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Abstract: Several fields of research such as medicine, robotics, sports, informatics, 
etc., require the analysis of human movement. Traditional systems for acquisition 
and analysis of human movement data are based on video cameras or active sensors. 
However, those systems are limited to high-resource settings. Wearable devices allow 
monitoring subjects outside typical clinical or research environments. Here, we present 
an open source low-cost wireless sensor system for acquisition of human movement 
data. Our system consists of two main parts: a server that stores data and, one or more 
wearable sensor modules that collect movement data through Inertial Measurement 
Units (IMUs) and transmit them wirelessly to the server. As a proof of concept, we 
measured human gait activity. Our results show that our system with IMUs can acquire 
quantifiable movement data. Characteristics such as open source code and its low-cost, 
make our system a viable alternative for clinical or research.
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INTRODUCTION 

Analysis of gait provides information about the 
functional capabilities of a patient and plays 
an important role in the clinical practice for the 
diagnosis of movement disorders. It can also 
be used for health monitoring, for objectively 
evaluating the efficiency of rehabilitation or the 
success of a surgical procedure (Teufl et al. 2019, 
Bravi et al. 2020). Gait monitoring can be applied 
for recognition of gait patterns that suggest risk 
of falling or the development of dementia in the 
elderly (Trojaniello et al. 2015,  Byun et al. 2019, 
Pau et al. 2020), for studying performance in 
athletes, for sports gear design and for control 
of bipedal humanoid robots (Brouwer et al. 2021, 
Zhen et al. 2020,  Zrenner et al. 2020). Due to 
the high demand for these applications, several 
research groups have dedicated their efforts to 

the development of methods for monitoring 
and analysis of gait. Camera-based are within 
the most effective methods for monitoring gait 
movements (Aggarwal & Cai 1997,  Wei & Yunxiao 
2009,  Kim et al. 2015, Cai et al. 2017); however, this 
method has spatial and temporal restrictions 
that limit the analysis to a specific moment and/
or in a restricted space. Force plate instrumented 
treadmills are also effective, but they are 
expensive and limited to laboratory settings. In 
order to overcome the disadvantages of camera-
based systems, new sensor technologies have 
been developed such as that in smart textiles 
with polymer optical fiber (POF) embedded. This 
technology allows highly stretchable wearable 
systems or stretchable passive tags (Leal-Junior 
et al. 2018, Niu et al. 2019, Leal-Junior et al. 2020) 

Inertial Measurement Units (IMUs) offer 
a lightweight and portable method that can 
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achieve real-time gait monitoring. Compared to 
existing gait monitoring devices, IMUs overcome 
some of the limitations of current technologies, 
such as high cost, difficulty to use or install, while 
providing desirable features, such as wearability, 
rapid response and durability, and they are 
easy-to-fabricate making them suitable for 
mass production. Raw signals acquired by IMUs 
can be converted into gait characteristics such 
as walking speed, joint angles, stride length, and 
ground reaction forces with signal processing 
techniques. Although inertial sensors are 
lightweight and can be conveniently mounted 
on the human body, they have some limitations 
compared with image-based methods, e.g. 
the quantity and accuracy of motion signals 
captured. However, new algorithms allow now 
acceptable detection and measurement of the 
characteristics of walk and its patterns from 
data acquired by IMUs. 

The use of IMUs as an alternative to visual-
based systems has been validated by several 
researchers. For measurement of the motion of a 
pendulum swing, the accuracy of data recorded 
by IMUs is as good as that obtained with a video 
analysis system (Brodie et al. 2008). Quantitative 
gait analysis, including gait phase detection 
has been achieved from data obtained using a 
wearable sensor system consisting of gyroscopes 
and accelerometers (Liu et al. 2009). Human 
trajectories in 3D spaces have been recovered 
from data obtained by a motion-capturing suit 
equipped with several IMUs (Grzonka et al. 2012). 
Some devices have integrated a combination 
of wireless technology and communication 
protocols such as Bluetooth and ZigBee with 
IMUs (Hwang et al. 2004, Lee J et al. 2007, Kim 
et al. 2016). In addition, several companies 
have released both wired and wireless IMU-
based systems e.g. BTS Bioengineering (BTS 
Bioengineering Corp, Brooklyn, NY, USA), Inertial 
Labs (Inertial Labs, Herndon, VA, USA), Surrey 

