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ABSTRACT. There are researchers who do not recommend data transformation arguing it causes problems in 
inferences and mischaracterises data sets, which can hinder interpretation. There are other researchers who 
consider data transformation necessary to meet the assumptions of parametric models. Perhaps the largest group 
of researchers who make use of data transformation are concerned with experimental accuracy, which provokes 
the misuse of this tool. Considering this, our paper offer a study about the most frequent situations related to data 
transformation and how this tool can impact ANOVA assumptions and experimental accuracy. Our database was 
obtained from measurements of seed physiology and seed technology. The coefficient of variation cannot be used 
as an indicator of data transformation. Data transformation might violate the assumptions of analysis of variance, 
invalidating the idea that its use will provoke fail the inferences, even if it does not improve the quality of the 
analysis. The decision about when to use data transformation is dichotomous, but the criteria for this decision are 
many. The unit (percentage, day or seedlings per day), the experimental design and the possible robustness of F-
statistics to ‘small deviations’ to Normal are among the main indicators for the choice of the type of 
transformation.  
Keywords: assumptions; coefficient of variation; criteria for data transformation; parametric and nonparametric statistics; 

robustness. 

Transformação de dados: uma ferramenta subestimada pelo uso inapropriado 

RESUMO. O recurso matemático de mudança de escala dos dados polariza a opinião dos pesquisadores. Para 
um grupo, a transformação não é recomendada por causar problemas inferenciais e descaracterizar o conjunto de 
dados, que dificultam a interpretação; enquanto para outro, é considerada necessária para atender as 
pressuposições dos modelos paramétricos. No entanto, o mau uso da transformação se dá a fim do experimento 
atingir metas de precisão. Por isto, aqui são abordadas as situações mais frequentes envoltas à transformação dos 
dados e seu impacto nas pressuposições dos modelos de análise de variância e na precisão experimental. Dados de 
sete experimentos conduzidos em delineamentos inteiramente casualizados ou em blocos casualizados foram 
usados como estudo de caso. A ineficácia do coeficiente de variação como indicador da necessidade de 
transformação foi revelada, como também que a transformação pode violar as pressuposições da análise de 
variância, desmistificando o entendimento de que seu uso, mesmo quando não melhora a qualidade da análise, 
não desqualifica as inferências. A decisão de transformar é dicotômica, mas os critérios para esta decisão não são 
poucos. A unidade das características (porcentagem, dia e plântulas por dia), o delineamento experimental e a 
possível robustez da estatística F a pequenos desvios da Normal estão entre os principais indicadores para a 
escolha do tipo de transformação. 
Palavras-chave: pressuposições; coeficiente de variação; critérios para a transformação; estatística paramétrica e não-

paramétrica; robustez.  

Introduction 

The transformation of a dataset to another 
mathematical scale remains in scientific publications 
even after it has received criticism. From the theoretical 
point of view, it is criticised because the mathematical 
procedure can modify the original data distribution. 
From a practical point of view, the problem is that 
scientists have difficulty in interpretation and 
discussion of results on scales other than the original. 
The most interesting point is that the use of data 

transformation is often not related to theoretical 
assumptions of the analysis of variance model 
(ANOVA). However, there is no doubt that, although 
it is not suitable for every data set (Fernandez, 1992; 
Quinn & Keough, 2002; Jaeger, 2008; O’Hara & 
Kotze, 2010), the reasons for its use are greater than for 
its non-use (Bartlett, 1947; Manly, 1976; Berry, 1987; 
Keene, 1995; Ahmad, Naing, & Rosli, 2006). 

In summary, data transformation must be used to 
approximate the residuals to the Normal distribution, 
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to enable homoscedasticity and, specifically for 
randomised block design, to promote the additive 
effects between blocks and treatments (Steel & Torrie, 
1996; Quinn & Keough, 2002; Sokal & Rohlf, 2012). 
Data transformations are peculiar operations with 
several mathematical possibilities (Quinn & Keough, 
2002; Osborne, 2010), which when used incorrectly 
can compromise inferences (Valcu & Valcu, 2011) and, 
consequently, the interpretation of the results. In view 
of this, there are many mathematical procedures that 
indicate the most suitable transformation, such as Box-
Cox's transformation (Box & Cox, 1964; Ahmad et al., 
2006). 

The most used transformations are logarithmic (log 
or ln), square root and angular. Log or ln are 
recommended for continuous variables with discrepant 
values and standard deviations proportional to the 
mean (Bartlett, 1936; Berry, 1987), while the square 
root must be considered when variance is proportional 
to the mean (Bartlett, 1936), which leads to 
recommendations for cases where there are few 
variations between variance and mean (O'Hara & 
Kotze, 2010). Angular scales are applied to variables 
expressed by a proportion and (or) percentage and, 
therefore, variance as a quadratic function of 
proportion (Zubin, 1935; Warton & Hui, 2011). 
However, as mentioned above, processing of 
experimental data, regardless of mathematical 
expressions, is sometimes performed for other 
purposes, which do not meet the statistical 
assumptions. 

