Acessibilidade / Reportar erro

Quantifying sediment discharge from the Bolivian Andes into the Beni foreland basin from cosmogenic 10Be-derived denudation rates

Quantificação da descarga sedimentar na bacia de Beni (Andes bolivianos) por meio da taxa de denudação obtida por isótopos cosmogênicos de 10 Be

Abstract:

Enormous volumes of sediment are produced in the Central Andes and are then delivered into the foreland basins of Amazon basin tributaries. While cosmogenic nuclides in sediment are a suitable tool to measure the denudation rates of sediment-producing areas, the requirement of steady state between nuclide production and nuclide removal by denudation appears to make this method less obvious in depositional foreland basins, where sediment storage may alter 10Be-based erosion signals from the sediment-providing areas. A published cosmogenic nuclide-based modeling approach however predicts that source-area cosmogenic nuclide concentrations are not modified by temporary sediment storage. We tested this approach in the large Beni foreland basin by measuring cosmogenic 10Be nuclide concentrations in detrital sediment along a 600 km long floodplain reach. The outcome of our study is that the 10Be-based denudation rate signal of the Bolivian Andes is preserved in the Beni floodplain even though this basin stores the sediment for thousands of years. For the floodplain part of the Beni basin, the cosmogenic nuclide-derived denudation rate is 0.45 ± 0.07 mm/yr, and the respective Andean source area erodes at a very similar rate of 0.37 ± 0.06 mm/yr. We thus suggest that any sample collected along a river traversing a floodplain will yield the denudation rate of the source area. This finding opens the unique possibility of constraining paleo-sediment budgets for these large basins using cosmogenic nuclides as the denudation rate signal of the sediment-producing area is preserved in sedimentary archives.

Keywords:
Denudation; Erosion; Sediment delivery; Cosmogenic nuclides; Cosmogenic 10Be; Bolivian Andes; Beni River; Madeira River

Resumo:

O grande volume de sedimento produzido pelas bacias foreland dos Andes Centrais é carregado pelos tributários da bacia do rio Amazonas. Embora os cosmonuclídeos em sedimento constituam uma ferramenta atraente para estimativa da taxa de denudação de áreas-fonte, a exigência da relação inicial entre a produção e a remoção de nuclídeos torna o método menos óbvio no caso de bacias foreland, nas quais o estoque de sedimento pode alterar os sinais de erosão pelo 10Be das áreas-fonte. Um modelo de nuclídeos cosmogênicos já publicado afirma contudo que a concentração dos nuclídeos não é modificada pelo estoque temporário de sedimento. No presente trabalho esse modelo foi testado na grande bacia foreland de Beni pela medição das concentrações de nuclídeos de 10Be em sedimento detrítico de um trecho de 600 km ao longo da planície de inundação do rio Beni. Os resultados revelaram que o sinal da taxa de denudação baseada em de nuclídeos de 10Be é preservado nos depósitos da planície de inundação do rio Beni, mesmo em setores onde os sedimentos estejam estocados por milhares de anos. Os valores da taxa de denudação por 10Be encontrados na planície de inundação e na área fonte foram bastante semelhantes: 0,45 ± 0,07 e 0,37 ± 0,06 mm/ano respectivamente. Dessa forma sugere-se que qualquer amostra coletada ao longo de tributários que atravessem a planície de inundação fornecerá a taxa de erosão da área fonte. Esse resultado antevê a possibilidade de uma redução expressiva na amostragem em estudos que objetivem o cálculo da taxa de denudação baseada em cosmonuclídeos.

Palavras-chave:
Denudação; Erosão; Fornecimento de sedimento; Cosmonuclídeos; 10Be cosmogênico; Andes bolivianos; Rio Beni, Rio Madeira

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Acknowledgements

The authors want to thank Liz Safran for providing her data and for numerous discussions. This work was supported by Deutsche Forschungs gemeinschaft grant Bl 562/2-2.