Sensors (Surrey Sensors Ltd, Guildford, UK), 
XSens (XSens Technologies B. V. Enschede, 
Netherlands), GaitUp (Gait Up SA, Lausanne, 
Switzerland). However, proprietary hardware 
and software make these systems expensive 
and limit the number of sensors per system. To 
minimize the cost of sensors and increase the 
number of usable channels, some researchers 
have developed custom-made devices to track 
human movement (Brunetti et al. 2006, Grandez 
et al. 2009, Liu et al. 2009, Llamas et al. 2017) but 
most of those devices rely on Bluetooth or radio 
communication and therefore, have limited 
scalability due to protocol limitations (Lee J et 
al. 2007). Increasing the scalability is important 
because populating the kinetic information or 
making a network of body sensors increase the 
possibility of characterizing gait and gait patterns 
and correlate them with other physiological vital 
signs such as temperature, respiratory rhythm, 
etc.

Here, we describe the development of an 
open-source low-cost wireless sensor system 
for acquisition of human movement data. Our 
system consists of two main parts: a server that 
stores the data and, one or more wearable sensor 
modules that collect movement data from IMUs. 
The sensor system was constructed using the 
ESP8266 SoC, the MPU6050 IMU and JavaScript 
programming language. Our sensor system uses 
Wi-Fi standard (IEEE 802.11) to stream the raw 
data from the sensors to the server. In addition, 
we developed an Android app that controls 
the beginning/end of data collection (Liu et al. 
2009).

MATERIALS AND METHODS
System Overview 
Our system is based on client/server network 
architecture, where a server device controls one 
or several client devices. Our wearable sensors 
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are the clients, and the server can be any laptop 
computer with WiFi, or even a RaspberryPi 
microcomputer. The server application was 
developed using Node.js and can run under 
Windows, Linux or MacOS. Communication 
between sensors and server is made over WiFi 
using the WebSockets communication protocol. 
An Android application is used to control the 
beginning/end of the recording. Alternatively, 
the sensors can be controlled using the web 
application running on the server. Data from the 
sensor modules are transmitted to the server at 
a 100 Hz sampling rate. Figure 1 illustrates the 
architecture of the system.

Detailed description of the wearable sensor 
module
Each wearable sensor module consists of 
a breakout board with one MPU6050 IMU 
(Invensense Inc. San Jose, CA); an ESP8266-12e 
module (Expressif Systems, Shanghai, China) 
that can be used as a microcontroller and as 
WiFi device for wireless communication and, 
other electronic components such as resistors 
and capacitors. Each device is powered by a 
3.7V LiPo battery that can be recharged using a 
micro USB cable. We added a voltage regulator 
to avoid damaging the ESP8266. Components 
are mounted on a homemade printed circuit 
board (PCB). The schematic diagram is shown in 
Figure 2, and Table I shows the complete list of 
necessary materials.

The MPU6050 is a 6-axis motion-tracking 
device that contains a 3-axis gyroscope and 
a 3-axis accelerometer (MPU-6050). The 
accelerometer measures linear acceleration 
with 16-bit resolution, and the gyroscope 
measures angular velocity with 16-bit resolution. 
It uses I2C protocol that allows communicating 
with the microcontroller using only two wires. 
The MPU6050 has an integrated Digital Motion 
Processor (DMP) that can process the raw 

readings of the gyroscope and the accelerometer. 
It has a selectable (via programming) full-scale 
gyro range of ±250, ±500, ±1000, ±2000 °/s (dps) 
and a selectable accelerometer full-scale range 
of ±2g, ±4g, ±8g, ±16g so it can be configured to 
track slow or fast movements. It also has a low 
energy consumption with a voltage range of 
2.375V - 3.46V and 500μA at normal operating 
conditions. 