The attempt to reduce the coefficient of variation 
(CV) is a classic example of incorrect use of data 
transformation (see Souza et al., 2008). The CV is a 
variability measurement considered by some scientists 
to quantify experimental quality (Pimentel-Gomes, 
2000; Oliveira, Muniz, Andrade, & Reis, 2009). From 
this point of view, a high CV in a scientific area can be 
used to condemn a data set from an experimental trial 
(Bowman, 2001). The CV also might be an 
undeclared indicator of data transformation for 
agrarian scientists, users of statistical tools such as 
ANOVA (Santana, personal communication). 
However, the CV is not associated with the 
assumptions of ANOVA (Pereira & Santana, 2013), 
even though changes in data scale can reflect on not 
only the assumptions but also on the CV. The CV can 
be related to high genetic variability of the material, 
with the sample/plot size (Santana & Ranal, 2004) or 
presence of zeros in the data set (Couto, Lúcio, Lopes, 
& Carpes, 2009). Thus, inferences from the CV in 
relation to assumptions of ANOVA, and not by means 
of statistical tests, may compromise the quality of 
analyses and inferences. 

Conversely, tests and (or) nonparametric models 
are extensively mentioned in science, when they do not 
require assumptions as ANOVA. Nonparametric 
statistics are applicable especially when there are no 
adjusting residuals to the Normal distribution 
(Fernandez, 1992; Judice, Muniz, & Carvalheiro, 1999; 
Pontes & Correntes, 2001; Santana & Ranal, 2004), 
which seems somewhat contradictory since the 
nonparametric statistics are based on approximate 
Normal distributions for large samples (see Zar, 1999). 
Nonparametric statistics are inefficient for multiple 
comparisons and, as a consequence, in inferences. This 
can occur because they do not control Type I and II 
errors (Lix, Keselman, & Keselman, 1996; Pontes & 
Correntes, 2001). The problems get worse when the 
analyses involve models with factorial schemes, which 
have very limited nonparametric statistical procedures. 
Some authors have been venturing into alternatives to 
perform the analysis of experimental data according to 
parametric statistics, even if they do not meet all the 
assumptions (Pontes & Correntes, 2001; Ribeiro-
Oliveira, Ranal, & Santana, 2013; Ribeiro-Oliveira & 
Ranal, 2016). 

Considering this, we have the following questions. 
What are the consequences of data transformation on 
CV values? Does the type of data transformation (both 
with and without adjustments) affect the assumptions 
for ANOVA? Could a criterion, such as the ones based 
on the robustness of F distribution, complementary to 
the assumption tests, be useful for decisions about data 
transformation? Would nonparametric statistics be 
non-robust to detect differences in treatments in a data 
set analysis? These questions should be answered by 
well-founded statistical theories and (or) by data 
simulation based on populations, but it is possible to 
obtain evidence by analysis of experimental data. 
Weaddress the most frequent situations in data 
transformation, using literature and experimental 
results, for the purpose of helping users of statistical 
procedures with general applications, such as 
ANOVA. In addition, we indicate why and when 
criteria complementary to assumption tests must be 
used in a data set. 

Material and methods 

An experimental data set from seven trials carried 
out with native and cultivated plants was used as a case 
study. This data set was used to discuss consequences 
of data transformation on statistical inferences. The 
trials were planned and conducted in a completely 
randomised design (CRD) or randomised block design 
(RBD). The characteristics studied are examples of 
measurements commonly used in seed science to 
determine the germination process and (or) 
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growth/development in seedlings (young plants).The 
variables (measurements) used as the case study are 
originally discrete when they are collected from 
counting observations. However, the variables were 
converted from discrete to continuous and expressed 
by percentage, day or seedlings per day. 

The consequences of data transformation on 
assumptions and the factorial ANOVA model (main 
effects and interaction), as well as on the CV were 
demonstrated. We used a data set of the time to last 
germination (Labouriau, 1983) and of germinability in 
Guazuma ulmifolia Lam. seeds. We also used one of 
germinability in Enterolobium contortisiliquum (Vell.) 
Morong. seeds. The impact of data transformation on 
assumptions of a CRD model was demonstrated by 
measurements of seed technology (normal, infected, 
damaged, and vigorous seedlings, as well as dormant 
seeds) of Parkia pendula (Willd.) Benth. ex Walp. and 
Senna macranthera (DC. ex Collad.) H. S. Irwin & 
Barneby. 

The greater number of demands of the RBD 
model, regarding assumptions, led us to expand the 
discussion of the consequences of data 
transformation. This discussion was performed 
using a data set of seed germination and seedling 
emergence of Zea mays L. We analysed the time of 
initial and last germination (Labouriau, 1983), 
Maguire’s Rate for seedling emergence (Maguire, 
1962) and seedling vigour obtained in the cold test. 
These data were also the basis for the discussion of 
when to use data transformation. 

The data of germination time (first and last) and 
Maguire’s Rate were expressed by day and seedling 
per day, respectively. These data were transformed 
k = 1.0 to square root (√ݔ + ݇, where k = 0; k = 
0.5), and (or) to logarithmic [log ݔ)	 + ݇) and ln(ݔ + ݇), where k = 0; k = 1]. The measurements 
of seed germination and seedling emergence 
expressed by percentage, such as germinability, were 
transformed to arcsine ඥݔ 100⁄  . 

