Acessibilidade / Reportar erro
Animal Reproduction, Volume: 16, Número: 3, Publicado: 2019
  • Challenges to increase the AI and ET markets in Brazil Congress Paper

    Baruselli, Pietro Sampaio; Catussi, Bruna Lima Chechin; Abreu, Laís Ângelo de; Elliff, Flavia Morag; Silva, Laísa Garcia da; Batista, Emiliana de Oliveira Santana

    Resumo em Inglês:

    Abstract Artificial insemination (AI) and embryo transfer (ET) are the most widely used biotechnologies in the world with the goal of increasing genetic gain and improving reproductive efficiency of beef and dairy herds. The protocols for ovulation synchronization for timed AI (TAI) or ET (TET) are tools that allow artificial insemination or transfer of a high number of embryos in a pre-established moment and without the necessity of estrous detection. Currently, 86% of inseminations in Brazil are performed using TAI (13.6 million TAI out of a total of 15.4 million doses of semen marketed in 2018). With the use of TAI, it was possible to verify that the percentage of artificially inseminated females in Brazil went from 5.8% in 2002 to 13.1% in 2018. The ET market also presented considerable growth in the last 20 years. There was an increase of approximately 8 fold in the number of produced embryos, escalating from 50,000 in 1999 to 375,000 in 2017. In this period, there was a significant increase on the in vitro embryo production, which represented 92.1% of embryos produced in Brazil in 2017. Also, in this period, there was an increase on the embryo production of dairy breeds and reduction on the embryo production of zebu breeds in comparison to data from the early 2000’s. TET increases significantly the number of recipients suitable to receive an embryo. After synchronization, 75 to 85% of recipients present a suitable CL for ET without estrous detection. Currently, many synchronization and resynchronization protocols for TAI/TET have been studied to attend different managements, breeds and animal categories, with predictable and satisfactory results. With the intensification of the use of these biotechnologies, it is possible to obtain elevated reproductive efficiency with increase on the genetic gain, which determines greater productivity and economic return for dairy and beef farms. However, the challenge to keep the market growing in the next decade could depend on some factors, such as: increase of the extension services for producers and of the extension training for specialists, improvement of the technological advances to develop more efficient and cost-effective products and practical protocols, increase the integration between universities, research institutes, veterinarians and industries and also, asses market demand for production of animal protein with higher quality, efficiency and environmental and economic sustainability.
  • Aspects of embryo-maternal communication in establishment of pregnancy in cattle Congress Paper

    Sánchez, José M.; Simintiras, Constantine A.; Lonergan, Patrick

    Resumo em Inglês:

    Abstract Establishment of pregnancy in mammals requires reciprocal molecular communication between the conceptus and endometrium that modifies the endometrial transcriptome and uterine luminal milieu to support pregnancy. Due to the small size of the early embryo and elongating conceptus relative to the volume of the uterine lumen, collection of endometrium adjacent to the developing conceptus is difficult following conventional uterine flushing methods in cattle. Use of endometrial explants in culture can overcome this challenge and reveal information about the dialogue between the developing embryo and the uterus. The aim of this short review is to summarize some of our recent findings in relation to embryo maternal interaction during bovine pregnancy establishment and to put them in the wider context of fertility in cattle.
  • Sanitary program to reduce embryonic mortality associated with infectious diseases in cattle Congress Paper

    Alfieri, Amauri Alcindo; Leme, Raquel Arruda; Agnol, Alais Maria Dall; Alfieri, Alice Fernandes

    Resumo em Inglês:

    Abstract Among reproductive disorders in dairy and beef cattle worldwide, embryonic mortalities stand out as one of the most frequent. Because of the multifactorial etiology, the clinical and laboratory diagnoses of embryonic mortality causes in cattle are quite complex. Often, infectious causes may account for up to 50% of bovine embryonic mortality rates after 30 days of conception. This review will address the main causes of early and late embryonic mortality, with emphasis on infectious causes and, particularly, those more frequent in the Brazilian cattle herds. In addition, we will discuss ways of controlling and prophylaxis including those related to reproductive and sanitary management, with emphasis on immunoprophylaxis of the three most frequent reproductive infectious diseases in Brazilian dairy and beef cattle herds.
  • Intensive use of IVF by large-scale dairy programs Congress Paper

