
Acta Scientiarum  
http://www.uem.br/acta 
ISSN printed: 1679-9275  
ISSN on-line: 1807-8621 
Doi: 10.4025/actasciagron.v39i1.30996 

 

Acta Scientiarum. Agronomy Maringá, v. 39, n. 1, p. 49-58, Jan.-Mar., 2017 

Can “Caricia” and “Princesa” apples be considered low-chilling 
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ABSTRACT. The purpose of this work was to study the response of two apple cultivars bred for low 
chilling environments to artificial chilling accumulation. Two trials were carried out; in experiment one, 
excised shoots were randomly taken from “Caricia” and “Princesa”, and in experiment two, intact and 
excised shoots of “Caricia”, “Princesa” and “Gala” (control) were collected. After collection, both shoot 
types were exposed to artificial chilling accumulation (4.0 ± 0.5°C) from 0 to 1200 chill units (CU). Bud 
break of mixed buds of “Caricia” and “Princesa” was higher than 50% between 0 CU to 1200 CU, 
irrespective of shoot type. Bud break of “Gala” mixed buds exceeded 50% only in intact shoots after 
accumulating 900 CU. The mean time to bud break of “Caricia” and “Princesa” diminished with 
increasing chilling accumulation and stabilized after ~600 CU, depending on the type of shoot and the 
year of experimentation. The low-chill apple cultivars tested in this work showed shallow dormancy, but 
they required moderate cold accumulation (800 – 1150 CU) to fully satisfy their chilling requirements. 
Thus, although their shallow dormancy makes them suitable for cultivation in chill-deficient 
environments, they cannot be considered low-chill cultivars.  
Keywords: Malus domestica Borkh, dormancy, bud break, lack of chilling, heat requirements.  

Os cultivares de maça “Caricia” e “Princesa” podem ser considerados de baixo requerimento de frio? 

RESUMO. O objetivo deste trabalho foi avaliar a resposta ao acúmulo de refrigeração artificial de dois 
cultivares de maça de baixo requerimento de frio. Coletaram-se ramos a campo das cultivares “Caricia” e 
“Princesa”, e da cultivar “Gala” (utilizada como controle), com e sem gemas apicais (ramos intactos e 
decapitados, respectivamente), as quais foram expostas ao acúmulo de refrigeração artificial (4.0 ± 0.5°C) 
de zero a 1200 unidades de frio (UF). A brotação das gemas em ambos os tipos de ramos foi maior do que 
50% em todo o intervalo de acumulação de frio avaliado em “Caricia” e “Princesa”. No entanto, em “Gala·” 
a brotação excedeu 50% somente nos ramos intactos depois de acumular 900 UF. Observou-se que o 
tempo médio para a brotação das gemas de “Caricia” e “Princesa” estabilizou-se acima das 600 UF, 
dependendo do tipo de ramo e do ano de experimentação. As gemas dos cultivares avaliados neste trabalho 
mostraram uma dormência pouco profunda, no entanto precisaram de acumulação moderada de frio (800 – 
1150 UF) para satisfazer seus requerimentos ecofisiológicos. Portanto, apesar da dormência pouco 
profunda permitir que estes cultivares sejam adequadamente cultivados em zonas com invernos amenos, 
não podem ser considerados de baixo requerimento de frio.  
Palavras-chave: Malus domestica Borkh, dormência, brotação, inverno ameno, requerimento térmico. 

Introduction 

Apple production in chill-deficient 
environments became possible with the release of 
low-chill apple cultivars (Hauagge & Cummins, 
2001). Low-chill apple production has since been 
extended to the tropical and subtropical regions of 
Latin America, Africa and Asia (Ashebir et al., 2010; 
Castro, Cerino, Gariglio, & Radice, 2016; 
Mohamed, 2008; Njuguna, Wamocho, & Morelock, 
2004; Pommer, & Barbosa, 2009). Furthermore, in 

the Americas, novel cultivars, such as “Caricia” and 
“Princesa”, are becoming important in mild-winter 
areas either for cultivation or as genetic material for 
apple breeding programs (Pommer, & Barbosa, 
2009).  

