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Abstract: Thermophilic fungi constitute an ecologically well-defi ned group, commonly 
found in environments wherever decomposition of organic matter takes place, making 
them self-heating. The importance of thermophilic fungus in ecosystems contrasts 
with the incompleteness of our understanding of the group’s biogeography patterns, 
phylogenies and coevolution relationships. Actually, the lack of data about thermophilic 
fungi from the Brazil is a limiting factor that also contributes for this scenario. In order to 
reduce this gap of knowledge, we aimed to characterize thermophilic fi lamentous fungi 
in Araucaria Forest, Atlantic Forest biome. Species identifi cation was achieved by using 
internal transcribed spacers (ITS) as molecular ribosomal markers. In total, 240 heat-
tolerant fungal strains were isolated and identifi ed as Thermothielavioides terrestris, 
Thielavia sp., Thermoascus crustaceus, Aspergillus fumigatus, Rhizomucor miehei, 
Rhizomucor pusillus, and Rhizopus microsporus. All thermophilic strains exhibited 
optimal growth at 45 °C. T. crustaceus, T. miehei e R. pusillus were the dominant species, 
with the frequencies of occurrence of 35.00%, 28.33% and 23.33%, respectively. Our data 
reveals the apparent diversity of the Neotropical realm and may serve as reference to 
future studies that will try to elucidate important aspects of group. 
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INTRODUCTION 

Fungi are eukaryotic microorganisms that play 
ecological roles as decomposers, mutualists, 
and pathogens of animals and plants. They 
fundamentally drive carbon cycling in forest soil, 
mediate mineral nutrition of plants, and relieve 
carbon limitations of other soil organisms 
(Blackwell 2011, Bruns 2019). Thermophilic 
fungi are a particular group of fungi which 
show interesting features, such as growing at 
high temperatures through structural and 
physiological modifi cations which are unusual 
to the others eukaryotic forms (Maheshwari et 
al. 2000, Oliveira & Rodrigues 2019). 

As one of the richest biodiversity hotspots 
in America, the Atlantic Forest biome is included 

in the global list of priority conservation regions 
(Faoro et al. 2010). The exceptional levels of 
species endemism, species richness and the 
loss of large areas of the original forest cover 
make this biome one of the five biodiversity 
hotspots (Myers et al. 2000, Mittermeier et 
al. 2011). Climatic as well as edaphic factors 
contribute to this diversity (Serna-Chavez et 
al. 2013). Among 5,719 fungal species recorded 
in Brazil, 3,017 were isolated from the Atlantic 
Rainforest, which remains the best known 
and most investigated biome of the country. 
Regardless of its importance, a large fraction of 
microbial diversity in the Atlantic Forest remains 
unexplored (Lima-Perim et al. 2016).

Several studies investigated the Brazilian 
thermophilic fungi isolated from decomposing 
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organic materials, trunks of trees, and domestic 
and industrial waste piles for biotechnological 
purposes (Ferrarezi et al. 2014, Pereira et al. 
2015, Contato et al. 2021). Recently, Oliveira et 
al. (2016) assessed the heat-tolerant fungi 
present in composting pressmud. With regard 
to Brazilian soils, some reports have focused on 
individual isolates having potential applications 
(Martin et al. 2010, Moretti et al. 2012), which 
did not bring significant contributions to the 
measurement of the existing diversity, as well as 
to the understanding of their functions in these 
niches. 

Several molecular data on fungal soils 
communities have been accumulated in public 
sequence databases that provide interesting 
analyses when combined (Egidi et al. 2019). 
Morgenstern et al. (2012) have presented 
empirical studies that report a robust phylogeny 
for thermophilic fungi. However, among the 115 
specimens analyzed, none of them was sampled 
from Brazilian biomes. Thus, the attempts of 
reconstructing phylogenies at a global scale 
obviously suffer from the lack of Brazilian 
reference data, especially because tropical 
areas are the nest of high species diversity. 
This lack of data affects significant aspects 
such as hypothesized phylogenies, coevolution 
relationships, and correct interpretation of 
biogeographic patterns (Mueller & Schmit 2007).

