaporation and rehydration method (Glisoni, Sosnik, 
2014a; Oda et al., 2017). Particularly, the X-shaped 
amphiphilic block copolymers (poloxamine, Tetronic®), 
with an ethylenediamine central group bonded to four 
arms of poly(propyleneoxide)-poly(ethyleneoxide) (PPO-
PEO) blocks, display great potential as smart delivery 
systems, with modified biodistribution properties 
(Glisoni, Sosnik, 2014a; Glisoni, Sosnik, 2014b; Cuestas 
et al., 2013; Marques Grallert et al., 2012). The presence 
of the tertiary amines in the central chain cause this 
material to exhibit temperature and pH responsiveness 
(Glisoni, Sosnik, 2014a; Glisoni, Sosnik, 2014b; 

Cuestas et al., 2013). In particular, the T1307 copolymer 
(molecular weight 18,000 g mol-1), which contains a 
large chain of PPO (mean number of propyleneoxide 
units per PPO block of 23) and another of PEO (mean 
number of ethyleneoxide units per PEO block of 72), 
forms physically stable PMs toward dilution and has been 
proposed as a drug-solubilizing nanocarrier, among other 
applications (González-López et al., 2008; Chiappetta, 
Sosnik, 2007; Cohn et al., 2003). Several studies have 
been performed to analyze the biodistribution of PMs in 
vitro and in vivo (Moghimi, Hunter, 2000; Araujo et al., 
1999; Töster, Müller, Kreuter, 1990), although a specific 
report on the in vivo biodistribution of T1307 PMs has 
not been found.

Considering this background, the purpose of our 
study was the development of T1307 PMs as nanocarriers 
for forthcoming in vivo studies as diagnostic agents. To 
this end, we studied the biodistribution of tumor-bearing 
mice, using two T1307-probes: (i) fluorescent- and (ii) 
radioactive-labeled.

MATERIAL AND METHODS

Material

Formyl-BODIPY and phosphonium ylide were 
prepared following previous descriptions (Wube et 
al., 2011; Jiao et al., 2009). Tetronic® 1307 (T1307; 
molecular weight 18,000 g mol-1; PEO content 70 
wt%) was donated by BASF Corporation (Buenos 
Aires, Argentina) and used as received. Triethylamine, 
n-hexane, methylenedichloride, CDCl3, anhydrous 
dimethylformamide, tin (II) 2-ethylhexanoate (Sn(Oct)2, 
95%), D2O, phosphate buffer saline (PBS), SnF2

.2H2O, 
ethanol, saline, pyridine and acetic acid were all purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine 
serum (FBS) and RPMI milieu were purchased from 
Capricorn Scientific (Germany). Solvents were dried 
over CaH2 and stored over molecular sieve (4 Å). Other 
compounds were used without any purification process. 
Water was purified and deionized (18 MΩ/cm2) on a 
Milli-Q water filtration system (Millipore Corp., Milford, 
MA, USA). 99Mo-99mTc generators were purchased from 
TecnoNuclear (Argentina).
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Equipments

Fourier-transform infrared (FTIR) spectra were 
acquired, in solid state (KBr), using an IR-Prestige21 
FTIR-ATR infrared spectrophotometer (Shimadzu, 
Kyoto, Japan) with Happ-Genzel apodization. The 
analyzed region was in the range between 4000-400 
cm-1 (10 scans, spectral resolution of 4 cm-1). The solid 
lyophilized samples (T1307-BODIPY, L-T1307-
BODIPY and lyophilized pristine T1307 were mounted 
on the ATR metal-glass plate and the spectra were 
obtained with the IR SOLUTION spectrum software, 
which were subsequently processed using Origin 8.

Nuclear Magnetic Resonance (NMR) spectra were 
performed in a Bruker DPX-400 spectrometer, operating 
at a frequency of 400.13 MHz for 1H and 100.77 for 13C. 
The NMR spectra were analyzed in 15 % w/v CDCl3 
solutions for BODIPY-ester and T1307-BODIPY 
(n=2), and in 15 % w/v DMSO-d6 solutions for L-T1307-
BODIPY (n=3). The spectra were obtained using the 
MestReNova 8.0 software.