One of the major challenges of temperate-zone 
fruit production in warm-winter areas is to 
overcome the dormancy period (Erez, 2001). 
Dormancy has been defined as the inability to 
initiate growth from meristems or other organs and 
cells, with the capacity to resume growth under 



50 Castro et al. 

Acta Scientiarum. Agronomy Maringá, v. 39, n. 1, p. 49-58, Jan.-Mar., 2017 

favorable conditions (Rohde, & Bhalerao, 2007). In 
natural conditions, dormancy release and growth 
resumption in apple and other temperate deciduous 
fruit trees is mediated by a quantitative 
accumulation of chilling (Alburquerque, García-
Montiel, Carrillo, & Burgos, 2008; Gariglio, Weber, 
Castro, & Micheloud, 2012; Hauagge & Cummins, 
1991c; Oukabli & Mahhou, 2007; Rahemi & 
Pakkish, 2009). However, the chilling requirement 
is highly variable, depending on the genotype 
(Hauagge & Cummins, 2001), the environmental 
conditions in autumn (Heide, 2003) and the type of 
bud (apical versus lateral) (Erez, 2001).  

Low-chill apple cultivars cultivated in mild-
winter areas frequently show symptoms of a lack of 
chilling. Such symptoms comprise low bud break, 
erratic and delayed flowering, low seed set under 
open pollination and a shift to self-fertility (Castro 
et al., 2016; Erez, 2001; Mohamed, 2008). 
Consequently, chemical dormancy-breakers are 
usually applied in these mild-winter areas to 
promote the growth and flowering of low-chill 
apple cultivars (Botelho, & Müller, 2007; Erez, 
2001; Mohamed, 2008; Njuguna et al., 2004).  

Knowledge of the behavior of the apical and 
lateral buds under a wide range of chilling 
accumulation conditions is necessary to predict their 
performance in warm-winter regions. This 
knowledge is essential in the global warming context 
that will affect the chilling availability in warm 
regions (Luedeling, Girvetz, Semenov, & Brown, 
2011). 

Hence, the aim of this work was to determine 
the chilling requirements of two low-chill apple 
cultivars (“Caricia” and “Princesa”). We 
hypothesized that the chilling requirements of these 
low-chill apple buds (cv. “Caricia” and “Princesa”) 
reside within the range of 0 to 600 CU. We expected 
that within this range of cold accumulation, a 
stabilization of the mean time to bud break (MTB) 
and bud break over 50% after adequate forcing 
would be observed.  

Material and methods 

The experiments were carried out in the 
experimental field of the Facultad de Ciencias Agrarias 
of the Universidad Nacional del Litoral (CECIF), Santa 
Fé, Argentina (31° 26' S; 60° 56' W.; 40 m above sea 
level) during two years, 2011 and 2014.  

Experiment 1 

Seven-year-old apple trees (Malus × domestica 
Borkh.) of “Caricia” (IAPAR 77; “Anna” × “Prima”) 
and “Princesa” (“Anna” × “NJ56”) grafted onto 
“M9” rootstocks were used. According to the 

literature, the chilling requirement of these cultivars 
ranges between 350 and 450 chill units (CU) 
(Denardi, Hough, & Camilo, 1988; Hauagge, & 
Tsuneta, 1999). 

In May (end of autumn in the southern 
hemisphere) of 2011, one-year-old shoots without 
apical mixed buds were randomly collected from 20 
plants of each cultivar. The chilling that had 
accumulated before the collection date was 10 
chilling hours below 7ºC. The remaining leaves 
were removed, and the collected shoots were cut 
into pieces 15 cm long. Their basal and non-
lignified apical portions were discarded. In the 
resulting excised shoots, the uppermost buds (near 
the wound) were eliminated. Thus, only the three 
central mixed buds were left on every excised shoot. 
Then, the excised shoots were treated with 
carbendazim [methylbenzimidazol-2-ylcarbamate] 
(2 mL L-1) for 10 minutes and allowed to dry 
naturally on absorbent paper. 

Five groups of 40 excised shoots per cultivar 
were placed in plastic bags and exposed to artificial 
low temperature (4.0 ± 0.5°C) in a cold chamber to 
simulate five chilling accumulation treatments: 0, 
300, 600, 900 and 1200 chilling hours (CH). 
According to the Utah Model, one hour at 4ºC is 
equivalent to 1 Chilling Unit (Richardson, Seeley, & 
Walker, 1974). Thus, the chilling accumulation 
treatments were expressed as chilling units. All 
shoots were placed in darkness and horizontally 
within the cold chamber until cold treatment was 
finished. 

After cold treatment, the shoots from each 
treatment were divided into 8 groups of 5 shoots 
each. Each of these groups was placed in a 250-cm3 
plastic container, with their basal tip in a sodium 
hypochlorite solution (1:1000 v/v), and kept for 30 
days in a growth chamber at 25 ± 0.5°C, with a 16-
hour photoperiod, and 50 μmol m-2 s-1 light intensity 
to force bud break. The basal tips of the shoots were 
cut weekly, and water was replaced daily. 

