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ABSTRACT
The Atlantic Forest of southeastern Brazil has been considered to have the highest number of tree species per hectare 
in the world. Assessing the influence of climate on tropical tree species is a priority in the face of ongoing climate 
change, and for which dendrochronological studies have been important. We address the dendrochronological 
potential of Licaria bahiana Kurz (Lauraceae), an endemic species of the Atlantic forests. We studied growth ring 
anatomy of L. bahiana and applied dendrochronological methods to investigate how short-term variation in climate 
affect its radial growth. Distinct growth rings were observed in all individuals and demarcated by darker tangential 
fiber zones in latewood. Trees showed high climatic sensitivity (0.48) and growth synchrony (intercorrelation r = 
0.69; rbar = 0.38). Radial growth was negatively influenced by high temperatures at the beginning of the current 
growing season (r = -0.46) and by excessive rainfall at the end of the current growing season (r = -0.29), which are 
periods that correspond to the phenological reproductive phases of the species. Climate anomalies during this period 
may alter the tradeoff between growth and reproduction, in favor of the latter. 
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Introduction
The analysis of annual growth rings in woody tissues, 

resulting from seasonal vascular cambium activity, provides 
detailed information about life histories of plants and their 
changing environment (Fritts 1976; Schweingruber 2007; 
Speer 2010). Growth-ring formation is widespread and very 
well documented in cold-zone floras (Schweingruber 2007), 
where dendrochronology has provided major insights into 
environmental and societal histories, such as climate change 
(Martinelli 2004) and civilization demises (Buntgen et al. 2011). 
In the tropics, dendrochronology has been hindered mainly by 
a long-lasting premise that the lack of winter cold results in 

continuous and/or erratic growth patterns in woody tissues, 
disregarding other possible triggering factors (Worbes 2002). 
Nevertheless, studies reporting annual growth rings in lianas 
(see Lima et al. 2010 and Brandes et al. 2015) and tree species 
from the equator to the subtropical belts have flourished since 
the 1980’s, opening an avenue to the environmental history 
of tropical forests and savannas (Worbes 2002; Rozendaal & 
Zuidema 2011; Brienen et al. 2016; Schöngart et al. 2017). 
The most elemental dendrochronological issue in the tropics 
is no longer whether woody plants form annual growth rings, 
but which of them do.

Obviously, answering that question is an enormous task. 
Since the tropics are estimated to have between 25,000 and 
50,000 tree species (Hubbell 2013), the hundreds of species, 
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thus far know to form annual growth rings (Worbes 2002; 
Brienen et al. 2016; Schöngart et al. 2017), are likely to 
represent a tiny sample of its flora with dendrochronological 
potential. The megadiversity of tropical communities is 
linked to endemism and low population densities (Hubbell 
2013), imposing a further logistic nuisance to the approach 
to its dendrochronology potential. The search for plants 
feasible to growth-ring analysis may be more prolific in 
plant communities under marked seasonal conditions 
and/or in lineages embracing species of recognizable 
potential (Roig 2000) if annual vascular cambium rhythm 
is environmentally driven and/or phylogenetically conserved 
(see Nath et al. 2016). 

If plants are to be used in dendrochronology, beyond 
forming annual anatomical markers in the wood, these true 
annual growth-rings have to be distinguished from intra-
annual wood layers resulting from abnormal conditions 
during the growth season, especially when exact calendar age 
inference is mandatory, as in dendroclimatology (Fritts 1976). 
Thus, it is essential to assess the crossdating principle, i.e., 
the existence of a typical synchronous growth pattern within 
a population submitted to similar changing environmental 
(climatic) limiting factors (Douglass 1941; Fritts 1976). 
Again, dendrochronologists studying tropical communities 
have an enduring duty because crossdating has been evaluated 
for even fewer cases (see Fontana et al. 2018b). 