Understanding fungal diversity allows us to 
predict new approaches for the management 
and conservation of biodiversity, especially in 
habitats with high devastation rates. Therefore, 
we focused on describe thermophilic fungal 
species from Atlantic Forest biome.

MATERIALS & METHODS 
Sampling area and sample collection
A total of 30 soil and 30 leaf litter samples were 
collected from the following three Araucaria 

Forest sites (Atlantic Forest Biome), in Paraná, 
Brazil: Fazenda Canarinho (site 1), Parque Natural 
Municipal das Araucárias (site 2), and Parque 
Municipal São Francisco da Esperança (site 3). 
These sites exhibited heterogeneity with regard 
to the species in native climax, predominance 
of Araucaria, and species of trees, shrubs, and 
herbs. Soil samples and organic layer were 
collected in each site from depths of 0-20 cm 
using a soil liner sampler and from the surface, 
respectively. The samples were then transferred 
to sterilized plastic bags, mixed thoroughly, 
stored at 4 °C, and processed within a few days.

Fungal isolation and maintenance
Sabouraud culture medium was used to 
isolate fungi from soil and organic layer 
samples. To inhibit bacterial growth, 100 mg 
of chloramphenicol per liter was added to the 
medium. The isolation method was based on a 
series of dilutions (Clark 1965). Soil sample (1 g) 
was blended with sterile distilled water (SDW, 
10 mL), followed by three serial dilutions with 
sterilized water. Organic layer sample (10 g) was 
crushed with 100 mL SDW in a food processor, 
followed by serial dilution. Next, the plates were 
maintained at 45 °C and monitored at regular 
time intervals for the emergence of fungal 
growth. Fungi were checked for purity, and 
impure isolates were repeatedly cultured. After 
ensuring purity, fungal strains were cultivated 
on Vogel agar slants, during seven days at 45 °C, 
and after stored at 4 °C according to Castellani’s 
method.

Fungal growth at different temperatures
Growth performance of the eight fungal 
thermophilic strains was examined at different 
temperatures according to Morgenstern et al. 
(2012). Cultures were grown on Sabouraud agar 
plates adjusted to pH 5.5. The agar plates were 
inoculated with 2 µL of 107 spores in solution per 
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µL. Cultures were grown at 22 °C, 34 °C, 45 °C, and 
55 °C until differential growth was clearly visible. 
The relative growth performance was recorded 
for each strain by estimating the relative surface 
area of the agar plates covered with fungal 
mycelium at the different temperatures. A simple 
ranking from strongest to weakest (or absent) 
growth was then obtained for each strain.

DNA extraction, PCR amplification, and 
sequencing
The strains were grown at 45 °C in Czapek 
medium in Erlenmeyer flasks and shaken at 200 
rpm to form pellets. The mycelium was collected 
and washed with distilled water, frozen with 
liquid nitrogen, and ground to a fine powder 
with a mortar and pestle. Genomic DNA was 
extracted from 15–20 mg of fungal pellets using 
the cetyltrimethylammonium bromide (CTAB) 
method (Doyle & Doyle 1987).

DNA amplification was performed in a 
thermocycler (Mastercycler®, Eppendorf, USA). 
PCR amplification of the  ITS1–5.8S–ITS2  DNA 
region was achieved in one fragment using 
ITS5 forward (5’-GGAAGTAAAAGTCGTAACAAGG-3’) 
and ITS4 reverse (5’-TCCTCCGCTTATTGATATGC-3’) 
primers as described by White et al. (1990). PCR 
amplification mix of the ITS5-ITS4 comprised 
approximately 20 ng genomic DNA, 1 × BiolaseTM 
buffer with 1.5 mM MgCl2 (Bioline, London, UK), 
10 µM of each primer, 0.2 mM each dNTPs, and 
1.25 unit of BiolaseTM DNA polymerase (Bioline). 
The reaction was adjusted with ddH2O to the 
final volume of 20 μL. The amplification profiles 
included an initial denaturation at 94 °C for 5 
min, 30 cycles of 30 s at 95 °C (denaturation), 60 s 
at 50 °C (annealing), and 60 s at 72 °C extension, 
with a final extension at 72 °C for 7 min.