The hypothesis that nonparametric tests are prone 
to type I and II errors was studied using a data set of 
uncertainty of seed germination (Labouriau, 1983) of 
Enterolobium contortisiliquum. The would-be robustness 
of ANOVA to small violations of the assumptions 
(Scheffé, 1959) led us to offer an additional criterion to 
use data transformation for processing the parametric 
statistics, even when there are violations in 
assumptions. This discussion was supported by the 
same data set used to study the data transformation 
consequences. 

More details about seed physiology 
measurements including preadsheets to calculate 
these germination measurements can be obtained in 

Ranal and Santana (2006), and Ranal, Santana, 
Ferreira, and Mendes-Rodrigues (2009). More 
details on seed technology measurements can be 
obtained in Brasil (2009). 

The data were submitted to tests of 
Kolmogorov-Smirnov and Levene to analyse the 
adjustment of residuals to the Normal distribution 
and homogeneity of variances. Data from RBD was 
a special case. We also verified the assumption of 
additivity of effects between treatments and blocks, 
which was tested using the Tukey test. The Levene 
test was processed using the mean when atested 
characteristic had residuals adhering to Normal; 
otherwise, the test was processed using the median 
(Brown & Forsythe, 1974). For parametric analysis, 
ANOVA models were used based on the 
experimental design, while for nonparametric 
analysis, we used the Kruskal-Wallis test. We tested 
each null hypothesis of the nonparametric and 
parametric statistics at 0.05 significance. 

Results 

In some case studies, reductions in the CV are 
notable when there is data transformation (from here 
on called ‘transformed scale’), especially on the 
logarithm scale. In the time to last germination of 
Guazuma ulmifolia seeds, the CV would be considered 
(Pimentel-Gomes, 2000 sense) very high — 62.03% — 
when observed by the original scale; high — 25% 
approximately — when the data were transformed to 
the square root, with or without adjustment; and low 
— 15% approximately — when the data were 
transformed to the logarithmic scale (Table 1). 

Data transformation does not necessarily reduce 
the CV. This was observed in the germinability in 
Enterolobium contortisiliquum and Guazuma ulmifolia 
seeds (Table 2). The angular transformation 
promoted an increase in CV values (from 2.26 to 
6.64% and from 5.31 to 7.54%), although they 
remained below 10% for both species (Table 2). 

The original data of time to last germination of 
Guazuma ulmifolia seeds adhere to the residuals of a 
Normal distribution. This lack of adherence was 
solved using the transformed scale (both with and 
without adjustment) for square root and logarithm 
(Table 3). Homoscedasticity was achieved in the 
original scale and maintained after data transformation 
independent of the transformed scale. Note the poor 
relevance of the adjustments (here  k = 0.5 and k = 1) 
in relation to statistics and the significance of tests of 
Levene and (or) Kolmogorov-Smirnov. As a 
consequence, they also have low relevance in relation 
to inferences based on residuals distribution and 
variance. 
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Table 1. Values of F statistics and associated probabilities of analysis of variance (ANOVA) in a factorial scheme for the time to last 
germination (tl) in Guazuma ulmifolia Lam. seeds in the original and transformed (square root and logarithmic) scales. 

Source of variation1 
Original 

Data transformation√ݔ√ ݔ + 0.5 ݔ√ + 1.0 
F (P): Statistics of Snedecor and probability 

Factor 1 0.407 (0.669) 0.493 (0.616) 0.489 (0.618) 0.486 (0.620) 
Factor 2 0.461 (0.635) 0.737 (0.488) 0.730 (0.491) 0.722 (0.495) 
Factor 1* Factor 2 1.442 (0.247) 1.529 (0.222) 1.526 (0.223) 1.524 (0.223) 
CV(%)/adjective 62.03/ Very high 25.78/ High 25.19/ High 24.63/ High 

Source of variation1 
Log transformation 

Log x log(ݔ + 1) Ln x ln	( ݔ + 1) 
F (P): Statistics of Snedecor and probability  

Factor 1 0.658 (0.526) 0.637 (0.537) 0.658 (0.526) 0.637 (0.537) 
Factor 2 1.167 (0.326) 1.127 (0.339) 1.168 (0.326) 1.127 (0.339) 
Factor 1* Factor 2 1.610 (0.201) 1.600 (0.203) 1.610 (0.201) 1.600 (0.203) 
CV(%)/adjective 15.12/ Medium 14.18/ Medium 15.12/ Medium 14.18/ Medium 
1Source of variation of a factorial model in a completely randomised design; p > 0.05 indicates non-significant effect; CV: Coefficient of variation / adjectives Pimentel-Gomes (2000) sense. 

Table 2. Values of F statistics and associated probabilities of analysis of variance (ANOVA) for the germinability seeds of Enterolobium 
contortisiliquum(Vell.) Morong and Guazuma ulmifolia Lam. in the original and angular scales. 

Source of variation1 
Enterolobium contortisiliquum Guazuma ulmifolia 

F (P): Statistics of Snedecor and probability F (P): Statistics of Snedecor and probability  
Original  Arcsine ඥݔ 100⁄  Original  Arcsine  ඥݔ 100⁄  

Factor 1 0.413 (0.666) 0.834 (0.445) 5.363 (0.011) 3.228 (0.055) 
Factor 2 0.634 (0.538) 0.722 (0.495) 0.991 (0.384) 1.149 (0.332) 
Factor 1* Factor 2 0.074 (0.990) 0.085 (0.986) 0.366 (0.831) 0.491 (0.743) 
CV(%)/adjective 2.26/ Low 6.64/Low 5.31/Low 7.54/Low 
1The data set used was recorded from a completely randomised design. p > 0.05 indicates non-significant effect; CV: Coefficient of variation / adjectives Pimentel-Gomes (2000) sense. 