Here, we aim to assess the dendrochronological potential 
of Licaria bahiana, a species of the family Lauraceae that is 
endemic to lowland Atlantic Neotropical forests (Quinet 
et al. 2015). For a population growing in a forest under 

seasonal rainfall regime, we asked the following questions: 
(i) Does L. bahiana form anatomically apparent growth 
layers in the wood? If so, (ii) is there a synchronous growth 
pattern among trees and what is the role of varying climatic 
conditions on that? We hypothesize that L. bahiana forms 
annual growth rings, with a synchronous width pattern 
due to the interannual variation in water supply, because: 
anatomically distinctive growth layers are widespread in 
Neotropical Lauraceae, and some cases have proven to be 
truly annual and sensitive to climate conditions (Reis-Ávila 
& Oliveira 2017); seasonal rainfall regimes are a major 
determinant of growth-ring formation and inter-annual 
growth rhythms in tropical trees (Worbes 2002; Rozendaal 
& Zuidema 2011; Brienen et al. 2016; Schöngart et al. 2017); 
annual and climate-sensitive growth rings were reported 
for species of Fabaceae in the same forest type we studied 
(Costa 2015; Costa et al. 2015; Fontana et al. 2018a).

Materials and methods
Study area and tree species selected

The study was carried out at the Reserva Natural Vale 
(RNV), an area of 23,000 ha covered by a well-preserved 
tropical rainforest called “Tabuleiros” Atlantic Forest 
(TAF). It is located in the State of Espírito Santo, in the 
southeastern region of Brazil (19°S - 19°14’S, 39°12’W - 
40°W), between 30 and 80 m a.s.l., approximately 30 km 
from the coast of the Atlantic Ocean (Fig. 1).

Figure 1. Study area in the State of Espírito Santo, southeastern Brazil. A. Location of the study area in Brazil. Dots represent the 
records of Licaria bahiana according to Species Link (http://www.splink.org.br/index?lang=pt). B. Climatic diagram of the study region; 
data provided by Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER). C. Location of the six sampled 
trees (dots) in the municipality of Linhares, Espírito Santo. 
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According to the Koeppen classification (Alvares et al. 
2014), the climate of the study region is type Aw, a markedly 
seasonal tropical climate with a dry winter season. Mean 
annual precipitation is 1,178 mm, with monthly averages 
for the rainy season (spring and summer) of 130 mm to 
approximately 200 mm from October to April, when 72 % of 
the precipitation occurs (Rolim et al. 2016). Rainfall during 
the dry season (winter) does not exceed 25 % of the annual 
total, being below 60 mm from April to September (Víncens 
et al. 2003) (Fig. 1C). It is worth noticing the strong year-
to-year variation in precipitation that can vary up to 50 % 
(Garay et al. 2003). The mean temperature ranges between 
19.9 °C in July to 25.6 °C in February through the year, and 
the overall annual mean is 23 °C (Jesus 2001) (Fig. 1C). The 
relative humidity in RNV is of the 83 % (Kindel et al. 1999). 
Evapotranspiration reaches on average 1,246 mm per year, 
with maximum values in the rainy season and frequently 
exceeding the dry season (Víncens et al. 2003).

Soils are predominantly yellow podzolic (yellow, tertiary 
argisol), dystrophic, with a drastic difference in grain size 
according to depth, presenting low fertility and low cation-
exchange capacity (Garay & Silva 1995; Louzada et al. 1997). 
In small patches, there is the occurrence of “mussununga”, 
with a characteristic Podzol-type soil, which is an azonal, 
sandy quaternary, fragile and unstructured soil, forming a 
layer with a certain thickness and with approximately 2 m 
from the groundwater level (Víncens et al. 2003). 

 TAF presents a floristic mixture of Amazonian and 
Atlantic elements (Rizzini 1963; Peixoto & Gentry 1990; 
Veloso 1991; Siqueira 1994; Garay et al. 2003; Jesus & Rolim 
2005) and is considered to have the highest tree-species 
density per hectare in the world (Thomas et al. 2008). Due 
to the complexity of its flora, TAF is classified within the 
Lowland Dense Ombrophilous Forest and the Lowland 
Semideciduous Forest (Veloso 1991; IBGE 2012). 