PCR products were purified using QIAquick 
PCR purification spin columns (Qiagen). Purified 
PCR products were quantified using NanoDrop 
2000 spectrophotometer with the software 

NanoDrop 2000/2000c (Thermo Fisher Scientific, 
Inc.).

Sequencing was performed in 10 µL reactions 
using BigDye Terminator sequencing reagents 
and protocols (Applied Biosystems, Foster 
City, California, USA), and data were collected 
on an ABI-Prism 3500 automated sequencer 
(Applied Biosystems) by ACTGene Molecular 
Analyses at Federal University of Rio Grande do 
Sul. The ITS1–5.8S–ITS2 was sequenced in both 
directions using the primers described above. 
All sequences were deposited in GenBank.

The ITS sequences were aligned to each 
other as well as the other sequences of 
thermophilic fungi deposited in GenBank NCBI 
database, using the basic local alignment tool 
BLAST (www.blast.ddbj.nig.ac.jp/). We included 
40 accessions (22 taxa). All the groups comprised 
only thermophilic fungi that have been used by 
recent and old phylogenetic studies (Maheshwari 
et al. 2000; Pan et al. 2010; Morgenstern et al. 
2012). The outgroup taxa belonged to the genus 
Batrachochytrium and was selected based on 
data reported by Morgenstern et al. (2012). The 
phylogenetic tree was inferred using Bayesian 
analysis (MrBayes v.3.1.2). There were a total of 
942 positions in the final dataset. 

RESULTS

From 60 collected samples of soil and leaf litter 
of Araucaria Forest, 240 heat-tolerant fungal 
strains were isolated from Araucaria Forest 
fragments. Based on ITS nucleotide sequence 
analyses, the isolated strains were identified 
as Thermothielavioides terrestris (GenBank 
accession number, MG694572), Thielavia sp. 
(MG694573), Thermoascus crustaceus (MG694569 
and MG694570) ,  Aspergillus fumigatus 
(MG694571), Rhizomucor miehei (MG694574), 
Rhizomucor pusillus (MG694575), and Rhizopus 
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microsporus (MG694576). T. crustaceus, R. miehei 
and R. pusillus were the most prevalent species, 
being founded in all three sampling sites, with 
frequencies of occurrence of 35.00%, 28.33% and 
23.33%, respectively (Table I). 

The fungal strains described in this study 
were subjected to a temperature-dependent 
growth at different temperature ranges (55 
°C, 45 °C, 34 °C, and 22 °C). Optimal growth 
temperature was determined to be 45 °C, except 
for R. miehei that displayed no difference in 
growth rate between 45 °C and 34 °C (Table 
II). Only two species were capable to grow at 
55 °C (T. crustaceus and A. fumigatus). The 
last one was capable to grow over the entire 
temperature range tested. The thermotolerant 
R. microsporus, as well A. fumigatus, grew at 22 
°C. This was evidence of the pronounced cell 

plasticity that enables survival over a broad 
range of temperatures. 

The ITS marker identified almost all isolated 
fungal strains. However, one fungal isolate of 
the genus Thielavia did not present species 
level definition after amplification of ITS region. 
In order to evaluate the genetical relationships 
between our isolates and other thermophilic 
fungi reported previously, phylogenetical 
analysis was done. The dendrogram based on 
ITS sequence analysis showed that all isolates 
were included in two well-supported clades 
(Fig. 1). The first comprised Rhizopus spp. and 
Rhizomucor spp. (phylum Mucoromycota), 
whereas the second formed clade comprises 
species from phylum Ascomycota, and order 
Sordariales and Eurotiales.