Table 3. Values of statistics and associated probabilities for inferences regarding Normal distribution of residuals and homoscedasticity 
for the time to last germination (tl) and germinability in Guazuma ulmifolia Lam. seeds and for the germinability of Enterolobium 
contortisiliquum (Vell.) Morong. seeds in the original and transformed scales (square root and logarithmic). 

  Levene Kolmogorov-Smirnov 
Characters1 Scale F (P)  Homogeneous variance K-S (P) Normal residuals 

Time to last germination 
(day) 

Guazuma ulmifolia
Original 0.622 (0.752) Yes 0.168 (0.012) No √ݔ 2.134 (0.067) Yes 0.142 (0.063) Yes ඥ(ݔ + 0.5) 2.158 (0.065) Yes 0.143 (0.061) Yes ඥ(ݔ + 1.0) 2.180 (0.062) Yes 0.143 (0.059) Yes log ݔ 1.102 (0.392) Yes 0.117 (0.268) Yes log(ݔ + 1.0) 1.165 (0.355) Yes 0.124 (0.174) Yes ln ݔ 1.102 (0.392) Yes 0.017 (0.268) Yes ln(ݔ + 1.0) 1.165 (0.355) Yes 0.124 (0.174) Yes 

Germinability (%) 
Original 2.932 (0.017) No 0.083 (0.761) Yes 

Arcsine  ඥݔ 100⁄  2.779 (0.022) No 0.094 (0.589) Yes 
 Enterolobium contortisiliquum

Germinability (%) 
Original 2.167 (0.064) Yes 0.141 (0.069) Yes 

Arcsine  ඥݔ 100⁄  1.868 (0.108) Yes 0.154 (0.031) No 
1F (P): Statistics and probabilities of Snedecor for Levene test; K-S (P): Statistics and probabilities of Kolmogorov-Smirnov; p > 0.05 indicates normality of residual distribution and/or 
homoscedasticity. The data set used was recorded from a completely randomised design. The bold values demonstrate cases of violations of ANOVA assumptions. 

 

The transformation did not affect the significance of 
the factorial model (i.e., main effects and interaction) 
used to study the time to last germination of Guazuma 
ulmifolia seeds (Table 1), as well as the germinability of 
Enterolobium contortisiliquum seeds (Table 2). Contrary to 
this, when the angular transformation was applied on 
germinability of G. ulmifolia seeds, the factor 1 was not 
significant at 0.05 (Table 2). 

Angular transformation, which is recommended for 
data expressed in percentage, did not solve the 
heterogeneity observed in the original scale of the 
germinability in Guazuma ulmifolia seeds (Table 3). This 
type of transformation resulted in loss of adherence of 
residuals to Normal for germinability in Enterolobium 

contortisiliquum seeds, which had been observed in the 
original scale. This high lights the low coefficients of 
variation (CV) in the original and transformed scales for 
the germination of both species even with assumptions 
violated (Table 2). This proves the inability of this 
measurement to predict violations of assumptions. 

The loss of homogeneity in the abnormal seedlings 
and dormant seeds in Parkia pendula, and in the damaged 
seedlings in Senna macranthera (Table 4) confirms that 
the angular transformation can be an unsatisfactory tool. 
For the dormant seeds in S. macranthera, the loss of 
adherence of residuals to Normal was also a 
consequence of this scale. 

Three case studies (damaged seedlings of Parkia 
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pendula and Senna macranthera, and dormant seeds in S. 
macranthera in Table 4) demonstrated that data 
transformation can solve the problem of one assumption 
but violate another. This would be sufficient to refute 
data transformation, but the F statistic is robust to non-
Normal distribution (sense Scheffé, 1959). In this 
context, homoscedasticity would be the priority 
assumption in deciding when the scientist must 
transform the data set. Thus, considering robustness, the 
transformation would be suitable for dormant seeds of 
S. macranthera. 

The decision to transform can be based on several 
criteria related to multiple possibilities that allow 
meeting assumptions as observed in the dataset of seed 
technology characters of Parkia pendula and Senna 
macranthera (Table 4). The indication for data 
transformation was given in normal and infected 
seedlings of P. pendula, when it would solve the problem 
of an assumption without violating another (Table 4). 
Hard seeds in P. pendula and hard seeds and infected 
seedlings of S. macranthera demonstrated that when 
transformation does not meet the assumptions, violated 
in the original scale, it is preferable not to perform it. 
Independently of the criteria, it should be noted that the 
data discussed in this paragraph were obtained from 
experiments subject to completely randomised design 
and, therefore, were dependent on observance of only 
two assumptions (normality of residuals and 
homogeneity of variances). 