The ESP8266 is a microcontroller with a 
self-contained SoC with a fully integrated TCP/
IP stack implementing the full 802.11 b/g/n 
standard (ESP8266). The ESP8266 is capable of 
running a standalone application or function 
as the Wi-Fi slave of other processors. It can 
be interfaced with external sensors through 
its GPIOs. It integrates a 32-bit Tensilica L106 
microcontroller with a CPU clock speed of 80 
MHz with overclock capabilities up to 160 MHz, 
50 KB of SRAM and 4 MB of flash memory. The 
ESP8266 has a small package size (5mm × 5mm); 
therefore, we used the ESP-12 breakout board 
which exposes several GPIO pins for easier 
manipulation. The ESP8266 s sold with a default 
firmware that uses AT commands to perform 
basic configuration of the module. However, 
users can overwrite the flash memory with their 
programs.

System’s communication
The TCP/IP suite is the foundation of all WiFi 
communications. It is named after its most 
prominent protocols, the Transmission Control 
Protocol (TCP) and the Internet Protocol (IP). 
It is divided in five layers, physical, data link, 
network, transport and application. The first two 
layers are for low- level physical configuration, 
network layer is for assigning an address to each 
device (IP address), transport and application 
layers are for processing the information 
delivery (Goralski 2017). We focused in choosing 
protocols for the transport and application 



MIGUEL A. LANDA-JIMÉNEZ et al. HUMAN MOVEMENT AND WIRELESS IMUs

An Acad Bras Cienc (2022) 94(1) e20191419 4 | 15 

layers that properly fit our system needs. Within 
the transport layer there are two popular 
protocols: User Datagram Protocol (UDP) and 
Transmission Control Protocol (TCP). UDP is a 
standard protocol intended for applications 
that can afford the loss of some data. It does not 
provide reliability, flow-control or error recovery, 
it simply serves as a multiplexer for sending and 
receiving datagrams, therefore has a very fast 
transport mechanism. TCP is a standard protocol, 
which provides more facilities for applications 
than UDP. To ensure reliability, TCP assigns a 
sequence number to each byte transmitted, and 
expects acknowledgment from the receiving 
devices. If the acknowledgment is not received, 
then the data is retransmitted. Also, TCP uses 
the sequence numbers to rearrange a datum 
if it arrives out of order (Parziale et al. 2006). 
TCP is more complex than UDP and therefore 
has a slower transmission mechanism. However, 
we chose TCP because the delivery of data is 
reliable.

On the application layer, there is a wide 
variety of protocols designed for a specific 

type of application, e.g., Simple Mail Transport 
Protocol (SMTP) for electronic mail applications, 
File Transfer Protocol (FTP) for file transfer 
applications and the most common, Hypertext 
Transfer Protocol (HTTP) for web browser 
applications. For our application, we needed 
a protocol that allows fast data transmission 
from sensor modules to server and vice versa. 
We chose the WebSocket Protocol because it 
is designed for bi-directional communication 
between server and client devices (Fette & 
Melnikov 2011). The WebSocket connection is 
initialized by an opening handshake and it will 
remain open until a closing handshake is sent. 
While the connection remains open, clients and 
server can send messages, even at the same 
time, enabling real-time data transmission. 
Figure 3 shows the working flow of a WebSocket 
connection.

Data collected by the sensors are 
serialized in JavaScript Object Notation 
(JSON) format before being sent to the server. 
JSON is a lightweight format used for data-
interchange on the internet. It is designed to 

Figure 1. System 
architecture.
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be human-readable and easily parsable by 
computers. It has two structured types: name- 
value pairs (objects) and an ordered list of 
values (arrays) (Bray 2014). An example of a JSON 
serialized package from our sensor nodes is the 
following: {“ID”:“1”,“lectures”:[7244,- 282,-3088,-
20,1,-11,188724,2256]} where ID is the identifier of 
the sensors and lectures is an array of numbers 
which represents the values collected by the 
sensor in the following order: Accelerometer X, 
Accelerometer Y, Accelerometer Z, Gyro X, Gyro Y, 
Gyro Z, Sensor timestamp and index.