The bud break times of the mixed buds were 
recorded every other day. Bud break occurrence was 
defined as the time when the mixed buds reached 
stage 53 on the pome fruit BBCH scale (Meier, 
2001). The bud break percentage (BP) and the mean 
time to bud break of the mixed buds (MTB) were 
obtained using the following equations: 

 

BP [%]=෍∑ Bi n⁄n
1

j

j

1

×100 

 
where j is the number of excised shoots per 
experimental unit (j = 5), Bi is the i-th bud in the j-
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th excised shoot broke within the forcing period, and n 
is the number of buds per excised shoot (n = 3). 
 

MTB [days]=෍∑ Ti n⁄n
1

j

j

1

 

 
where j is the number of excised shoots per 
experimental unit (j = 5) and Ti is the time from the 
beginning of the forcing period at 25 ± 0.5ºC to the 
occurrence of budbreak of the i-th bud in the j-th 
excised shoot and n is the number of buds per excised 
shoot (n = 3). We considered the MTB to have 
stabilized when an inflection point was observed above 
which the reduction in its value was less than one day 
(e.g.; the MTB value tended to a limiting value). 

The experimental model was a 2×5 factorial and 
completely randomized design (CRD) with two 
cultivars and five chilling accumulation treatments. 
The experimental unit was a container with 5 
excised shoots. Each experimental unit was repeated 
eight times (n = 40 containers and 200 excised 
shoots per cultivar).  

The data were analysed with general linear models 
(GLM) adjusted with the lme function of the nlme 
package (Pinheiro, Bates, DebRoy, & Sarkar, 2011) of 
the R statistical language (R Development Core Team, 
2011) using the InfoStat interface (Di Rienzo et al., 
2012). The results from the GLM indicated the 
significance of a cultivar × chilling treatment effect for 
MTB; hence, regression analysis was performed. To 
test the effect of each cultivar within a chilling 
treatment interval, data for the cultivars within the 
chilling interval were pooled, and cultivar was included 
as a dummy variable in the regression model. The 
linear, quadratic and cubic components of chilling 
treatment were included in this analysis. The selection 
of variables was made, and the best model, chosen by 
the backward elimination procedure of InfoStat (Di 
Rienzo et al., 2012). 

Normality and homoscedasticity were tested 
graphically with a Q-Q plot, and a plot of residuals 
vs. predictors, respectively).  

Experiment 2 

Seven-year-old apple tree (Malus × domestica 
Borkh.) “Caricia”, “Princesa” and “Gala” apples grafted 
onto “M9” rootstocks were used for the experiment. 
The “Gala” cultivar has a high chilling requirement (> 
800 CU) according to Hauagge, and Cummins 
(1991c) and was utilized as a control cultivar.  

In May (end of autumn in the southern 
hemisphere) of 2014, one-year-old shoots with 
(intact shoots) and without (excised shoots) apical 

buds were randomly collected from 20 plants of 
each variety. No chilling accumulation had been 
recorded before the collection date. The remaining 
leaves were removed. All shoots were cut into pieces 
15 cm long; the basal and non-lignified apical 
portions of excised shoots (without apical buds) 
were discarded. Furthermore, in the resulting 
excised shoots, the uppermost buds (near the 
wound) were eliminated. Thus, only the three 
central mixed buds were left on each excised shoot.  

However, in the intact shoots (with apical bud), 
only the basal portion was removed. Intact shoots 
were used in addition to excised shoots to compare 
the effect of chilling accumulation on lateral versus 
apical mixed buds. Thus, in the intact shoots, only 
the apical and three central mixed buds were left.  

The experimental conditions, sample handling 
procedures and variables analysed were the same as 
in Experiment 1. 

The experimental model was a 3×2×5 factorial 
CRD with three cultivars, two types of shoots and 
five levels of chilling accumulation. The 
experimental unit was a container with 5 excised 
shoots. Each experimental unit was repeated eight 
times (n = 80 containers and 400 shoots per 
cultivar). The data were analysed using GLMs as in 
experiment 1. As interactions on MTB and BP were 
detected, data for each cultivar and shoot type within 
the chilling interval were pooled. Thus, “cultivar” 
and “shoot type” effects were included as dummy 
variables in the regression model. In this analysis, 
the linear, quadratic and cubic components of 
chilling treatment and dummy variables were 
included. Variables were selected, and the best 
model, chosen by a backward elimination procedure 
using InfoStat (Di Rienzo et al., 2012).  