The decision to transform the data is more complex 

for randomised block design, which possesses one 
other assumption (additivity effect between blocks and 
treatments); it was observed in the data set of Zea mays. 
This example contains three situations that can be 
found in data transformation (Table 5), i.e., (i) the 
violation of an assumption with the use of a 
transformation (time to first emergence), (ii) the 
recommendation for transformation by meeting one or 
more assumptions (time to final emergence and 
Maguire’s Rate), and (iii) the violation of an 
assumption when meeting another assumption 
(seedling vigour). Thus, it is interesting to transform 
data when one or more assumptions, violated in 
original scale (time to final emergence and Maguire’s 
rate), are met; or, when data transformation meets 
additivity to blocks and treatments, but does not impact 
homoscedasticity (seedling vigour) (Table 5). 

Several researchers could have doubts in relation to 
the robustness criterion, but nonparametric tests are 
not a way to solve problems of assumption violations, 
as noted by a data set of uncertainty in seed 
germination of Enterolobium contortisiliquum. This case 
study revealed an interesting case of Type II error. 
Although there were Normal distribution and 
heteroscedasticity in the data set, the probability of 
ANOVA (p < 0.05) diverged from the probability of 
Kruskal-Wallis's statistics (p > 0.05). As a consequence, 
no differences were found among treatments analysed 
by the nonparametric statistics (Table 6).  

Table 4. Values of statistics and probabilities for inferences regarding the Normal distribution of residuals and homoscedasticity for seed 
technology characters of Parkia pendula (Willd.) Benth. ex Walp and Senna macranthera (DC. ex Collad.) H. S. Irwin & Barneby. and 
analysed in the original and angular scales. 

  Levene Kolmogorov-Smirnov 
Data  

transformation Characters1 Scale F (P) Homogeneous  
variances K-S (P) Normal  

residuals 
 Parkia pendula 

Normal seedlings (%) 
Original 1.414 (0.166) Yes 0.123 (0.009) No 

Yes 
Arcsine ඥݔ 100⁄  1.359 (0.194) Yes 0.083 (0.258) Yes 

Infected seedlings (%) 
Original 1.834 (0.047) No 0.347 (0.000) No 

Yes 
Arcsine ඥݔ 100⁄  1.576 (0.104) Yes 0.347 (0.000) No 

Damaged seedlings (%) 
Original 1.688 (0.074) Yes 0.126 (0.007) No 

No 
Arcsine ඥݔ 100⁄  4.260 (0.000) No 0.101 (0.068) Yes 

Dormant seeds (%) 
Original 1.366 (0.191) Yes 0.458 (0.000) No 

No 
Arcsine ඥݔ 100⁄  2.162 (0.017) No 0.458 (0.000) No 

Non-imbibed seeds %) 
Original 9.994 (0.000) No 0.306 (0.000) No 

No 
Arcsine ඥݔ 100⁄  6.672 (0.000) No 0.292 (0.000) No 

 Senna macranthera 

Normal seedlings (%) 
Original 1.444 (0.214) Yes 0.134 (0.069) Yes 

No 
Arcsine ඥݔ 100⁄  1.135 (0.370) Yes 0.096 (0.475) Yes 

Infected seedlings (%) 
Original 1.880 (0.094) Yes 0.175 (0.003) No 

No 
Arcsine ඥݔ 100⁄  2.056 (0.067) Yes  0.150 (0.024) No 

Damaged seedlings %) 
Original 1.213 (0.324) Yes 0.225 (0.000) No 

No 
Arcsine ඥݔ 100⁄  3.543 (0.004) No 0.100 (0.399) Yes 

Dormant seeds (%) 
Original 4.499 (0.001) No 0.136 (0.061) Yes Yes 

(robustness sense) Arcsine ඥݔ 100⁄  0.809 (0.612) Yes 0.170 (0.005) No 

Non-imbibed seeds (%) 
Original 6.258 (0.000) No 0.325 (0.000) No 

No 
Arcsine ඥݔ 100⁄  6.126 (0.000) No 0.325 (0.000) No 

1F (P): Statistics and probabilities of Snedecor for Levene test; K-S (P): Statistics and probabilities of Kolmogorov-Smirnov; p > 0.05 indicates normality of residual distribution and/or 
homoscedasticity to data set. The data set used was recorded from a completely randomised design. The bold values demonstrate cases of violations of ANOVA assumptions. 
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Table 5. Values of statistics and probabilities for inferences regarding Normal distribution of residuals, homoscedasticity and additivity 
effects on seed germination and early growth of seedlings in Zea mays L. analysed in the original and transformed scales (square root, with 
and without adjustments, and angular transformation) scales. 

  Levene Kolmogorov-Smirnov Tukey  

Characters1 Scale F (P) Homogeneous 
variance K-S (P) Normal 

residuals 
F’ (P) Additivity effect Data transformation

Time to first 
germination (day) 

Original 0.246 (0.999) Yes 0.119 (0.003) No 0.465 (0.498) Yes 
No √(1.000) 0.213 ݔ Yes 0.105 (0.016) No 9.579 (0.003) No 

Time to last 
germination (day) 

Original 0.415 (0.978) Yes 0.059 (0.200) Yes 13.662 (0.000) No 
Yes √(0.996) 0.304 ݔ Yes 0.088 (0.084) Yes 3.484 (0.066) Yes 

Maguire’s rate 
(seedlings day-1) 

Original 0.000 (1.000) Yes 0.392 (0.000) No 6.374 (0.014) No 
Yes ඥ(ݔ + 0.5) 0.229 (0.999) Yes 0.085 (0.121) Yes 1.846 (0.179) Yes 

Vigorous seedlings 
(%) 

Original 3.994 (0.000) No 0.093 (0.051) Yes 12.210 (0.001) No 

Yes (robustness sense)Arcsine ඥݔ 100⁄
 

2.355 (0.006) No 0.949 (0.001) No 3.598 (0.062) Yes 

1F (P): Statistics and probabilities of Snedecor for Levene test; K-S (P): Statistics and probabilities of Kolmogorov-Smirnov; F’ (P): Statistics and probabilities of Snedecor for Tukey 
test; p > 0.05 indicates normality of residual distribution and/or homoscedasticity to data set. The data set used was recorded from a randomised block design. The bold values 
demonstrate cases of violations of ANOVA assumptions.  