Fluorescence spectra were performed in a microplate 
reader (Thermo Scientific™ Varioskan™ LUX multimode 
microplate reader, USA). 

Particle size and zeta potential of L-T1307-BODIPY 
micelles were obtained from five repeated measurements 
by a dynamic laser-diffraction particle-size detector and a 
Malvern Zeta analyzer (Nano-ZS, Malvern Instruments, 
Malvern, UK), respectively. The measuring process was 
kept at 25 °C. 

Radioactivity was counted in a CRC7 Capintec dose 
calibrator and in a solid scintillation counter detector with 
3”×3” NaI(Tl) crystal associated with a single channel 
analyzer (ORTEC, Oak Ridge, TN).

The encapsulation efficiency (%EE) was determined 
by reverse-phase HPLC chromatography (RP-HPLC) 
(Agilent 1200 Series Infinity Star, Santa Clara, USA) 
with a 5 µm C-18 Kinetex column (Phenomenex) run 
with an aqueous solution of trifluoroacetic acid 0.05 % 
(solvent A) and ethyl acetate/trifluoroacetic acid 0.1 % 
(solvent B), at a flow rate of 1 mL/min and performed 
in a gradient of A:B (100:0) for 15 minutes, A:B (0:100) 
for 2 minutes and finally A:B (100:0) 3 minutes, with 
UV detection.

Animals

Balb/c female mice weighing 18-20 g were produced 
and provided by Unidad de Reactivos para Biomodelos 
de Experimentacion (URBE), Facultad de Medicina, 
Universidad de la República, Uruguay. The authors 
state that they followed the principles outlined in the 
Declaration of Helsinki for all animal experimental 
investigations. Animals were housed in wire mesh 
cages at 20 ± 2 oC with 12 h artificial light-dark cycles. 
The animals were fed ad libitum to standard pellet diet 
and water and were used after a minimum of 3 days 
acclimation to the housing conditions.

All protocols for animal experimentation were 
carried out in accordance with procedures authorized 
by the Ethical Committee for Animal Experimentation, 
Uruguay, by whom this project was previously approved 
(CHEA-UdelaR Protocol number 240011-001547-16).

Data analysis

The statistical analysis was performed using the 
Student’s t-test (in a comparison between two groups); 
p level less or equal to 0.05 was defined to determine 
statistically significant differences.

Methods

Synthesis of the T1307-BODIPY

The synthesis of T1307-BODIPY followed a two-
step reaction (Figure 1): synthesis of BODIPY-ester 
and conjugation of T1307 with BODIPY-ester to form 
T1307-BODIPY.

Synthesis of the BODIPY-ester

A mixture of formyl-BODIPY (80 mg, 0.28 
mmol), phosphonium ylide (192 mg, 0.55 mmol) and 
triethylamine (69 μL) was stirred at room temperature 
during three days under a nitrogen atmosphere. The 
mixture was evaporated in vacuo and the product was 
isolated using a preparative thin layer chromatography 
(SiO2, n-hexane:methylenedichloride (9:1)). Red solid, 
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FIGURE 1 – Synthetic procedure for T1307-BODIPY obtention.