Licaria Aubl. (Lauraceae) is an endemic genus of the 
Neotropics with approximately 40-50 species (Kurz 2000; 
Werff 2003; Baitello & Esteves 2007). In Brazil, 21 species 
occur, three of which are endemic (Quinet et al. 2015). 
Among them is Licaria bahiana Kurz, subgenus Armeniaca 
(Richter 1985), with distribution in the lowland forests and 
“restingas” (sandbanks) of southeastern and northeastern 
Brazil (Leite 2010; Quinet et al. 2015), as well as in the 
“mussunungas” of the Reserva Natural Vale. These trees 
usually reach 22 m in height (Barbosa et al. 2012), with 
larger individuals attaining 41 m in height and diameters 
up to 83 cm (Sambuichi 2006). As for phenology, it flowers 
in January, with immature fruits in February and April and 
mature fruits in October (Barbosa et al. 2012). For foliar 
phenology, local observations and exsiccatae deposited 
in the herbarium of the RNV indicate that the tree is 
evergreen. It is monoecious (Quinet 2005) and classified 
as late secondary (Evaristo et al. 2011). In phytosociological 
studies, L. bahiana presents low density, with one to two 
individuals per hectare (Sambuichi 2006; Leite 2010). 

Thus, it can be classified as a rare species according to the 
theory of singletons (species represented by only a single 
individual) and doubletons (species represented by up to 
two individuals) proposed by Preston (1962).

Sampling and analyzing the growth ring markers

To verify whether L. bahiana forms anatomically 
distinct tree rings in the wood, we took wood cores of 5 
mm diameter, collected at breast height (~1.30 m) with 
an increment borer (Haglöf, Långsele, Sweden), from six 
adult individuals with average height of 12 m (8–21 m) and 
diameter at breast height (DBH) of 15 cm (9–25 cm). All 
individuals were geo-referenced (Fig. 1A). 

For macroscopic description, cores were sanded 
with micro abrasive paper according to Stokes & Smiley 
(1996) and photographed using a camera attached to a 
stereomicroscope (Canon DS126311, Tokyo, Japan). We 
analyzed the transverse surfaces of six wood cores (one per 
tree). We looked for features that determine ring boundaries, 
as well as anomalies within the ring that differ from the 
typical growth ring boundaries (possible false rings). 

For microscopic description, we produced histological 
slides by boiling the wood cores in water and glycerin for 
approximately 8 hours. We prepared safranin-stained 
histological slides for the transversal anatomical plane, 
according to standard techniques in wood anatomy 
(Johansen 1940; Sass 1958). Sections, 8–15 μm thick, were 
cut on a rotary microtome (Micron HM 340E, Walldorf, 
Germany) and mounted on microscope slides. Digital 
images were captured with a camera (AVT Marlin F-145C2, 
Stadtroda, Germany) attached to a microscope (Olympus 
BX50, Tokyo, Japan). Cell dimensions were measured using 
the Image Pro Plus 4.5 software (Media Cybernetics 2001). 
The main descriptions of macro- and microscopic features of 
transversal plane of the wood follow the IAWA Committee 
(1989) and Coradin & Muñiz (1991). 

Dendrochronology

Wood sampling and preparation

For tree-ring analysis, we used the same trees described 
above. For each tree, we collected two to four increment 
cores (radii) at breast height (DBH), using a 5-mm diameter 
increment borer (Haglöf, Långsele, Sweden). Wood cores 
were air-dried and then glued to wooden holders. After 
drying, cross-sections were polished with sandpaper (from 
80 to 1200 grit) until the anatomical structure of the ring 
boundaries were clearly distinguishable.

The wood cross-sections were visually crossdated within 
each tree under a stereomicroscope (Zeiss MZ8) and the 
growth-layer boundaries were identified and marked. We 
also considered wood anomalies, such as deformed cells, 
vessel distribution and patterns of fiber wall thickness, as 
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possible time markers (Wils et al. 2009; 2011). Wood cross-
sections were then scanned with a high resolution at 2400 
DPIs (Epson Perfection V750 PRO) with a reference scale. 
The tree-ring widths were measured using the Image Pro 
Plus software (Media Cybernetics 2001).