Table 6. Values of statistics and probabilities of a parametric Analysis of Variance – ANOVA – and a nonparametric analysis of Kruskal-
Wallis test for a data set of uncertainty on seed germination of Enterolobium contortisiliquum(Vell.) Morong. 

 Assumptions  Parametric and nonparametric tests 

 Statistics Inference  ANOVA 
(Parametric) 

Kruskal-Wallis 
(Nonparametric) 

Characters1 Enterolobium contortisiliquum

Uncertainty (Bits) 

K-S= 0.129  
P = 0.130 

Normal residuals  F =2.34  
P = 0.046 

H =15.60  
P = 0.052 

F’= 2.453 
P = 0.039  

Homogeneous variance  There is at least one 
difference between 

treatments 

There are no differences 
between treatments 

1K-S and F’: Statistics of Kolmogorov-Smirnov and Statistics of Snedecor for Levene test; p < 0.05 indicates non-Normal residuals and heteroscedasticity, respectively; F; H: Statistics 
of Snedecor and Kruskal-Wallis tests, respectively; p < 0.05 indicates significant differences.  

Discussion 

In the time to last germination of Guazuma 
ulmifolia seeds, data transformation may impute 
good experimental accuracy, especially on the 
logarithmic scale (14.18 ≤ CV ≤ 15.12%), in 
relation to the original scale (low precision 
according to CV = 62.03%). However, evaluating 
the experimental precision by transformed data 
(Souza et al., 2008; Oliveira et al., 2009) can 
generate a false perception of ‘efficiency’. This 
result has a practical impact on some scientific areas 
of basic advances.  

The logarithmic functions are more effective in 
data scale flattening than other types of data 
transformation, confirming its recommendation for 
data sets with high variability (O’Hara & Kotze, 
2010; Lúcio et al., 2012). Logarithms in base 10 (log) 
and natural/Naperian logarithm (ln) are similar 
mathematical functions and, therefore, have the 
same effects on the data set. It is expected that 
changes in the data scale (from original to 
transformed) have an impact on the estimate of the 
mean, as well as the mean square error. As a 
consequence, changing the data scale could also 
affect the CV value (Judice et al., 1999). However, 
we demonstrate that the way this occurs in the data 
set (either increasing or decreasing) is not 

predictable. CV reductions are the most common 
cases when changing the data scale, but there are 
case studies with CV increments. We demonstrated 
a case of a CV increment in the germinability of 
seeds of Enterolobium contortisiliquum and Guazuma 
ulmifolia. The CV increment was also reported in the 
literature, although not discussed. As an example, 
the CVs of germinability of seeds of E. 
contortisiliquum, Mimosa caesalpiniaefolia and Peltogyne 
confertiflora also increased after data transformation 
(Pereira & Santana, 2013), despite being classified as 
low (Pimentel-Gomes, 2000 sense). 

There are cases of transformation scales, such as 
square root, where mathematical function 
restrictions for data sets with zero or negative values 
are solved using adjustments (Berry, 1987; 
Yamamura, 1999). The lack of criteria for the choice 
of adjustment is another subjective factor that 
restricts the recommendation to use data 
transformation. In addition to generating 
uncertainty in the scientists' decisions (Yamamura, 
1999), the use of adjustments can put the efficiency 
of ANOVA at risk (Fernandez, 1992; Osborne, 
2010). We observe that adjustments k = 0.5 and 
k = 1.0 do not exert any impact on inferences of 
Normal distribution and homogeneity in the time to 
last germination in Guazuma ulmifolia seeds. Using 
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the same data set, we observed minimum 
differences in the values of statistics and 
probabilities of Kolmogorov-Smirnov and Levene 
tests, indicating that adjustments do not have a 
significant impact on the assumptions of ANOVA. 

Even though the relation of variable nature and 
data transformation is not studied here, we highlight 
that it is usual for data expressed as a percentage 
(such as seed germination) to be transformed into an 
angular scale in an attempt to approximate the data 
set or the residuals to the Normal distribution. This 
is due to the consensus that non-Normal is a rule in 
biological data, as discussed in two extensive reviews 
of germination data and viability of seeds made by 
Sileshi (2012) and by Valcu & Valcu (2011). For the 
germination of Parkia pendula and Senna macranthera 
seeds, this tendency in non-adjustment of residuals 
to Normal prevailed not only in the original scale 
but also in the transformed scale. Thus, we 
demonstrate that general instructions (without any 
statistical test) should be avoided. Many of these 
recommendations were made when statistical 
software, which currently facilitate the checking of 
assumptions, were not widely used. The data set of 
Zea mays enables us to contest the idea that data sets 
of cultivated species (such as maize) have no 
problems with Normal distribution. 