System’s Security

In order to protect patient’s data, our system 
uses the SSL (Secure Socket Layer) protocol to 
secure the data transmission. The SSL protocol 
uses an asymmetric encryption algorithm 
(RSA algorithm) in order to encrypt all the 
communication between server and sensors. 
The asymmetric encryption uses a pair of keys 
i.e., public key and private key, the public key 
is used for encryption and the private key is 
used for decryption.  The SSL protocol consists 
of two phases: the initial handshake and the 
data transfer. Basically, during the handshake 
phase, the client i.e., the sensors, and the 
server exchanges its public keys and use them 
to create session keys which they will use to 
encrypt or decrypt the data (Kant et al. 2000). 
That session key can be created in two lengths, 
40-bit and 128-bit; the longer the key, the more 
difficult to breaking the encryption code. On the 
data transfer phase, both, client and server use 
the session key to maintain the communication 
secured. Fig. 3 illustrates the SSL protocol.

Figure 2. Schematic diagram of a wearable sensor. The ESP12E module read the data of the IMU using I2C protocol 
and transmit it wirelessly.

Table I. Materials to build sensors (cost in American 
dollars).

Component Cost

ESP8266 5.00

MPU6050 4.00

LiPo Battery 5.00

Battery Charger (TP4056) 2.00

100 nF SMD Capacitor 0.50

10k Ohms SMD Resistor (4 pieces) 0.50

Voltage regulator 0.50 (AMS 1117) 0.50

Total 17.50
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Subjects and protocol for movement analysis
Eight healthy volunteers were enrolled in 
the study (4 females, 4 males, mean age 24.8 
± 3 years-old) with no history of neurological 
injury or psychiatric diseases. All participants 
were native from Xalapa, capital city of Veracruz, 
México. The Research and Ethics committee 
of the Faculty of Medicine of the Universidad 
Nacional Autónoma de México approved the 
study. Written informed consent was obtained 
from each participant according to the Helsinki 
declaration (World Medical Association 2013). 

After a test walk to get accustomed to the 
experimental procedure, subjects were asked 
to walk along a 5-m long, plain, unmarked 
track; IMUs signals were recorded while the 
participants walked straight and stop at the end 
of the track.

Balance and coordination during gait 
(dynamic balance) was evaluated using the 
“tandem walk test (TWT)”, which estimates the 
risk of falls. To perform the test, a 5 m long, 5 
cm wide line was drawn on flat ground. The 
participants task was to walk along the line in 
such a way that during each step, the heel of 

one foot touched the toes of the other foot. The 
patient walked 10 such steps forward in that way, 
and repeated twice the instruction (Kamińska et 
al. 2018)

The protocol includes five sensors (left 
and right foot), and each of them records a 
six-dimensional signal (3D accelerations and 
3D angular velocities). Instead of considering 
all these dimensions, we decided to use only 
one of them: the most relevant in the context of 
step detection. This decision was made based 
on observations of real data and physiological 
reasons provided by medical doctors. 
Consequently, the y-axis angular velocity was 
the only component studied. Each subject 
performed the protocol 2 times. The average 
number of steps per trial was 6, and the average 
speed was 1.5 m/s. 

RESULTS 

Our system has two main parts: a server that 
store the data received and the wearable sensor 
modules that collect data from IMUs and send 
them to the server. Both were implemented 

Figure 3. WebSocket 
protocol. The clients send 
an opening handshake 
to the server to open a 
connection. Once the 
connection is opened, 
both, clients and server 
can transmit data. The 
connection is closed 
when one of them sends 
a closing handshake.
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using open-source programming languages. In 
addition, our system has the following features:

• Portability. Sensors have been packaged 
in a small wearable module; they also 
have Velcro straps to attach to the body 
easily. Figure 4 shows a sensor module.

• The system is scalable. Each sensor 
module will automatically obtain a 
network address through the Dynamic 
Host Configuration Protocol (DHCP). The 
simplest network configuration (24-bit 
subnet mask) has 254 addresses, that 
means that up to 252 sensor modules can 
be connected to the network.

• Sensor modules are independent and 
configurable. The programming of each 
sensor module allows to configure the 
automatic/manual network address and 
the sensitivity of the IMU. Moreover, after 
uploading our code to the microprocessor, 
subsequent changes can be uploaded 
using Over the Air update, that means, 
programming the sensor wirelessly using 
the Wi-Fi connection.

• Data collected by the sensors is showed 
in real time.

• An Android application was developed to 
control the data acquisition.