Table I. Thermophilic fungi from Atlantic Forest biome with their frequencies of occurrence and relative 
abundance.

Species Numbers Sources Sampling 
sites

Frequencies of 
occurrence (%)

Relative 
abundance (%)

Thermothielavioides terrestris 26 7 1, 3 11.66 10.83

Thielavia sp. 32 13 2, 3 21.66 13.33

Thermoascus crustaceus 58 21 1, 2, 3 35.00 24.16

Aspergillus fumigatus 28 9 1, 2, 3 15.00 11.67

Rhizomucor miehei 39 17 1, 2, 3 28.33 16.25

Rhizomucor pusillus 34 14 1, 2, 3 23.33 14.17

Rhizopus microsporus 23 6 2, 3 10.00 9.59

Numbers represent the number of strains; Sources represent the number of soil and leaf litter samples in which each fungal 
species was registered; Frequencies of occurrence represent the percentage of the total samples in which a particular species 
was registered; Relative abundance represents the number of particular species isolates in the sample series over the total 
number of fungal strains in the sample series.
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DISCUSSION

Among fungi, only a few species have a unique 
mechanism of growing at high temperatures 
between 45 °C and 55 °C. According to Cooney 
& Emerson (1964), such fungi are arbitrarily 
distinguished in two groups based on their 
temperatures of growth. The thermophilic fungi 
exhibit a minimum temperature of growth at or 
above 20 °C and a maximum growth temperature 
at or above 50 °C, while thermotolerant fungi 
have a temperature range of growth from below 
20 to ~50 °C. 

Ours results corroborate those reported 
by Morgenstern et al. (2012) who reported that 
few thermophilic fungus species have been 
described, corresponded to only 40 of the 120,000 
currently accepted fungal species (Hawksworth & 
Lücking 2017). According to Oliveira & Rodrigues 
(2019), 46 fungal thermophilic species have been 
described until now. Thus, many thermophilic 
fungal species were recorded in Araucaria Forest. 
They comprised five true thermophilic and two 
thermotolerant fungal species. 

T. crustaceus was the most prevalent specie. 
Thermoascus comprises many saprobic strains 
commonly isolated from soil, but their species 
can occur in a wide range of substrates, such as 
plants, animals, food products and air (Luangsa-
ard et al. 2004). 

Soil is an excellent ecological niche 
for colonization of thermophilic fungi. It is 
interesting that these microorganisms are 
ubiquitous in soils where the sun can heat them 
up, reaching temperatures that are suitable for 
their germination and growth (Rajasekaran & 
Maheshwari 1993, Ahirwar et al. 2017). However, 
variation in the abundance of individual 
species can depend on the type of soil, 
depth, season of the year and organic matter 
content (Subrahmanyam 1999). Until now, only 
a few studies have reported the occurrence of 
thermophilic species of fungi from tropical and 
temperate soils (Redman et al. 1999, Córdova 
et al. 2003, Salar & Aneja 2007, Pan et al. 2010, 
Powell et al. 2012).

The species shown in Table I exhibited strong 
growth rate at 45 °C. A. fumigatus was capable to 
grow over the entire temperature range tested, 

Table II. Temperature dependence growth of Araucaria Forest thermophilic fungal strains.

GenBank
 accession number

Fungal species Growth time

Growth temperature (°C)