We believe that the scientific discussion about 
residuals adjustment to Normal and the 
consequences of data transformation on this 
adjustment is unnecessary. This idea is based on the 
supposed robustness of the F-statistic to 'small 
deviations' from the Normal distribution (Box, 
1953; Driscoll, 1996; Faraway, 2006; Kikvidze & 
Moya-Laraño, 2008; Schmider, Ziegler, Danay, 
Beyer, & Bühner, 2010). We used ‘robustness’ to 
indicate the non-requirement of the Normal, but 
this word has a subjective origin and interpretation. 
Robustness opens up possibilities for an alternative 
criterion of data transformation that enables the use 
of parametric statistics, even when there are 
violations of assumptions. Thinking about 
robustness, data transformation was processed for 
dormant seeds in Senna macranthera to ensure 
homogeneity of variances. Based on the same 
criterion, we performed data transformation for 
seedling vigour in Zea mays to ensure the effects of 
additivity of blocks and treatments. In both cases, we 
used data transformation even in the face of loss of 
Normal distribution. That decision can be 
questioned by low probabilities associated with 
statistics of Kolmogorov-Smirnov test (p < 0.01), 
which could have a conflict with the idea of “small 
deviations”. However, we highlight the lack of 

numeric and nominal limits in the literature of how 
much or what are “small deviations” from 
normality. Although not observed in our data sets, 
the meeting of two assumptions would be an 
intuitive criterion for data transformation. 

The loss of Normal distribution would be enough 
to not recommend data transformation (Rice & Gaines, 
1989; Ahrens, Cox, & Budhwar, 1990; Warton & Hui, 
2011; Sileshi, 2012). However, we have no knowledge 
of recommendations for this and other situations 
mentioned here. We also observed that when data 
transformation is suggested, the models require specific 
statistical knowledge, reducing the independence of the 
scientist in relation to the models of analysis of 
variance. A more robust alternative for the angular 
scale, for example, are the Generalised Linear Models 
(GLM), which enable the analysis of the data with 
other probability distributions (other than Normal) 
(Nelder & Wedderburn, 1972; McCullagh, 1984). 
These models have a high power of comparison of 
results and ease of interpretation (Warton & Hui, 
2011). It is important to remember that ANOVA is a 
particular case of GLM used for data sets based on 
Normal distribution. Thus, we cannot ignore the 
requirement of residuals adjusted to the Normal 
distribution even when using modern statistical 
models, as GLM. In view of this relevance, "data 
normalisation" before applying the F statistic is a 
very common practice in medical and biological 
sciences (Valcu & Valcu, 2011). 

The decision to perform data transformation 
when the variances are heterogeneous is 
unquestionable, since several authors report the 
implications of heteroscedasticity for the F 
distribution and, consequently, the increase in Type 
II error (Ahmad et al., 2006; Moder, 2007). Type II 
error can affect the ANOVA, but its greater 
implication is in nonparametric statistics. This is the 
probable cause of similar effects found for the 
different treatments analysed by nonparametric 
statistics (Kruskal-Wallis test), which was used to 
analyse an uncertainty of seed germination of 
Enterolobium contortisiliquum. The same data set was 
also studied by ANOVA, demonstrating different 
groups for the treatments. Although singular, this 
case study highlights the problem of inferences from 
nonparametric tests (Box, 1953; Moder, 2010) and 
the efficiency of ANOVA even for heterogeneous 
variances. We know (and emphasise) that critiques 
on nonparametric statistics must be performed by 
data simulations. However, we used a case study to 
demonstrate if the inferences from nonparametric 
statistics can be robust in relation to parametric 
ones. This justifies ‘non-orthodox’ alternatives for 
the use of data transformation. 
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There are authors using generic indicators to 
perform data transformation. They may be hiding 
what led them to perform data transformation (you 
can see it in a rapid search in the materials and 
methods of published articles for important 
journals). It is possible that in some cases the worst 
decision was made in relation to data 
transformation, i.e., to transform all variables 
analysed in the study, although some of them had 
no assumption violations. We invalidate the 
argument that when data transformation does not 
solve the violations of assumptions it does not 
compromise the inferences. As a case study, we used 
seedling development of Parkia pendula. In this data 
set, if we had transformed the data based on infected 
seedlings (to solve the problem of 
heteroscedasticity), we would have promoted 
heteroscedasticity in the other development 
measurements and undermined the F statistic 
analysis of damaged seedlings and dormant seeds. 

The coefficient of variation (CV) has been used 
by agrarian scientists as a tool to validate 
experimental trial results, as noted by Bowman 
(2001). This can produce a false perceptive that the 
CV is associated with non-adherence of residuals to 
Normal and heteroscedasticity and non-additive 
effects between blocks and treatments. Actually, a 
CV increase can be related to an increase in variance 
heterogeneity because the math expression used to 
calculate the CV is indirectly based on variance error 
between treatments. However, this is not always 
true! From this point of view, our findings are a 
contribution to agrarian science. We show that the 
CV is not an indicator for data transformation. In 
contrast, the CV as an indicator may be dangerous 
for the quality of statistical inferences. Thus, the use 
of classifications of the CV (Pimentel-Gomes, 2000 
sense) as an undeclared and empirical indicator of 
data processing can be a serious problem for data 
analyses involving ANOVA. It is important to note 
that the CV classification may be used to detect 
uncontrolled experimental variations, as suggested 
in its theoretical conception (see Pimentel-Gomes, 
2000), although we did not analyse this. 