Crossdating and chronology building procedures

For assessment, measurement control and crossdating 
among radii, we used the COFECHA software (Holmes 1983; 
1986), in which we crossdated time series within trees using 
segment lengths of 20 years with 10-year overlaps. After 
the crossdating procedures were satisfactorily performed 
within-trees, we used the Arstan software to enhance a 
common growth signal, stabilize variance and integrate 
the tree series in a site chronology (Cook 1985; Cook & 
Holmes 1996). To enhance a common (climatic) signal 
among the trees, ontogenetic and disturbance trends were 
filtered from each raw ring-width series by dividing each 
ring-width value by its predicted value obtained from a cubic 
smoothing spline model (50 % of variance maintained in 
21 year segments) adjusted for each series. The resulting 
standardized ring-width series were then combined in a 
mean site chronology through a robust bi-weighted mean 
function. 

The growth synchronism among series was evaluated 
by the Intercorrelation among standardized series, 
computed within (rwit) and among (rbet) trees, by the 
Mean Correlation among standardized series (rbar) and 
by the Expressed Population Signal (EPS); the temporal 
variation of the mean site chronology was described by 
its Standard Deviation (SD) and Mean Sensitivity Index 
(MSI) (Speer 2010). MSI among series, rwit and rbet were 
computed using COFECHA (Holmes 1983) and MSI of site 
chronology and the other parameters using ARSTAN (Cook 
& Holmes 1996).

Dendroclimatic signals
	
To explore radial growth responses to climatic conditions, 

we compared the mean site chronology to precipitation and 
temperature data, provided by the Instituto Capixaba de 
Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), 
from a meteorological station 10 km away from the 
study site. The monthly meteorological series covers the 
period from 1976 to 2014, with sparse gaps (12 months 
for precipitation and 16 months for temperature), that 
were filled with the respective monthly average. We used 
Correlation Function Analysis (Blasing et al. 1984) to test for 
dendroclimatic signals in L. bahiana, by comparing the site 
chronology to monthly total precipitation and temperature 
(mean = Tmean; minimum = Tmin, and maximum = Tmax). 
We tested the radial growth responses to climatic conditions 
through the previous and current growth year by correlating 
the STD chronology to climatic series from October (spring) 

of the previous growth year to April (autumn) of the current 
growth year. The statistical significance of the correlation 
coefficients was addressed on a 95 % confidence interval 
obtained by bootstrap resampling (Biondi & Waikul 2004). 
Correlation Function Analyses were performed in the 
package bootRes of R (Zang & Biondi 2013). Pearson’s 
correlations were calculated for the period 1976-2013 to 
verify the agreement between climatic variables and STD 
chronology. 

Results and discussion
Wood anatomy

Macroscopic description: Growth ring boundaries 
distinct, visible to the naked eye, delimited by variations in 
fiber-wall thickness resulting in a distinct darker tangential 
fiber zone in latewood, sometimes associated with axial 
marginal parenchyma forming a thin line (rare). Axial 
parenchyma scanty paratracheal, visible under lens (10×), 
vasicentric and, sometimes, linear aliform, forming small 
confluence stretches among the vessels. Rays visible under 
lens of 10×, fine and few, irregularly spaced. Vessels visible 
to the naked eye, predominantly solitary and multiples 
up to four, wood diffuse-porous, small to medium-sized 
(Fig. 2A-C).

Microscopic description: Vessels solitary (predominant) 
or multiples up to 7; vessel clusters up to 4 were rare; wood 
diffuse-porous, without typical arrangement, of circular to 
angular section; frequency of 5-20 vessels/mm²; tangential 
diameter of 30-132 μm; sometimes obstructed by tyloses 
or partially filled with gum deposits. Axial parenchyma 
scanty, paratracheal vasicentric (but typically not completely 
surrounding the vessels) to lozange-aliform (but without 
forming distinct bands); axial parenchyma in marginal 
narrow lines. Ray frequency was low, with 2-5 rays mm-

1width 1 to 3 cells. Intercellular canals absent. Crystals 
absent. Tyloses with thin walls sometimes present (Fig. 2D).