Synthesis of the T1307-BODIPY (Glisoni, Sosnik, 2014b)

40 mg (40 %); 1H NMR (CDCl3, 400 MHz) δ (ppm): 
1.30 (3H, t), 2.34 (3H, s), 2.39 (3H, s), 2.46 (3H, s), 2.52 

(3H, s), 2.56 (3H, s), 4.19 (2H, q), 6.01 (1H, d), 6.05 (1H, 
s), 7.60 (1H, d); λexcitation/λemission (DMSO) = 514/550 nm.
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a Microcon® centrifugal filter (cut off 10 kDa) with the 
low-binding membrane of the mixture at 12,000 rpm 
for 10 minutes. Micelles were lyophilized and stored 
at 4 °C. The L-T1307-BODIPY was resuspended 
in MilliQ water and filtered by 0.22 µM for further 
studies (pH = 6.2). The encapsulation efficiency (%EE) 
was 82.7 %, particle size was 243 nm, polydispersity 
index was 0.32, and zeta potential was -2.9 ± 0.32 mV. 
1H NMR (DMSO-d6, 400 MHz) δ (ppm): 0.87 (3H, m, 
-CO2CH2CH3), 1.00-1.30 (170H, m, T1307-CH3), 2.30 
(2.5H, m, T1307-NCH2CH2N-), 2.46 (3H, s, BODIPY-
CH3), 2.56 (3H, s, BODIPY-CH3), 2.70 (3H, s, BODIPY-
CH3), 4.19 (2H, q, -CO2CH2CH3), 3.30-3.90 (890H, m, 
T1307-CH2 and T1307-CH), 4.64 (2.5H, bs, OH), 6.12 
(1H, d, -CH=CHCO2-), 6.37 (1H, s, H-pyrrole), 7.62 (1H, 
d, -CH=CHCO2-); IR (ν, cm-1): 3432, 2965, 1770, 1155.

Loading of T1307 with the radioactive probe (L-T1307-
99mTc) (García et al., 2018; Fernández et al., 2015; Giglio et 
al., 2008)

In order to label T1307 directly by stannous 
reduction of 99mTcO4

-, SnF2
.2H2O (0.2 mL of stock 

ethanolic solution, 1 mg/mL) was added to a solution 
of T1307 (0.5 mL of Milli-Q water, 0.15 g/mL) and 
Na99mTcO4 (14 mCi). The pH was then adjusted to 6.5. 
The mixture was incubated at room temperature for 20 
minutes, then transferred to a Microcon® centrifugal 
filter (cut off 10 kDa) with the low-binding Ultracel® 
membrane, and centrifuged at 12,000 rpm for 10 minutes. 
The collected aqueous supernatant was used to determine 
the labeling yield, radiochemical purity (RP) and for 
further studies in animals (pH = 6.9). The labeling yield 
and RP were estimated by i) an ascending instant thin 
layer chromatography (ITLC) using the chromatographic 
systems: a) saline; b) pyridine:acetic acid:water (3:5:1.5 
v/v), and ii) RP-HPLC using the conditions indicated 
above with UV and gamma detections. RP: 91.9 %.

Cell lines and culture conditions

The murine metastatic breast tumor cell line 4T1 
(CRL-2539™, ATCC®) was cultured in completed RPMI 
milieu supplemented with 10 % FBS. The culture was 