The use of the CV classification as a criterion of 
data transformation was easily contradicted by the 
germinability in Guazuma ulmifolia seeds. In this 
sense (Pimentel-Gomes, 2000 sense), values above 
20% (high and very high) became an undeclared 
indicator for data transformation, while values 
below 20% (low and medium) led the scientist not 
to use it. For germinability in Guazuma ulmifolia 
seeds the low experimental CV (5.31%) was not able 
to predict heterogeneous variances (F = 2.932; p = 
0.017). Non-Normal residuals of germination of 

Enterolobium contortisiliquum seeds on the transformed 
scale (K-S = 0.154; p = 0.031) were not detected by 
the CV, whose value was 6.64%. The validity of this 
criterion was also considered inappropriate for 
germination of Acacia polyphylla, E. contortisiliquum, 
Mimosa caesalpiniaefolia Benth. and Peltogyne 
confertiflora (Mart. ex Hayne) Benth., which even 
with low CVs (< 10%) had at least one problem in 
the assumption analysed by inference tests (Pereira 
& Santana, 2013). These results do not exclude the 
possibility of the coefficient of variation and the 
assumptions of the model being affected by the same 
factors, but it is not possible to establish a 
relationship of cause-and-effect between a 
descriptive measurement of variability (as CV) and a 
statistics inferential test, as Kolmogorov-Smirnov 
and Levene. Therefore, we believe that the 
relationship among homoscedasticity, residuals 
adherence to Normal and CVs (from 15 to 18%) of 
germination of Mimosa scabrella Benth., Dalbergia 
miscolobium Benth. and Ormosia arborea (Vell.) Harms 
(Pereira & Santana, 2013) must be of causal nature. 

Non-controlled variations, especially problems 
in experimental conduct, are noted as a main cause 
of problems with variances. As much as these flaws 
could compromise experiments, they do not cause 
heteroscedasticity in a data set. The major generators 
of heterogeneous variance for ANOVA models are 
the presence of zeros in the data set and the choice 
of treatments with previously expected discrepant 
answers (the so-called effect of scale), as seeds in 
viability extremes, i.e., 10 and 90% of germination 
(Bartlett, 1936; Ahrens et al., 1990; Sakia, 1992; 
Lúcio, Couto, Trevisan, Martins, & Lopes, 2010). 
The presence of zeros was the main cause of data 
heteroscedasticity of hard seeds of Parkia pendula and 
Senna macranthera, and the reason for these data to 
stay heteroscedastic even when transformed. 

Criticised in the literature by statisticians, data 
transformation was considered by many authors as 
aberrant, inappropriate, out dated and, ironically, a 
real panacea (Sakia, 1992; Wilcox, 1998; Sileshi, 
2007; Wartun & Hui, 2011; Osborne, 2010; Sileshi, 
2012). These severe criticisms need to be 
reconsidered because (i) data transformation has 
been proposed by recognised scientists because of 
recommendations of these and other techniques 
widely applied in modern statistics (Bartlett, 1947; 
Box & Cox, 1964; 1982); and (ii) although the 
authors predicted that the technique would not 
solve all problems in adjusting residuals to Normal 
or of heteroscedasticity, there are several beneficial 
aspects regarding data transformation. Thus, the 
criticism that it does not solve assumption problems 
of the model in certain situations does not hold, 
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because data transformation limitations have been 
provided since 1947. We and other scientists 
recognise the problems in the interpretation of 
results in transformed scale (Ahrens et al., 1990; 
Fernandez, 1992; Sakia, 1992; Osborne, 2010), 
but its contribution to data sets with outliers is 
undeniable (Berry, 1987; Sakia, 1992). 

Data transformation seems to be a good 
statistical tool for data sets from plant studies that 
have problems in adjustment of residuals to 
Normal, which is one of the priority principles to 
use parametric models prevailing in all science 
areas. However, to be an efficient statistical 
instrument, it is necessary to check the model 
assumptions when using data transformation 
(Osborne, 2010). We did not find, in the verified 
literature, any reference that data transformation, 
when assumptions are checked, is detrimental to 
the data set and (or) statistical inferences. In 
contrast, there is evidence that data 
transformation, when used properly, can increase 
the power of ANOVA (Levine & Dunlap, 1982). 
However, in the literature, cases of misuses till 
prevail, often encouraged by an inefficient 
empirical indicator that underestimates potential 
use of data transformation. We recommend the 
use of an additional criterion to promote data 
transformation, prioritising the transformation to 
perform parametric analysis. 

Conclusion 

The CV as an indicator of data transformation 
may be dangerous for the quality of statistical 
inferences. Data transformation can affect the 
assumptions for ANOVA, but the adjustments 
have poor relevance. The criterion based on 
robustness of F distribution can be useful for 
decisions about data transformation. 
Nonparametric statistics are less sensitive to 
detect differences in treatments for the increase in 
Type I error and Type II error. 
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