Server programming

The server was implemented with Node.js, an 
open source runtime environment for JavaScript. 
It uses an event-driven, non-blocking I/O 
architecture that allows an efficient performance 
on real-time applications (Foundation 2018). 
Although JavaScript is an interpreted language 
(every line of code has to be interpreted while 
the code is executed), in Node.js the code is 
compiled into machine-level code permitting a 
faster execution. The server will function as an 
intermediary between sensors and controlling 

applications. For example, a sensor sends data 
to the server, and the server will redirect that 
data to another application. In order to export 
the data, the server will store it temporarily on 
RAM and when the recording is finished that 
data will be dumped to a csv formatted text file 
and RAM memory will be cleared. 

Real-time visualization
The real-time visualization page is embedded 
in the server. It is implemented as a web page 
developed using the Pug template engine 
(pugjs/pug, 2019) and JavaScript. To achieve 
a user-friendly and responsive page, we used 
the Bootstrap CSS framework (Bootstrap 2021). 
Data is plotted in real-time using the Smoothie 
Charts library (Walnes 2019). Figure 5 shows a 
screenshot of the real-time visualization page. 
The source code of the server, including the 
real-time visualization can be downloaded 
from the GitHub repository: https://github.com/
malandaj/mpu6050-ws.

Android application
The Android app, shown in Figure 6, was 
designed to control the beginning/end of the 
recording without the need of being near to 
the server/computer, e.g., the experimenter is 
in a corner of the room and the server is in 
the opposite corner. The app was developed 
following the Android Design Guidelines. The 
app also has a database where patient data 
can be filled-in. Before starting a recording, the 
experimenter can choose the patient code from 
a drop-down list. When the recording is started, 
patient’s data is transmitted to the server and 
it is used to generate a custom file name for 
later identification of the data collected by the 
sensors. The source code of the app can be 
downloaded from GitHub: https://github.com/
malandaj/Gaitimu. 
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Figure 4. Sensor module. Overall device view of our 
sensor node.

Sensor programming
As mentioned before, the ESP8266 can be 
reprogrammed to perform complex operations. 
This programming can be done using a Software 
Development Kit (SDK) designed for the ESP8266. 
Although Espressif has an SDK for the module, 
several developers have established alternative 
SDKs that allow programming the module using 
syntax from other programming languages. We 
used the Arduino core for ESP8266 (Everything 
ESP8266 2021) to program our sensor modules. 
The Arduino core for ESP8266 allows to write 
programs using the default Arduino syntax and 
upload the program to the ESP8266 using the 
Arduino IDE. Additionally, it includes several 
libraries that make easier the programming 
of advanced operations, such as, TCP/UDP 
communication, OTA updates, etc. It also has a 
very active community that keeps adding new 

functions or improving the existing. The source 
code can be downloaded from GitHub: https://
github.com/malandaj/mpu6050-ws.

Test: Measurement of gait
Figure 7 shows plots of the data collected 
from normal walk (7a) and tandem-walk (7b) 
respectively, acquired by our system. The normal 
gait data acquired from the left and right shank 
accelerometers were compared on a step-by-
step basis against the data from the GAITRite 
electronic walkway, which was previously 
reported as a golden standard system (Greene 
et al. 2012). We found that stride time was 1.07 ± 
0.08 s in GAITRite vs 1.64 ± 0.14 s in our system, 
step time was 0.66 ± 0.06 s in GAITRite vs 0.82 
± 0.07 s in our system, stride length was 148.45 
± 12.64 cm in GAITRite vs 123.875±7.2 cm in our 
system and, stride velocity was 87.85 ± 15.84 cm/s 
in GAITRite vs 102 ± 5.90 cm/s in our system (n= 3 
for GAITRite, n=8 for our system). 

In addition, we compared our data with 
the public dataset Human Gait Database for 
Activity Recognition from Wearable Inertial 
Sensor Networks (HuGaDB) (Chereshnev & 
Kertesz-Farkas 2017). We plotted data from 
our accelerometer’s vs data from HuGaDB 
accelerometers (Fig. 8a). Although visually both 
signals show similar patterns, the shift make 
unsuitable a traditional correlation analysis. 
Therefore, we used the Dynamic Time Warping 
(DTW) pattern matching algorithm that allows 
the detection of similarities between time series 
even if they differ in sampling frequencies (Jiang 
Y et al. 2020). DTW determines quantitatively the 
similarities between two time series providing a 
measure of the distance between the compared 
data; a lower distance means a higher similarity 
(Lee 2019). We took the acceleration values 
from our normal gait pattern data (Fig. 8a) and 
compared them with the HuGaDB database 
to build a matrix of the distance between the 
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Figure 5. Real time visualization page.