The presence of growth rings in trees and lianas in 
Brazilian forests has been described for many species. In a 
meta-analysis of the wood anatomy involving 491 species 
occurring in Brazil, Alves & Angyalossy-Alfonso (2000) 
identified that 48 % of them form an anatomical growth 
marker, while Mainieri et al. (1983) observed it in 38 % of the 
300 species analyzed by them. Reis-Ávila & Oliveira (2017) 
reviewed the literature on the anatomy of the growth rings of 
113 species of neotropical Lauraceae. They report that 90 % 
had clearly distinct ring boundaries, most of them distinct 
by variation in fiber density and only a few to marginal 
parenchyma. Although all these authors do not mention 
how many of these species form annual rings, Brienen et 
al. (2016) confirm annual growth rings for 230 tropical tree 
species embracing continents and climatic zones. Studies 
of cambial activity and xylogenesis in Brazilian trees also 
confirm the formation of annual rings for many species 
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Figure 2. Wood transversal section of Licaria bahiana. Macroscopy: A. General aspect of the wood and distinct growth ring boundaries 
(black arrow); B. Typical annual growth rings (black arrow) and false rings (intra-annual density fluctuation; white arrow); and C. 
Aspect of a narrow growth ring. D. Microscopic detail of an abrupt transition between two growth-rings, from latewood thick-walled 
cells in the former ring to earlywood thin-walled cells in the latter.

(Callado et al. 2001; 2014; Lisi et al. 2008; Oliveira et al. 
2009; Brandes et al. 2015; Vasconcellos et al. 2016).

According to Alves & Angyalossy-Alfonso (2000), Licaria 
camara (only species of Licaria investigated in the study) 
presents distinct growth rings, diagonal vessels, solitary 
and multiple. Hernandez (2002) evaluated the anatomy of 
seven Licaria species. The authors observed both an absence 
of growth rings and rings defined by lumen reduction and/
or fiber wall thickening, diffuse-porous wood, solitary and 
multiple vessels, without specific arrangements. The online 
platform InsideWood (http: //insidewood.lib.ncsu.edu/
search, cf. Wheeler 2011) documents the wood anatomy 
of about 18 Licaria species. Of these, there are descriptive 
data for 10 of them, reporting indistinct or absent growth 
ring boundaries. Record & Hess (1942) evaluated 11 species 
of Licaria and observed that when present, the growth ring 
boundaries are distinct by slight differences in density 
and sometimes by a line of marginal parenchyma. In our 
analyzes, L. bahiana also presents marginal parenchyma but 
not at all ring boundaries. Dünisch et al. (2002) studied the 

wood formation in Carapa guianensis for four years; only in 
one of them was a parenchyma band formed. 

In this context, it is observed that growth rings occur in a 
few Licaria species, and are not very distinct in some of them. 
Thus, L. bahiana is among the few species of this genus that 
form distinct growth rings, allowing dendrochronological 
studies. These studies can bring important contributions 
to the understanding of genus ecology.	

Dendrochronology
	
We cross-dated 16 series for six L. bahiana trees. The 

main chronology descriptors are presented in Table 1. Many 
of the dendrochronological parameters evaluated indicate 
that the chronology was cross-dated successfully. It also 
reached the critical correlation pointed out by COFECHA 
(99 % confidence level = 0.5155), indicating consistency in 
the common growth variation among the site trees. The 
age structure comprises trees of estimated mean age of 38 
years (26-50 years). 
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Table 1. Statistical parameters of Licaria bahiana ring-width 
chronology, from “Tabuleiros” Atlantic Forest. 