References

  • Aalto R. 2002a. Geomorphic form and process of sediment flux within an active orogen: Denudation of the Bolivian Andes and sediment conveyance across the Beni foreland Ph.D. Thesis, University of Washington, Washington, 365 p.
  • Aalto R., Dunne T., Nittrouer C., Maurice-Bourgoin L., Montgomery D. 2002b. Fluvial transport of sediment across a pristine tropical foreland basin: Channel-flood plain interaction and episodic flood plain deposition. In: Dyer F.J., Thoms M.C., Olley J.M. (eds.) The Structure, Function and Management Implications of Fluvial Sedimentary Systems Alice Springs, IAHS, p. 339-344.
  • Abbott M.B., Wolfe B.B., Wolfe A.P., Seltzer G.O., Aravena R., Mark B.G., Polissar P.J., Rodbell D.T., Rowe H.D., Vuille M. 2003. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3):123-138.
  • Anders M.H., Gregory-Wodzicki K.M., Spiegelman M. 2002. A critical evaluation of late tertiary accelerated uplift rates for the Eastern Cordillera, central Andes of Bolivia. Journal of Geology, 110(1):89-100.
  • Benjamin M.T., Johnson N.M., Naeser C.W. 1987. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating. Geology, 15(7):680-683.
  • Bierman P., & Steig E.J. 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms, 21(2):125-139.
  • Bierman P.R., & Nichols K.K. 2004. Rock to sediment - Slope to sea with Be-10 - Rates of landscape change. Annual Review of Earth and Planetary Sciences, 32:215-255.
  • Blodgett T.A., & Isacks B.L. 2007. Landslide erosion rate in the Eastern Cordillera of Northern Bolivia. Earth Interactions, 11:1-30.
  • Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268(2):192-199 [doi: 10.1016/j.nimb.2009.09.012]
    » https://doi.org/10.1016/j.nimb.2009.09.012
  • Cross S.L., Baker P.A., Seltzer G.O., Fritz S.C., Dunbar R.B. 2000. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene, 10(1):21-32.
  • Dosseto A., Bourdon B., Gaillardet J., Maurice-Bourgoin L., Allegre C.J. 2006. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248(3-4):759-771.
  • Dumont J.F. 1996. Neotectonics of the subandes-Brazilian craton boundary using geomorphological data : the Maranon and Beni basins. Tectonophysics, 259:137-151.
  • Dunai T.J. 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters, 176(1):157-169.
  • Espurt N., Baby P., Brusset S., Roddaz M., Hermoza W., Regard V., Antoine P.O., Salas-Gismondi R., Bolaños R. 2007. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology, 35(6):515-518 [doi: 10.1130/G23237A.1].
    » https://doi.org/10.1130/G23237A.1
  • Fenton C.R., Hermanns R.L., Blikra L.H., Kubik P.W., Bryant C., Niedermann S., Meixner A., Goethals M.M. 2011. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway. Quaternary Geochronology, 6:437-452.
  • Gautier E., Brunstein D., Vauchel P., Roulet M., Fuertes O., Guyot J.L., Darozzes J., Bourrel L. 2007. Temporal relations between meander deformation, water discharge and sediment fluxes in the floodplain of the Rio Beni (Bolivian Amazonia). Earth Surface Processes and Landforms, 32(2):230-248.
  • Granger D.E., & Riebe C.S. 2007. Cosmogenic nuclides in weathering and erosion. In: Drever J.I. (ed.) Surface and Ground Water, Weathering, and Soils - Treatise on Geochemistry London, Elsevier, p. 2-40.
  • Guyot J.L., Filizola N., Quintanilla J., Cortez J. 1996. Dissolved solids and suspended sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon. In: Walling D.E., & Webb B.W. (eds.) Erosion and Sediment yield: Global and Regional Perspectives Exeter, IAHS, p. 55-63.
  • Guyot J.L., Jouanneau J.M., Wasson J.G. 1999. Characterisation of river bed and suspended sediments in the Rio Madeira drainage basin (Bolivian Amazonia). Journal of South American Earth Sciences, 12(4):401-410.
  • Hofmann H.J., Beer J., Bonani G., von Gunten H.R., Raman S., Suter M., Walker R.L., Wölfli W., Zimmermann D. 1987. 10Be: Half-life and AMS-standards. Nuclear Instruments & Methods in Physics Research Section B - Beam Interactions with Materials and Atoms, 29(1-2):32-36 [doi: 10.1016/0168-583X(87)90198-4]
    » https://doi.org/10.1016/0168-583X(87)90198-4
  • Hovius N. (ed.) 1998. Controls on sediment supply by large rivers. In: Shanley K.W., McCabe P.J. (eds.) Relative role of eustasy, climate, and tectonism in continental rocks Tulsa, Society for Sedimentary Geology Special Publication, p. 3-16 [doi: 10.2110/pec.98.59.0002].
    » https://doi.org/10.2110/pec.98.59.0002
  • Kirchner J.W., Finkel R.C., Riebe C.S., Granger D.E., Clayton J.L., King J.G., Megahan W.F. 2001. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology, 29(7):591-594.
  • Kubik P.W., Ivy-Ochs S., Masarik J., Frank M., Schluchter C. 1998. Be-10 and Al-26 production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of Kofels, Oetz Valley, Austria. Earth and Planetary Science Letters, 161(1-4):231-241.
  • Kubik P.W., & Christl M. 2010. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(7-8):880-883.
  • Lal D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104(2-4):424-439.
  • Latrubesse E.M. 2008. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Geomorphology, 101(1-2):130-145.
  • Latrubesse E.M., Stevaux J.C., Sinha R. 2005. Tropical rivers. Geomorphology, 70(3-4):187-206.