    Sanches, Bruno Valente; Zangirolamo, Amanda Fonseca; Seneda, Marcelo Marcondes

    Resumo em Inglês:

    Abstract The number of embryos produced by in vitro fertilization (IVF) has grown exponentially in recent years. Recently, for the first time, the number of embryos produced and transferred in vitro was significantly higher than the number developed in vivo worldwide. In this context, a particular boost occurred with ovum pick-up (OPU) and in vitro embryos produced in North America, and this technology is becoming more prominent for commercial dairy farms. However, despite many advances in recent decades, laboratories and companies are looking for methods and alternatives that can be used in collaboration with the existing process to improve it. Among the strategies used to improve the dairy industry are the use of genomic analysis for the selection of animals with desired traits or as an evaluation tool of oocyte and embryo quality, the optimization of the collection and use of gametes from prepubertal females and males, the effective use of sexed semen, and improvements in culture media and methods of embryo cryopreservation. Thus, this review aims to discuss the highlights of the commercial use of IVF and some strategies to increase the application of this technique in large-scale dairy programs.
  • Pre-TAI protocol strategies to increase reproductive efficiency in beef and dairy cows Congress Paper

    Sales, José Nélio de Sousa; Simões, Luiz Manoel Souza; Orlandi, Raphael Evangelista; Lima, Eduardo Alves; Santos, Ana Paula Castro; Bottino, Miguel Pizzolante; Silva, Luiz Augusto Capellari Leite da; Souza, José Camisão de; Dias, Marcelo Maronna; Massoneto, João Paulo Martinelli; Scandiuzzi, Luiz Antônio; Freitas, Bruno Gonzalez; Guerreiro, Bruna Martins; Bastos, Michele Ricieri

    Resumo em Inglês:

    Abstract Ovulation synchronization protocols are well established in beef and dairy cows. However, the protocol response rate is around 70-90%. In beef cows, factors such as inadequate nutrition and calf presence negatively impact the response of progesterone (P4)/estradiol-based ovulation synchronization protocols by interfering with GnRH release and consequently reducing LH pulsatility and final follicular development. In dairy cows, protocols based on GnRH and prostaglandin (Ovsynch) are the most widely used in the world. However, the efficiency of Ovsynch is dependent on the presence of a large follicle at the time of administration of the first GnRH. In these ovulation synchronization protocols, pre-synchronization protocols (Prostaglandins, Double Ovsynch and P4synch) are usually attempted in an effort to increase responses. Thus, the objective of this review was to discuss pre-ovulation synchronization strategies (administration of injectable P4 or energetic/protein supplementation or pre-synchronization with intra-vaginal progesterone devices) aiming to increase the LH pulsatility in beef cows or induce the formation of a GnRH-responsive follicle at the beginning of the Ovsynch protocol in dairy cows.
  • Strategies to increment in vivo and in vitro embryo production and transfer in cattle Congress Paper

    Bó, Gabriel A.; Cedeño, Andrés; Mapletoft, Reuben J.