Figure 6. Android application. Left: Main view of the application, user can start/end the recording. Center: Settings 
view. User can change the IP address/port of the server. Right: Add subject view. Information of subjects is stored 
in a database on the phone.
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Figure 7. a) Plots of data collected from the sensor node attached to the right ankle of a subject during walking. 
Top: data from the accelerometer. Bottom: data from the gyroscope. b) Subject during tandem walking. Top: data 
from the accelerometer. Bottom: data from the gyroscope.

two signals and to obtain a similarity index. We 
found a similarity index close to zero between 
the databases (0.64 ± 0.08 SE, n = 8) (Fig. 8b). 
In contrast, the similarity index between the 
normal and tandem (Fig. 9a) walking patterns 
was higher (6.01 ± 0.77 SE; n = 8) (Fig. 9b).

Finally, the scalability of the system was 
tested using a computer simulating nodes. We 
used a Python script that creates 50 simultaneous 
processes, each process opened a WebSocket 
connection to the server and stream a series of 
random numbers sampled with a frequency of 
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Figure 8. a) Examples of data collected from the sensor node attached to the right ankle of a subject during 
normal walking vs data from the HuGaDBl database in normal walking. b) DTW similarity matrix for IMU data vs l 
data.
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Figure 9. a) Plots of data collected from the IMU sensor node attached to the right ankle of a subject during 
normal walking vs tandem walking. b) DTW similarity matrix for normal walking vs tandem walking.
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100 Hz. On the server side, the system was able 
of show the 50 real time plots and saving the 
data to a csv file (see Supplementary material).

DISCUSSION

The main aim of this work was the designing 
and building of a low-cost open source system 
to allow gait researchers acquisition of data in 
settings outside of a conventional laboratory, 
e.g., in the house of the patient. Our system is 
portable: it only needs a computer, which can be 
easily replaced with a Raspberry Pi, and a WiFi 
router. Also, it is scalable: to add a new sensor, the 
system only needs an IP address available on the 
network. In addition, the system provides a user-
friendly interface to monitoring the data in real-
time and a mobile app to control the recordings. 
As a proof of concept, we obtained recordings of 
walk and tandem walk from a subject wearing 
a single sensor. As expected, the recordings 
showed well- defined patterns for each type 
of walking. Therefore, the data recorded by our 
system could be used to implement classifiers 
of different human movements, or other type of 
analysis using time series.

Our system is open-source. The source code 
and a schematic design are provided in GitHub. 
This allows users to improve/modify the code 
according to their requirements and to modify 
the hardware of the modules, adding other 
sensors, for example, a magnetometer.

Test measurement of gait shows one of 
the possible uses of our system. An important 
challenge for systems that acquire human 
movement data is the reduction of the size of 
sensors, to ensure that the subjects can move 
freely. Although the size of our sensors did 
not represent a problem for measurement of 
gait, they can be further reduced by modifying 
the PCB design. The incorporation of wireless 

technology allows acquisition of data in almost 
any setting. However, despite the fact that our 
system can be used outdoors, we must disclaim 
that, due to the transmission range, it was 
designed for indoor applications. A traditional 
Wi-Fi network has a transmission range of about 
100 meters that will make it ideal for indoor use 
but when a higher transmission range is needed 
it will be necessary to use a different protocol, 
for example, Zigbee.

CONCLUSIONS

Here, we report the designing and building of 
a low-cost wireless sensor platform to acquire 
human movement data. The main aim of our 
system is to offer an alternative to commercial 
systems for the recording of human gait. To 
ensure reproducibility, we focused this paper 
on the details of the design: from hardware 
components to communication protocols theory. 
The availability and low-cost of our system 
make it a viable alternative for acquisition of 
human movement data, especially in clinical 
or research environments with limited funding 
and low-resource settings. Future work will be 
focused on the development of tools to analyze 
the data.
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