  • Lauer J.W., Willenbring J.K. 2010. Steady-state reach-scale theory for radioactive tracer concentration in a simple channel/floodplain system. J. Geophys. Res. Earth Surface, 115:F04018.
  • Matmon A., Bierman P.R., Larsen J., Southworth S., Pavich M., Caffee M. 2003. Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains. Geology, 31(2):155-158.
  • Maurice-Bourgoin L., Aalto R., Guyot J. 2002. Sedimentassociated mercury distribution within a major Amazon tributary: Century-scale contamination history and importance of flood plain accumulation. In: Dyer F.J., Thoms M.C., Olley J.M. (eds.) The Structure, Function and Management Implications of Fluvial Sedimentary Systems Alice Springs, IAHS , p. 161-168.
  • Métivier F., & Gaudemer Y. 1999. Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: implications on floodplain processes. Basin Research, 11(4):293-303.
  • Milliman J., & Meade R.H. 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91:1- 21.
  • Milliman J.D., & Syvitski J.P.M., 1992. Geomorphic tectonic control of sediment discharge to the ocean- The importance of small mountainous rivers. Journal of Geology, 100(5):525-544.
  • Nichols K.K., Bierman P.R., Caffee M., Finkel R., Larsen J. 2005. Cosmogenically enabled sediment budgeting. Geology, 33(2):133-136.
  • Nichols K.K., Bierman P.R., Hooke R.L., Clapp E.M., Caffee M. 2002. Quantifying sediment transport on desert piedmonts using 10Be and 26Al. Geomorphology, 45(1-2):105-125.
  • Plafker G. 1964. Oriented Lakes and Lineaments of Northeastern Bolivia. Geological Society of America Bulletin, 75(6):503-522.
  • Romero C., Baigorria G., Stroosnijder L. 2007. Changes of erosive rainfall for El Niño and La Niña years in the northern Andean highlands of Peru. Climatic Change, 85:343-356.
  • Rowe H., Dunbar R., Mucciarone D., Seltzer G., Baker P., Fritz S. 2002. Insolation, moisture balance and climate change on the South American Altiplano since the Last Glacial Maximum. Climatic Change, 52:175-199.
  • Safran E.B., Bierman P.R., Aalto R., Dunne T., Whipple K.X., Caffee M. 2005. Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms, 30:1007-1024 [doi: 10.1002/esp.1259].
    » https://doi.org/10.1002/esp.1259
  • Safran E.B., Blythe A., Dunne T. 2006. Spatially variable exhumation rates in orogenic belts: An Andean example. Journal of Geology, 114(6):665-681.
  • Schaller M., von Blanckenburg F., Veldkamp A., Tebbens L.A., Hovius N., Kubik P.W. 2002. A 30 000 yr record of erosion rates from cosmogenic Be-10 in Middle European river terraces. Earth and Planetary Science Letters, 204(1-2):307-320 [doi: 10.1016/S0012-821X(02)00951-2].
    » https://doi.org/10.1016/S0012-821X(02)00951-2
  • Synal H.A., Bonani G., Döbeli M., Ender R.M., Gartenmann P., Kubik P.W., Schnabel Ch., Suter M. 1997. Status report of the PSI/ETH AMS facility. Nuclear Instruments & Methods in Physics Research Section B - Beam Interactions with Materials and Atoms, 123(1-4):62-68 [doi: 10.1016/S0168-583X(96)00608-8].
    » https://doi.org/10.1016/S0168-583X(96)00608-8
  • Tapia P.M., Fritz S.C., Baker P.A., Seltzer G.O., Dunbar R.B. 2003. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3):139-164.
  • Vanacker V., von Blanckenburg F., Govers G., Molina A., Poesen J., Deckers J., Kubik P. 2007. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology, 35(4):303-306 [doi: 10.1130/G23109A.1].
    » https://doi.org/10.1130/G23109A.1
  • von Blanckenburg F. 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 237(3-4):462-479.
  • von Blanckenburg F., Hewawasam T., Kubik P.W. 2004. Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. J. Geophys. Res., 109(F03008):1-22 [doi: 10.1029/2003JF000049].
    » https://doi.org/10.1029/2003JF000049
  • Wittmann H., & von Blanckenburg F. 2009. Cosmogenic nuclide budgeting of floodplain sediment transfer. Geomorphology, 109(3-4):246-256.
  • Wittmann H., von Blanckenburg F., Guyot J.L., Maurice L., Kubik P.W. 2009. From source to sink: Preserving the cosmogenic 10Be-derived denudation rate signal of the Bolivian Andes in sediment of the Beni and Mamoré foreland basins. Earth and Planetary Science Letters, 288(3-4):463-474.
  • Wittmann H. 2008. New applications to in situ-produced cosmogenic nuclides in river sediment: High mountain belt denudation in the Swiss Alps and Bolivian Andes and sediment transfer and storage in the Amazon basin Ph.D. Thesis, University of Hannover, Hannover, 178 p.
  • Wittmann H., von Blanckenburg F., Kruesmann T., Norton K.P., Kubik P.W. 2007. Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J. Geophys. Res., 112(F04010):1-20. [doi: 10.1029/2006JF000729].
    » https://doi.org/10.1029/2006JF000729
  • Wittmann H., von Blanckenburg F., Maurice L., Guyot J.L., Filizola N., Kubik P.W. 2011. Sediment production and delivery in the Amazon River basin quantified by in situproduced cosmogenic nuclides and recent river loads. Geological Society of America Bulletin, 123(5-6):934-950 [doi: 10.1130/B30317.1].
    » https://doi.org/10.1130/B30317.1

Publication Dates

  • Publication in this collection
    Oct-Dec 2011

History

  • Received
    30 June 2010
  • Accepted
    21 Dec 2011
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br