To compare the season effect on the chilling 
response of “Caricia” and “Princesa” mixed buds, data 
of excised shoots of both experiments (2011 and 2014) 
were analyzed together in a 2×2×5 factorial in a CRD 
(two seasons, two cultivars and five levels of cold 
accumulation). The data were analysed using GLM, as 
previously described. The MTB and BP response was 
modelled by regression analysis using “cultivar” and 
“season” as dummy variables. As in the previous 
regression analysis, variables were selected, and the best 
model, chosen by a backward elimination procedure 
using InfoStat (Di Rienzo et al., 2012).  

Results and discussion 

In experiment 1, the MTB of lateral mixed buds 
decreased significantly with increasing chilling 
accumulation, but the response differed between the 
varieties, with a highly significant interaction between 
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Cummins, 1991b; Oukabli, & Mahhou, 2007). 
Following the above discussion, we consider the 
MTB to have stabilized when an inflection point 
was observed on the chilling accumulation curve, 
above which the reduction in its value was less than 
one day (e.g., the MTB value tended to a limiting 
value). Using this criterion, we found that the 
chilling requirement of apical and lateral buds of 
“Caricia” and “Princesa” was over 600 CU in both 
experiments, which refutes our research hypothesis. 
This value represents almost twice the requirement 
cited for these cultivars (Denardi et al., 1988; 
Hauagge, & Tsuneta, 1999). Using this same metric, 
the chilling requirement of apical and lateral buds of 
“Gala” was over 1200 CU. 

It is important to mention that some 
methodological factors can affect the results. On 
excised shoots, the cut performed on the shoots can 
itself promote bud break (wound effect) (Naor, 
Flaishman, Stern, Moshe, & Erez, 2003). 
Additionally, the absence of the apical buds, which 
may dominate lateral buds (Cook, & Jacobs, 1999), 
can increase the percentage of bud break on the 
lateral buds of excised shoots. Neither Naor et al. 
(2003) or Cook, and Jacobs (1999) evaluated the 
wound effect or the absence of the apical bud on the 
MTB response or any other variable that expresses 
the time needed for buds to break (e.g., T50) in 
their experiments. Furthermore, according to 
Hauagge and Cummins (1991a), the low-chill apple 
cultivars never enter into deep endo-dormancy, so 
low temperatures may not be required to promote 
bud break in excised shoots. Nevertheless, our data 
demonstrate that up to 800-1150 CU of chilling 
accumulation reduces the heat requirement and 
accelerates the bud break on “Caricia” and 
“Princesa” apples, with additional chilling having 
minimal effects.  

Despite showing some disadvantages, the 
methodology used in our work has been suitable for 
evaluating the chilling requirement or dormancy 
progression in many fruit species, both under 
artificial chilling accumulation (Mohamed, 2003; 
Putti et al., 2003; Rahemi, & Pakkish, 2009) and 
under natural chilling accumulation (Campoy et al., 
2011; Dennis, 2003; Hauagge, & Cummins, 1991c; 
Mohamed, 2008; Oukabli, & Mahhou, 2007). 
Moreover, this methodology is one of the most 
suitable for evaluating chilling requirements because it 
is possible to control several key factors, such as light, 
thermal amplitude and temperature (Dennis, 2003). 

Despite the above-discussed factors, lateral buds 
of excised shoots of the low-chill apple cultivars 
studied in our work showed a significant reduction 

in dormancy intensity (MTB) with increased 
chilling accumulation. Consequently, both apical 
and lateral buds of the tested cultivars showed 
shallow dormancy but required a moderate chilling 
accumulation (800–1150 CU) to stabilize their 
MTB value. The shallow dormancy of “Caricia” and 
“Princesa” makes them suitable for cultivation in 
areas with very low chilling availability (Denardi  
et al., 1988; Hauagge, & Cummins, 2001; Hauagge, 
& Tsuneta, 1999) despite the occurrence of 
symptoms of lack of chilling, such us a shift to self-
fertility and a wide flowering period (Castro et al., 
2016).  

Conclusion 

The apple cultivars “Caricia” and “Princesa”, 
bred for chill-deficient environments, showed 
shallow dormancy but required moderate cold 
accumulation (800–1150 CU) at 4ºC to fully satisfy 
their chilling requirements. These characteristics 
make these cultivars suitable for successful 
cultivation in mild-winter areas, but chill-deficiency 
symptoms may still be seen in some years without 
dormancy-breaking treatments. “Caricia” and 
“Princesa” therefore cannot be considered low-chill 
cultivars. 
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