55 45 34 22 

Relative growth*

MG694576 Rhizopus microsporus 1d 0 3 2 1

MG694575 Rhizomucor pusillus 2d 0 3 2 0

MG694569 Thermoascus crustaceus 2d 1 4 2 0

MG694570 Thermoascus crustaceus 3d 0 4 3 0

MG694571 Aspergillus fumigatus 3d 1 4 4 2

MG694573 Thielavia sp. 4d 0 3 2 0

MG694572 Thermothielavioides terrestris 4d 0 3 2 0

MG694574 Rhizomucor miehei 4d 0 2 2 0
*The relative growth performance of each organism is indicated by numbers: 0, no growth; 1-4, increasing rate growth.
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Figure 1. 
Phylogenetic 
tree of the ITS 
region nucleotide 
sequences of 
Atlantic Biome 
fungal isolates 
(new accesses) 
and related 
thermophilic fungi. 
The tree was built 
with Bayesian 
analysis. The 
Bootstrap values 
are based on 1000 
replicate runs, 
shown as percent. 
Batrachochytrium 
dendrobatidis 
was used as the 
outgroup. The 
GenBank accession 
number follows 
the name of fungal 
species.
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in accordance with the study conducted by 
Cooney & Emerson (1964). Curiously, R. pusillus, 
R. miehei, and T. terrestris did not show growth 
rate at 55 ⁰C, contrary to what was reported by 
Morgenstern et al. (2012) in their study.

One fungal isolate of the genus Thielavia 
was not identified to the species level. According 
to Schoch et al. (2012), ITS exhibits the highest 
probability of successful identification of a 
broad range of fungi. Thielavia is a common 
genus of environmental ascomycetes belonging 
to the family Chaetomiaceae in the order 
Sordariales. Its taxonomy and phylogeny have 
been the subject of some ambiguity, since 
optimal markers for species distinction have 
not been established yet. The ITS region is 
highly conserved in Sordariales. As a result, it 
is not very useful to establish phylogenetical 
relationships at the species level (Stchigel 
et al. 2002). Thus, the amplification of other 
molecular markers should be performed, as it 
may provide discrimination of this fungal strain 
at the species level. Contrastingly, since most 
unknown species are found in the Neotropical 
realm, the least explored major region in the 
world, this fungal strain should be investigated 
more accurately, because it could represent a 
new species. According to Oliveira et al. (2015), 
the amount of thermophilic and thermotolerant 
fungi described tends to increase as new 
habitats are studied. 

In the ITS analysis, the thermophilic fungus 
were placed into two well supported clades. The 
first comprised Rhizomucor spp. and Rhizopus 
spp. The ability of thermophilic fungi to develop 
at high temperature was displayed by a few 
Mucoromycota, including the presently-isolated 
R. miehei, R. pusillus, and R. microsporus (Zhou 
et al. 2014). 

The second clade comprised species from 
phylum Ascomycota, and order Sordariales 
and Eurotiales. All of them have been known 

as thermophilic molds found mainly in 
lignocellulosic degrading biomass, with a 
widespread distribution around the world 
(Hibbett et al. 2007, Berka et al. 2011, Morgenstern 
et al. 2012, van den Brink 2015, Wijayawardene 
et al. 2018). In the Ascomycota, thermophilic 
fungi are restricted to Sordariales, Eurotiales, 
Hypocreales and Microascales (Oliveira & 
Rodrigues 2019). For the Sordariales, we included 
the sequences from Thielavia sp. and T. terrestris 
(Sordariomycetes class, Chaetomiaceae family). 

Species of the genus Rasamsonia , 
Thermoascus and Thermomyces of Eurotiales 
are recognized as thermophiles (Oliveira & 
Rodrigues 2019). T. crustaceus was one of the 
thermophilic species described in the present 
investigation. Also described in our study, A. 
fumigatus (Eurotiales) is not a truly thermophile. 
However, some species of genera such as 
Aspergillus phoenicis, Aspergillus niger and A. 
fumigatus are thermotolerant, as regarded by 
Cooney & Emerson (1964). 

The lack of samples of thermophilic fungus 
from the Brazil environments is a limiting factor 
for the understanding of distribution ranges, 
phylogeny, and systematic of the group, because 
of its exceptional levels of species endemism 
and richness. In the present study, we described 
seven thermophilic fungal species in Atlantic 
Forest Biome, supporting the apparent diversity 
of the Neotropical realm. However, more efforts 
are needed to obtain a better understating 
of thermophilic fungal species in the present 
environmental scenario of global deforestation. 
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