Parameter Values

Crossdated period 1965 – 2014 (50 years)

Mean length of series  
(year)

38 years (Min = 26; Max = 50;  
SD = ±12)

Average annual growth  
(mm/year)

2.15 (Min = 0.27; Max = 6.79;  
SD = ±1.21)

Individual series

Intercorrelation within tree-series 
(rwit)

0.69 (Min = 0.62; Max = 0.76;  
SD = ±0.07)

Intercorrelation between tree-series 
(rbet)

0.55 (Min = 0.42; Max = 0.66; 
SD = ±0.10)

Mean Correlation among series  
(rbar)

0.38 (Min = 0.27; Max = 0.47;  
SD = ±0.07)

Mean Expressed Population Signal 0.74

Mean Sensitivity Index  
(MSI)

0.48 (Min = 0.35; Max = 0.69;  
SD = ±0.16)

Site chronology

Standard deviation  
(SD)

0.067

Mean Sensitivity Index 0.37

First-order Autocorrelation -0.092

Licaria bahiana showed to be very sensitive to 
environmental variations, with a great alternation between 
wide and narrow rings (MSI = 0.48; Fig. 2A). According to 
Speer (2010), MSI above 0.4 indicates high sensitivity and 
frequency of micro or missing rings next to very wide rings, 
causing increased difficulty in dating. In this sense, wood 
anatomy microscopy of L. bahiana played an important role 
to better understand the growth ring anatomical patterns 
and recognizing them macroscopically. 

Considering the STD chronology, the mean correlation 
between all pairs of trees was rbar = 0.38 and varied 
throughout the chronology (Fig. 3A). In studies investigating 
the relationships between tree growth and climate in the 
Brazilian Atlantic Forest, this parameter varied from 0.20 
up to 0.69 (Dünisch 2005; Oliveira et al. 2010; Venegas-
González et al. 2016; Fontana et al. 2018a; Granato-Souza 
et al. 2018a; 2019). Thus, by comparison, the L. bahiana 
chronology has a median correlation considering the forest 
pattern. It should be noticed that, due to the low density 
of L. bahiana trees, we could sample only six trees. Despite 
this, it was possible to evidence the sensitivity and growth 
synchronism among them.

Nevertheless, the EPS in the entire period was below 
the threshold of 0.85 suggested by Wigley et al. (1984) 
(Fig. 3A). According to the authors, the EPS tells how well 
the mean of a finite sample represents the average of a 

hypothetical population. The value is influenced by the 
number of replications. Thus, the value increases rapidly 
from one to 10 trees and gradually stabilizes from this point 
on (Cook & Kairiukstis 1990). There are recent discussions 
above the overvaluation of this parameter (Mérian et al. 
2013; Buras 2017). In studies developed in the Atlantic 
Forest, EPS is the least used parameter to contribute to 
the validation of the chronology (Fontana et al. 2018b). In 
the case of L. bahiana, which presented satisfactory values 
for the other parameters, the increase in the number of 
trees in the chronology could only reinforce this evidence 
of synchronism.

For analyses of climate relations, we only used a 
representative part of the STD chronology in order to 
maintain a period of common growth for most trees and 
to fit it in the period with available local climatic data (1976-
2013). 

Licaria bahiana showed radial growth negatively 
influenced by high temperatures at the beginning of the 
current growing season (November Tmean = -0.46; Tmin 
= -0.41; Tmax = -0.48). Excessive rainfall at the end of the 
current growing season also presented a negative effect 
on its performance (February r = -0.29). Although this 
correlation is weak, it is significant (Fig. 4).

Temperature is the limiting factor for tree growth in 
temperate and cool zones, whereas in the tropics it is nearly 
constant (Worbes 2002). In fact, most studies in the tropics 
have reported correlations between growth and rainfall (see 
a review in Rozendaal & Zuidema 2011). In the Neotropical 
forest, with increasing latitude and altitude (subtropics), 
photoperiod and temperature become important in 
annual growth rhythms (Schöngart et al. 2017). On the 
other hand, temperature correlations have not even been 
tested in many climatic studies in tropical regions. This is 
because it is assumed that the low fluctuation of the annual 
temperature is unable to trigger physiological responses in 
tropical trees. In spite of that, currently, more studies have 
tested the relationship between growth and temperature, 
demonstrating the influence of this climatic variable on the 
radial growth of the tropical trees (e.g., López & Villalba 
2011; Vlam et al. 2014; Fétéké et al. 2016; Locosselli et 
al. 2016a; b; Vasconcellos et al. 2016; Pereira et al. 2018; 
Rahman et al. 2018). 