T1307 (35 mg, 1.9 μmol) and BODIPY-ester 
(3 mg, 8.3 μmol) were dissolved in anhydrous 
dimethylformamide (2.6 mL). Sn(Oct)2 (0.63 μL) was 
added and the flask was placed in a microwave oven 
(multimode WX-4000, EU Chemical Instrument Co., with 
20 mL Teflon reactors). The reaction mixture was exposed 
to the following microwave irradiation protocol: (i) two 
cycles of 5 minutes at 90 W power and (ii) one cycle of 5 
minutes at 200 W power. The total reaction time was 15 
minutes. The crude reaction solution was transferred to a 
Microcon® centrifugal filter (10 kDa) with a low-binding 
Ultracel® membrane. Centrifugation was performed at 
12,000 rpm for 10 minutes. After that, the supernatant was 
eliminated and centrifuged at 5,000 rpm for 10 minutes. 
The resulting supernatant was again eliminated and the 
residue was washed with dimethylformamide (100 μL) 
and centrifuged at 3,500 g for 10 minutes. Finally, two 
cycles of washing with Milli-Q water (100 μL, each) and 
centrifugation at 3,500 g for 10 minutes were performed. 
The residue, which corresponds to the product, was 
dissolved in Milli-Q water and stored at -20 oC until it was 
used. 1H NMR (CDCl3, 400 MHz) δ (ppm): 1.14 (276H, 
m, T1307-CH3), 2.23-2.36 (12H, m, T1307-NCH2CH2N- + 
4 -CH2CO2H), 2.45 (12H, s, 4 BODIPY-CH3), 2.51 (12H, 
s, 4 BODIPY-CH3), 2.55 (12H, s, 4 BODIPY-CH3), 2.66 
(24H, s, 8 BODIPY-CH3), 3.34-3.90 (1448H, m, T1307-
CH2, T1307-CH and 4 BODIPY-CHCH2CO2H), 6.08-
6.15 (4H, 3s, H-pyrrole); 13C (from 13C NMR, HSQC, and 
HMBC experiments, CDCl3) δ (ppm): 5.0 (-CH3), 12.6 
(-CH3), 14.0 (-CH3), 21.5 (-CH3), 36.0 (-CH2CO2H), 42.6 
(-CH2N), 70.6 (-CH2O), 120.3, 127.9, 148.3, 149.0, 152.1, 
165.9 (C=C and C=N), 170.9 (-CO2H); IR (ν, cm-1): 3443, 
2913, 1656, 1103; λexcitation/λemission (PBS) = 514/550 nm.

Loading of T1307 with the fluorescent probe (L-T1307-
BODIPY)

The typical encapsulation process was developed 
as follows: pristine T1307 (50 mg) was hydrated in PBS 
(0.4 mL) and kept at 4 oC for 30 minutes, after which 
the PBS was adjusted to a final volume of 0.5 mL and 
BODIPY-ester (2.9 mg) was added, followed by 1 h 
of stirring at room temperature. To remove the un-
encapsulated fluorescent probe, it was centrifuged using 
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grown grown in a humidified incubator containing 5 % 
CO2 and maintained at 37 oC. The cells were centrifuged 
at 1,000 rpm for 5 minutes. The supernatant was removed 
and the pellet was resuspended in RPMI.

In vivo studies

Tumoral model (Dávila et al., 2019; Gao et al., 2016)

Cell suspensions were prepared at 7 × 106 cells/mL 
in RPMI milieu. Afterwards, five-six week old Balb/c 
female mice were inoculated subcutaneously (after the 
preparation of cell suspension) into the fourth inguinal 
mammary fat pad (100 μL/mouse). Animals were palpated 
daily in order to record the presence, location, and volume 
of all tumors. Tumor diameters were measured daily with 
a sterile caliper, calculated using the ellipsoidal method 
volume. Palpable tumors ( ̴100 mm3) developed 5 days 
after the cell inoculation. Tumor diameters were measured 
daily with a vernier caliber (Ostrand-Rosenberg). The 
two diameters of the tumor, long (L) and short (C), were 
perpendicular to each other and covered the largest 
portion of the tumor in each direction. Tumor volume 
(V) was calculated using the following equation: V = (C2 

× L)/2 (Chiang et al., 2014; Dávila et al., 2019).

In vivo and ex vivo fluorescence imaging of L-T1307-
BODIPY on Balb/c mice with primary mammary tumors 
induced with 4T1 cells (Calzada et al., 2017)

At day 14 after the cell inoculation, fluorescence 
imaging study was conducted on Balb/c mice with 
induced 4T1 tumors by the intravenous injection (IV) 
of 50 mg of L-T1307-BODIPY per kg of body weight, 
via the animals’ tails. For these experiments, the animals 
were anesthetized with isoflurane immediately before the 
injections. After being introduced into an optical imaging 
platform (In-Vivo MS FX PRO instrument, Bruker, 
Billerica, USA), the animals were measured using the 
X-ray and fluorescence modes (10 seconds acquisition, at 
excitation and emission wavelengths of 480 nm and 535 
nm), 1 and 24 hours after the IV injections, n=3 for each 
time point. After each imaging time point, mice were 
sacrificed for organ dissection, macroscopic examination, 

biodistribution and ex vivo imaging was carried out 
separately using the aforementioned imaging equipment. 
Animals without injection were used as negative control.