    Resumo em Inglês:

    Abstract Knowledge of follicular wave dynamics obtained through the use of real-time ultrasonography and the development of the means by which follicular wave dynamics can be controlled have provided practical approaches for the in vivo and in vitro production and transfer of embryos in cattle. The elective control of follicular wave emergence and ovulation has had a great impact on the application of on-farm embryo transfer, especially when large groups of donors need to be superstimulated at the same time. Although estradiol and progestins have been used for many years, practitioners in countries where estradiol cannot be used have turned to alternative treatments, such as mechanical follicle ablation or the administration of GnRH for the synchronization of follicle wave emergence. In vitro embryo production also benefits from the synchronization of follicle wave emergence prior to Cumulus Oocyte Complexes (COCs) recovery. As Bos indicus cattle have high antral follicle population, large numbers of oocytes can be obtained by ovum pick-up (OPU) without superstimulation. However, synchronization of follicular wave emergence and superstimulation is necessary to obtain high numbers of COCs by OPU and blastocysts following in vitro fertilization in Bos taurus donors. Finally, embryos can now be transferred in commercial beef or dairy herds using efficacious synchronization and re-synchronization protocols that are easily implemented by farm personnel. These technologies can also be used to resolve reproductive problems such as the reduced fertility observed during summer heat stress and/or in repeat-breeder cows in commercial dairy herds.
  • Embryo competence and cryosurvival: Molecular and cellular features Congress Paper

    Marsico, Thamiris V.; Camargo, Janine de; Valente, Roniele S.; Sudano, Mateus J.

    Resumo em Inglês:

    Abstract Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryo-focused approach to improve cryosurvival was presented.
  • Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation Congress Paper

    Abdulrahman, Noof; Fair, Trudee

    Resumo em Inglês:

    Abstract Much of what we know about the involvement of the immune system in periovulatory follicle differentiation, ovulation and subsequent formation of the corpus luteum in cattle is drawn from the findings of studies in several mammalian livestock species. By integrating published histological data from cattle, sheep and pigs and referring back to the more comprehensive knowledge bank that exists for mouse and humans we can sketch out the key cells of the immune system and the cytokines and growth factors that they produce that are involved in follicle differentiation and luteinization, ovulation and early follicle development. These contributions are reviewed and the key findings, discussed.
  • Folliculogenesis and acquisition of oocyte competence in cows Congress Paper

    Sirard, Marc-André

    Resumo em Inglês:

    Abstract IVF success depends on hundreds of factors and details but the oocyte quality remains the most important and problematic issue. All antral follicles contain oocytes and all of them have that have reached their full size, can be aspirated, can mature and can be fertilized in vitro. But only a few will make it to embryo unless harvested at a very specific time/status. The conditions impacting the oocyte competence are essentially dependant on the follicular status. Growing follicles contains oocytes that have not completed their preparation, as they are still writing information (RNA), later, dominant follicles or follicles at the plateau phase, stop transcription and become candidates for development. Once in transcriptional arrest, the oocytes, if not ovulated in a short amount of time, do not always make good embryos. This window is affected by time and follicle size and looks like a bell curve. The following review further explain the physiological and molecular evidences that we have to illustrate the competence window and provides clues on how to optimize ovarian stimulation to maximise oocyte quality.
  • Stress, strain, and pregnancy outcome in postpartum cows Congress Paper

    Lucy, Matthew C.

    Resumo em Inglês:

    Abstract Stress affects the productivity and fertility of cattle. Stress causes strain and individual animals experience different amounts of strain in response to the same amount of stress. The amount of strain determines the impact of stress on fertility. Typical stresses experienced by cattle include environmental, disease, production, nutritional, and psychological. The effect of stress on the reproductive system is mediated by body temperature (heat stress), energy metabolites and metabolic hormones (production and nutritional stresses), the functionality of the hypothalamus-pituitary-gonadal (HPG) axis and (or) the activation of the hypothalamus-pituitary-adrenal (HPA) axis. The strain that occurs in response to stress affects uterine health, oocyte quality, ovarian function, and the developmental capacity of the conceptus. Cows that have less strain in response to a given stress will be more fertile. The goal for future management and genetic selection in farm animals is to reduce production stress, manage the remaining strain, and genetically select cattle with minimal strain in response to stress.
  • DNA methylation, environmental exposures and early embryo development Congress Paper

    Breton-Larrivée, Mélanie; Elder, Elizabeth; McGraw, Serge

    Resumo em Inglês:

    Abstract The first crucial step in the developmental program occurs during pre-implantation, the time after the oocyte has been fertilized and before the embryo implants in the uterus. This period represents a vulnerable window as the epigenome undergoes dynamic changes in DNA methylation profiles. Alterations in the early embryonic reprogramming wave can impair DNA methylation patterns and induce permanent changes to the developmental program, leading to the onset of adverse health outcomes in offspring. Although there is an increasing body of evidence indicating that harmful exposures during pre-implantation embryo development can trigger lasting epigenetic alterations in offspring, the mechanisms are still not fully understood. Since physiological or pathological changes in DNA methylation can occur as a response to environmental cues, proper environmental milieu plays a critical role in the success of embryonic development. In this review, we depict the mechanisms behind the embryonic epigenetic reprogramming of DNA methylation and highlight how maternal environmental stressors (e.g., alcohol, heat stress, nutrient availability) during pre-implantation and assisted reproductive technology procedures affect development and DNA methylation marks.
  • New tools for cell reprogramming and conversion: Possible applications to livestock Congress Paper

    Gandolfi, Fulvio; Arcuri, Sharon; Pennarossa, Georgia; Brevini, Tiziana A.L.

    Resumo em Inglês:

    Abstract Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
  • Intrafollicular barriers and cellular interactions during ovarian follicle development Congress Paper

    Andrade, Gabriella Mamede; Collado, Maite del; Meirelles, Flávio Vieira; Silveira, Juliano Coelho da; Perecin, Felipe

    Resumo em Inglês:

    Abstract Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.
  • Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction Congress Paper

    Hansen, Peter J.

    Resumo em Inglês:

    Abstract Heat stress causes a large decline in pregnancy success per insemination during warm times of the year. Improvements in fertility are possible by exploiting knowledge about how heat stress affects the reproductive process. The oocyte can be damaged by heat stress at the earliest stages of folliculogenesis and remains sensitive to heat stress in the peri-ovulatory period. Changes in oocyte quality due to heat stress are the result of altered patterns of folliculogenesis and, possibly, direct effects of elevated body temperature on the oocyte. While adverse effects of elevated temperature on the oocyte have been observed in vitro, local cooling of the ovary and protective effects of follicular fluid may limit these actions in vivo. Heat stress can also compromise fertilization rate. The first seven days of embryonic development are very susceptible to disruption by heat stress. During these seven days, the embryo undergoes a rapid change in sensitivity to heat stress from being very sensitive (2- to 4-cell stage) to largely resistant (by the morulae stage). Direct actions of elevated temperature on the embryo are likely to be an important mechanism for reduction in embryonic survival caused by heat stress. An effective way to avoid effects of heat stress on the oocyte, fertilization, and early embryo is to bypass the effects through embryo transfer because embryos are typically transferred into females after acquisition of thermal resistance. There may be some opportunity to mitigate effects of heat stress by feeding antioxidants or regulating the endocrine environment of the cow but neither approach has been reduced to practice. The best long-term solution to the problem of heat stress may be to increase genetic resistance of cows to heat stress. Thermotolerance genes exist within dairy breeds and additional genes can be introgressed from other breeds by traditional means or gene editing.
  • Oocytes, embryos and pluripotent stem cells from a biomedical perspective Congress Paper

    Hyttel, Poul; Pessôa, Laís Vicari de Figueiredo; Secher, Jan Bojsen-Møller; Dittlau, Katarina Stoklund; Freude, Kristine; Hall, Vanessa J; Fair, Trudee; Assey, Remmy John; Laurincik, Jozef; Callesen, Henrik; Greve, Torben; Stroebech, Lotte Björg

    Resumo em Inglês:

    Abstract The veterinary and animal science professions are rapidly developing and their inherent and historical connection to agriculture is challenged by more biomedical and medical directions of research. While some consider this development as a risk of losing identity, it may also be seen as an opportunity for developing further and more sophisticated competences that may ultimately feed back to veterinary and animal science in a synergistic way. The present review describes how agriculture-related studies on bovine in vitro embryo production through studies of putative bovine and porcine embryonic stem cells led the way to more sophisticated studies of human induced pluripotent stem cells (iPSCs) using e.g. gene editing for modeling of neurodegeneration in man. However, instead of being a blind diversion from veterinary and animal science into medicine, these advanced studies of human iPSC-derived neurons build a set of competences that allowed us, in a more competent way, to focus on novel aspects of more veterinary and agricultural relevance in the form of porcine and canine iPSCs. These types of animal stem cells are of biomedical importance for modeling of iPSC-based therapy in man, but in particular the canine iPSCs are also important for understanding and modeling canine diseases, as e.g. canine cognitive dysfunction, for the benefit and therapy of dogs.
  • Developments of reproductive management and biotechnology in the pig Congress Paper

    Peltoniemi, Olli; Björkman, Stefan; Oropeza-Moe, Marianne; Oliviero, Claudio

    Resumo em Inglês:

    Abstract This review aims to describe changes in production environment, management tools and technology to alleviate problems seen with the present hyperprolific sow model. Successful parturition in the pig includes the possibility to express adequate maternal behaviour, rapid expulsion of piglets, complete expulsion of placenta, elimination of uterine contamination and debris, neonatal activity and colostrum intake. We focus on management of large litters, including maternal behaviour, ease of parturition, colostrum production, piglet quality parameters and intermittent suckling. There are also some interesting developments in technology to assess colostrum and immune state of the piglet. These developments may be utilized to improve the success rate of reproductive management around farrowing, lactation and after weaning. We also discuss new insights in how to examine the health of the mammary gland, uterus and ovaries of hyperprolific sows. Finally, we assess the latest developments on breeding and technology of hyperprolific sows, including artificial insemination (AI), real-time ultrasound of the genital tract and embryo transfer (ET). We conclude that 1) for the sow to produce sufficient colostrum, both the behavioural and physiological needs of the sow need to be met before and after parturition. Furthermore, 2) new ultrasound and biopsy technology can be effectively applied for accurate diagnosis of inflammatory processes of the udder and uterus and timing of AI regarding ovulation to improve insemination efficiency. Finally, 3) developments in cryopreservation of germ cells and embryos appear promising but lack of valid oocyte collection techniques and nonsurgical ET techniques are a bottleneck to commercial ET. These latest developments in management of parturition and reproductive technology are necessary to cope with the increasing challenges associated with very large litter sizes.
  • Inflammation: friend or foe of bovine reproduction? Congress Paper

    Chastant, Sylvie; Saint-Dizier, Marie

    Resumo em Inglês:

    Abstract Inflammation is not only the first line of defense of the organism but is also required in many reproductive processes such as ovulation, corpus luteum development, luteolysis, uterine clearance after insemination and post partum. Nevertheless, if excessive or persistent, inflammation can switch from a positive mechanism to a deleterious process, impairing oocyte quality and embryo development. Not only uterine but also non genital inflammatory sites can depreciate reproductive performances, with a carry over effect of 2 to 4 months. Since the metabolic challenges of the peripartum transition period make difficult for the cow to control inflammation, dairy cows are frequently in a pro-inflammatory stage, suggesting that inflammation, rather than infection, is a limiting factor of fertility in modern dairy cows. Within the first week after calving, cows have to mount an intense inflammatory response to the bacterial invasion of the uterine cavity with the challenge of being able to switch it off in no more than 5-6 weeks. The absence of neutrophils on endometrial smear is associated with the highest success rate at insemination. Since a fine tuning – rather than an absence - of inflammation is required along the reproductive cycle, anti-inflammatory drugs do not allow any improvement of pregnancy rate, except in the specific case of embryo transfer. Appropriate management of the transition period (especially nutritional) and in a long term perspective, genetic selection contribute to improve the aptitude of cows to controls the intensity of inflammatory process.
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com