The tropical species L. bahiana showed to be sensitive 
to the high temperatures of November, thus corresponding 
to the beginning of the growth season. This pattern was 
also reported for Podocarpus lambertii in northeastern 
Brazil, where, associated with site conditions, November 
temperature was the main limiting factor for growth in 
that population (Locosselli et al. 2016a). High temperatures 
increase the Vapor Pressure Deficit (VPD) (Kramer & 
Kozlowski 1972; Will et al. 2013; Marchin et al. 2016; 
Shamshiri et al. 2018), increasing the demand of the plant 
for water (Will et al. 2013; Lihavainen et al. 2016; Shamshiri 
et al. 2018), causing the closing of the stomata and blocking 
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the entry of CO2 through them, which in turn reduces the 
photosynthesis rate (Saliendra et al. 1995; Streck 2003; Iio et 
al. 2004; Will et al. 2013). Voelker et al. 2014 studying Quercus 
macrocarpa across continental gradients in precipitation, 
VPD and irradiance, found a negative correlation between 
the chronology and the wettest region. They conclude that 
the magnitude and sign of correlations between tree-ring 
chronologies corresponded to regional shifts in VPD or the 
ratio of precipitation to evapotranspiration. Rahman et 
al. (2018) also reported negative significance in a tropical 
moist forest tree in Bangladesh related to radial growth and 
VPD, particularly in the later growing season. The authors 
explained that there is higher evapotranspiration outside 
the main monsoon season, when the environment becomes 
extremely dry, with low relative humidity (RH), higher VPD, 
and low soil moisture. An increase in temperature in this 
phase could increase water stress leading to low growth 
(Rahman et al. 2018). 

An important ecological feature of L. bahiana is the 
ability to occupy “restinga” and “mussununga” habitats. In 
the study area, L. bahiana occurs in the latter, as well as in 
ombrophilous forests. An edaphic factor that differentiates 
“mussunungas” from “restingas” is the presence of an 
impermeable layer of laterite in the former that causes 
seasonal flooding in this habitat and gives it high humidity 
during the rainy season (Meira-Neto et al. 2005). In turn, 
water saturation reduces soil available oxygen, which can 
affect the height, leaf, cambial and reproductive growths 
of trees (Kozlowski 1986). This condition may explain the 
negative correlation between precipitation and growth 
that we found for L. bahiana. Dendrochronological studies 
developed in the Amazonian floodplains also showed a 
negative correlation between ring width and the amount of 
precipitation and flood pulse during the vegetation period 
(Schongart et al. 2004). In Brazil, with the exception of 
the ecosystems investigated by Schongart et al. (2004), 
other studies in tropical climate showed strong influence 
of precipitation in the radial growth (Callado & Guimarães 
2010; Brandes et al. 2011; Latorraca et al. 2015; Locosselli 
et al. 2016b; Souza et al. 2016; Granato-Souza et al. 2019; 
Vasconcellos et al. 2019), whereas negative correlations 
are more often in subtropical climate (Oliveira et al. 2010; 
Andreacci & Botosso 2014; Perone et al. 2016; Kanieski 
2017; Granato-Souza et al. 2018a; b). As in L. bahiana, 
a study carried out with Chukrasia tabularis A. Juss. in 
Bangladeshi moist tropical forests showed that precipitation 
negatively influenced tree growth in the later growing season 
(Rahman et al. 2018). According to the authors, this period 
corresponds to the end of the monsoon season and the soils 
are moisture saturated. An increase in precipitation in this 
monsoon phase may further increase soil moisture leading 
to anoxia in the root zone.

In addition, the increase of precipitation in February 
may lead to an increase in RH, which is one of the factors 
that influence VPD. High RH is related to low VPD (Zhang et 

Figure 3. A. Individual ring-width series of Licaria bahiana (gray 
lines) and their mean curve (black line) from “Tabuleiros” Atlantic 
Forest in Brazil; B. Ring-width Index chronology (black line) of 
Licaria bahiana and 21-years smoothing curve (dotted line). The 
area in light gray shows sample depth over the analysis period.