Biodistribution assay of L-T1307-99mTc on Balb/c mice 
with primary mammary tumors induced with 4T1 cells

Biodistribution study of the radioactive probe was 
performed by IV injections, via tail, of 856 μCi of the 
L-T1307-99mTc on Balb/c mice with and without 4T1-
induced tumors (day 14 after cell inoculation). The 
animals, n=3 for each time point, were sacrificed by 
cervical dislocation 1, 2, 4 and 24 hours after the IV 
injections. The radioactivity in organs and tissues was 
measured in the solid scintillation counter detector 
described above. Organ weight correction was applied. 
The results are expressed as the percentage uptake of 
injected dose per tissue weight (%Act/g).

RESULTS AND DISCUSSION

Preparation and physicochemical characterization 
of fluorescent T1307-BODIPY and L-T1307-BODIPY 
probes

In order to generate a physiologically stable T1307-
probe, we initially proposed the covalent conjugation 
between this copolymer and an adequate BODIPY-
derivative (Rodríguez et al., 2017). For that reason, 
we planned to use an ester containing BODIPY, i.e., 
BODIPY-ester (Figure 1), that could be able to react with 
the free-hydroxyl groups of the T1307 copolymer, via a 
conventional transesterification process in the presence 
of Sn(Oct)2 as catalyst (Glisoni, Sosnik, 2014b). In this 
sense, a T1307 decorated with BODIPY moieties (T1307-
BODIPY, Figure 1) was successfully prepared, through 
an assisted-microwave procedure, but 1H NMR, 13C NMR, 
and IR spectroscopies suggested that the final product 
was the result of hydroxyl-1,4-addition followed by ester-
hydrolysis, incorporating four units of BODIPY for each 
unit of T1307 (Figure 2B and 3). The T1307-BODIPY 
fluorescent probe had the same emission spectrum as the 
BODIPY-ester but did not show the same fluorescence 
intensity (Figure 4). Moreover, it displayed very poor 
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aqueous solubility (in PBS and PBS with up to 10 % of 
DMSO) and the aqueous solution had acidic pH (5.8). For 
this reason, all our attempts to carry out in vivo studies 
were unsuccessful.

Studies with fluorescent probe-loaded T1307 PMs 
(L-T1307-BODIPY)

BODIPY-ester loaded within T1307 PMs was 
successfully performed in a short time, producing 
L-T1307-BODIPY with a %EE of 82.7 and nanometric 
size. The NMR and IR spectra of L-T1307-BODIPY 
confirmed a correct encapsulation process without 
structure modification of the BODIPY-ester fluorophore 
(compare Figures 2A and 2C, and see Figure 3).

After the IV injection of L-T1307-BODIPY, mice 
did not reveal toxicity effects on during in vivo studies, 
according to the Irwin test (Dávila et al., 2019). This test 

allowed us to consider the qualitative effects of L-T1307-
BODIPY on behavior and physiological function, in the 
first dose that has observable effects as well as in doses 
that not induce behavioral toxicity. 

It was possible to observe an accumulation of 
BODIPY-fluorophore in the region of the tumor after 1 
hour of biodistribution (Figure 5A, left). After 24 hours 
of biodistribution, fluorescence was diffuse (Figure 5A, 
right), not only evident in the tumor region but also in 
other areas that could indicate biodistribution by the 
circulation of this type of nanomaterial (PMs). In order 
to know the real fluorescence-contribution of each tissue 
and organ, the ex vivo analyses were done in each time 
point (Figures 5B and 5C). In these studies, we could 
observe the typical intestinal and stomach fluorescence, 
due to the presence of chlorophyll contained in the feed-
pellets, although the signal was significantly different to 
the control 1 hour after injection. 
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FIGURE 2 – Selected section of 1H NMR spectra. A) For BODIPY-ester. B) For T1307-BODIPY. Inset: region of the H-pyrrole. 
C) For L-T1307-BODIPY. In B) and C) residual DMF was observed as doublet in the region near to 2.9 ppm.
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Additionally, significant fluorescence accumulation 
in tumor and kidney tissue (not significantly different) 
by L-T1307-BODIPY was observed. Ex vivo studies, 