Figure 4. Correlations between ring-width index and climatic 
variables (1976–2013). orrelation among ring-width index, A. 
mean temperature and B. total precipitation. Columns in dark 
gray indicate month with significance levels at p < 0.05. Dotted 
lines delimit the 95% confidence interval. Light-gray areas show 
the estimated growth season period.
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al. 2017). Low VPD promotes stomatal opening, facilitating 
the entry of carbon dioxide (CO2) (Saliendra et al. 1995; 
Lihavainen et al. 2016). This could promote growth by the 
CO2 gain being applied to photosynthesis (Streck 2003). 
However, low VPD decreases the evaporative demand and 
may reduce the acquisition and translocation of minerals, 
especially nitrogen, via xylem sap flux rates (Lihavainen 
et al. 2016). Studying Betula pendula, Lihavainen et al. 
(2016) showed that low VPD affects carbon and nutrient 
homeostasis and modifies nitrogen allocation of plants. 
These issues may have contributed to the low performance 
of L. bahina in relation to high precipitation during the late 
growing seasson.

Studies have also shown that in Amazonian floodplain 
ecosystems, the peak of flowering and fruiting occurs 
during the flood pulse (Schöngart et al. 2002). Licaria 
bahiana flowers in January and the fruits begin to develop 
in February (Barbosa et al. 2012), the rainy season period 
in the region. Therefore, these are months of high energy 
demand by the plant. In the climatic diagram (Fig. 1C) 
February is usually the driest month of the growing season. 
Anomalies in climate during this period can alter the tradeoff 
between growth and reproduction, favoring the latter. 
Studies with tropical species have shown that correlations 
of radial growth with phenophases are variable depending 
on the species (Fétéké et al. 2016). Lara & Marcati (2016) 
studied the cambial activity and phenology of the evergreen 
species Cordiera concolor. The authors demonstrated that 
the flower buds and flowering coincides with the end of 
the growing season in February for some specimens, while 
other specimens remain with mature leaves or new green 
leaves in the same period. Thus, it seems that the variability 
found in phenology at the species level (Fétéké et al. 2016) 
is repeated at the specimen level. In this context, it would 
be necessary to carry out cambial activity and phenology 
studies to better understand the relationship between these 
parameters and growth for L. bahiana. Especially because 
L. bahiana is a monoecious species (Quinet 2005).	

For Southeastern Brazil, the report by the Brazilian 
Panel on Climate Change (PBMC 2014) points to a 2.5 to 
3 ºC increase in temperature by the end of the century, 
with an increase in rainfall from 25 % to 30 %, extreme 
events of rain, drought and temperature, more frequent 
and intense. Despite being stenotopic (restricted geographic 
distribution), L. bahiana is a euryecious species, that is, 
capable of populating different habitats. Thus, reducing 
cambial activity may be the mechanism by which this species 
copes with extreme events in the environment. Given the 
climatic scenario projected for the region, it is possible that 
L. bahiana will reduce its annual growth rate. However, it is 
important to keep in mind that understanding responses of 
forests to global changes through tree ring analysis is not an 
easy task and can be plagued by biases, such as recruitment 
patterns, demographic processes, successional groups and 
others (Brienen et al. 2017).

This was the first dendrochronological study for Licaria 
bahiana. This species is endemic to the Brazilian flora, has 
limited distribution and, as most tropical species, occurs 
with low density. In this study, we demonstrated that that 
the growth rings are well marked and synchronous in this 
population and high temperatures and rainfall reduced its 
radial growth. Since L. bahiana is a representative of rare 
species, which in turn contributes to the high diversity 
of tropical forests, it is important to understand their 
responses to a rapidly changing climate. In this context, 
the scenarios of increasing extreme events in precipitation 
and temperature may indicate risks to the conservation of 
L. bahiana in the long term. It is important that other rare 
species be investigated to understand their responses to 
these ongoing climate changes. 
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