24 hours after L-T1307-BODIPY injection, revealed no 
fluorescence differences in comparison with untreated 
animals (controls) (Figure 5C).

4000 3500 3000 2500 2000 1500 1000 500

cm-1

 L-T1307-BODIPY
 T1307
 T1307-BODIPY

FIGURE 3 – FTIR spectra of T1307 (red), T1307-BODIPY (black) and L-T1307-BODIPY (blue).

	 A)	 B)

FIGURE 4 – UV/Vis absorption (black lines) and fluorescence excitation (gray lines) spectra. A) BODIPY-ester (λemission (DMSO) 
= 550 nm). B) T1307-BODIPY (λemission (PBS) = 550 nm) (c = 1.0 × 10-5 M, 20 °C).
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Studies with radioactive probe-loaded T1307 PMs 
(L-T1307-99mTc)

99mTc loaded within T1307 PMs was successfully 
performed in a short time, producing good-yield L-T1307-
99mTc. Afterwards, Microcon® centrifugation yielded the 

desired probe with acceptable amounts of free 99mTcO4
- 

and 99mTcO2, according to the chromatographic studies, 
being the RP of 91.9 %, and without any negative effect 
on the properties of these PMs (aqueous solubilization, 
adequate pH and nanometric size).

 

FIGURE 5 – A) In vivo images of Balb/c mice bearing 4T1 mammary tumor injected with L-T1307-BODIPY, 1 hour (left) 
and 24 hours (right) post-injections. Yellow arrows indicate the tumor location. B) B) Ex vivo images of organs, fluorescence 
mode (left) and X-ray (right) to calculate the maximum area of the organs, from Balb/c bearing 4T1 mammary tumor, 1 hour 
post intravenously injections of L-T1307-BODIPY. Blue arrows indicate the tumor. C) Fluorescence intensities in organs (in 
arbitrary units). (*) p < 0.05.
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CONCLUSIONS

The described probes in this work, based of 
X-shaped T1307 polymeric micelles loaded with 
BODIPY-derivative or 99mTc-radionuclide, showed a 
promising use for breast cancer imaging.

Further studies, employing other fluorophores with 
emission ranges close to the near infrared window, other 
radionuclides and other tumoral models are currently 
being performed.
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FIGURE 6 – Biodistribution of L-T1307-99mTc with time post-injection Balb/c with an induced 4T1 tumor at 1, 2, 4 and 24 h post 
IV injection.

This radioactive probe was used to confirm the 
data obtained with L-T1307-BODIPY. After the IV 
injection of L-T1307-99mTc, mice did not reveal toxicity 
effects during in vivo studies according to the Irwin test 
(Dávila et al., 2019). From the biodistribution studies, 
when L-T1307-99mTc was injected in the 4T1 breast 
tumor model developed in Balb/c mice, it was possible 
to observe the maximum radioactivity accumulations 
in the liver, the kidneys, the stomach and the tumor at 2 

hours after the injection (Figure 6). As in the studies with 
L-T1307-BODIPY, the kidneys and the stomach were the 
organs with the main intensity 2 hours after the injection, 
with depuration occurring 4 hours post-injection. Tumor 
radioactivity remained almost constant between 2 and 
4 hours with a slight decrease after 24 hours. The data 
indicated that L-T1307-99mTc in the studied organs could 
be observed up to 24 hours after the injection, correlated 
with the biodistribution of L-T1307-BODIPY.
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